

DOI <https://doi.org/10.30525/2592-8813-2025-4-20>

YOUTH READINESS FOR AI-DRIVEN HR PRACTICES IN THE BALTIC STATES: A COMPARATIVE STUDY

Veranika Khlud,

*Postgraduate Student at the Regional Economy and Economic Policy Study Program,
Baltic International Academy (Riga, Latvia)
ORCID ID: 0000-0002-0732-6463
veranikakhlud@gmail.com*

Galina Reshina,

*Dr.oec., Professor,
Baltic International Academy (Riga, Latvia)
ORCID ID: 0000-0003-2241-6261
reshinaganna@inbox.lv*

Abstract. This study explores youth readiness for artificial intelligence (AI) applications in human resource (HR) and recruitment practices in Estonia, Latvia, and Lithuania. Based on a cross-country survey and qualitative interviews with individuals aged 18 to 30, the research examines digital competence, exposure to AI tools, and attitudes toward AI in hiring. The findings reveal significant differences across the Baltic states. Estonian youth demonstrate the highest readiness, supported by strong digital education and national AI initiatives. Lithuanian respondents show active use of AI in learning but report moderate institutional support. Latvian participants express interest in AI but indicate limited access and lower digital confidence. While most respondents view AI as a useful and efficient tool in HR, concerns remain regarding data transparency and fairness. The study offers evidence-based recommendations to support the integration of AI in education and employment services, aiming to improve youth adaptability to future AI-driven labour markets.

Key words: youth; artificial intelligence; recruitment; human resource; Baltic states.

Introduction. The rise of AI is transforming human resource management (HRM) and recruitment globally. Organizations increasingly use AI-powered tools to scan résumés, source candidates, and even conduct initial interviews. Studies highlight that AI can enhance efficiency, reduce human bias, and improve hiring decisions through advanced data analysis (Rai, Constantinides, & Sarker, 2019; Jatobá et al., 2023). For example, AI algorithms can rapidly match candidates to job profiles based on skill relevance and predictive analytics, often outperforming traditional methods in speed and scale (Chatterjee, Rana, Tamilmani, & Sharma, 2021). AI adoption in HR leads to better efficiency and decision-making (Tambe, Cappelli, & Yakubovich, 2019). However, scholars also point to ethical concerns. AI systems, when trained on biased historical data, may replicate or amplify existing inequalities (Binns, Veale, Van Kleek, & Shadbolt, 2018; Raghavan, Barocas, Kleinberg, & Levy, 2020). A comprehensive review emphasized the risk of algorithmic discrimination against certain demographics unless developers apply rigorous fairness checks and transparency mechanisms (Chen, Wu, & Wang, 2023). Well-publicized failures, such as Amazon's AI tool that downgraded female applicants (Dastin, 2018), illustrate the potential harms of unregulated AI in hiring. In response, regulatory frameworks such as the European Union (EU) Artificial Intelligence Act classify recruitment-related AI tools as high-risk systems, requiring audits, documentation, and bias mitigation measures (European Commission, 2021). These developments highlight the growing importance of AI literacy, digital ethics, and regulatory compliance for both employers and job seekers in the evolving labour market.

Recent research supports the Eurostat findings that young people in the Baltic states are highly digitally engaged, with daily internet use rates among the highest in the EU and widespread participation

in online social networking activities (Madej-Kurzawa, Pieczarka, & Węgrzyn, 2021; Cino, Lacko, Mascheroni, & Šmahel, 2022). However, there are notable differences in digital skill levels: while 93% of youth in Estonia and Lithuania possess at least basic digital skills, only 75% of Latvian youth do, indicating a significant skills gap (Madej-Kurzawa, Pieczarka, & Węgrzyn, 2021). This disparity suggests that, despite nearly universal internet access, a substantial portion of Latvian youth may lack the fundamental digital competencies enjoyed by their peers in Estonia and Lithuania. Such differences in digital skills are important, as higher digital competencies are linked to greater professional opportunities and more effective participation in digital and AI-driven HR practices and recruitment processes (Madej-Kurzawa, Pieczarka, & Węgrzyn, 2021; Peláez, Erro-Garcés, & Ciriano, 2020). Research also highlights that digital skills – especially informational and problem-solving abilities – are strong predictors of how young people engage with online activities, including those relevant to employment and education (Cino, Lacko, Mascheroni, & Šmahel, 2022; Madej-Kurzawa, Pieczarka, & Węgrzyn, 2021). Therefore, while Baltic youth are generally well-connected and active online, addressing the digital skills gap, particularly in Latvia, is crucial to ensuring equal readiness for the evolving demands of the digital economy and AI-driven workplaces (Madej-Kurzawa, Pieczarka, & Węgrzyn, 2021; Peláez, Erro-Garcés, & Ciriano, 2020; Cino, Lacko, Mascheroni, & Šmahel, 2022).

Despite the growing presence of AI in recruitment, research focusing specifically on the perspective of youth as participants in AI-mediated hiring remains limited, particularly within the Baltic context. International studies examining job applicants' perceptions of AI in recruitment have found that candidates perceive AI-based hiring tools as both useful and easy to use, with notable advantages including accelerated response times in communication, a feature that younger applicants especially value compared to the traditionally slower pace of conventional recruitment processes. Nevertheless, participants also highlight drawbacks such as the lack of nuanced human judgment and concerns regarding the accuracy and reliability of algorithms (Horodyski, 2023). These findings suggest that digitally native youth may appreciate the efficiency offered by AI, while remaining cautious about its limitations (Wang et al., 2021). Another recent study focusing on Generation Z in Germany (born 1995–2010) revealed a similarly ambivalent outlook: on one hand, Gen Z sees AI as an opportunity to reduce human bias and improve diversity in hiring, but on the other, they fear potential job losses for HR staff and mistrust companies' data security measures (Talay, Wolf, & Ruf, 2023). Such insights underscore that "youth readiness" for AI-driven HR involves not just technical skill, but also awareness, attitudes, and trust.

The aim of this study is to empirically assess the readiness of youth in the Baltic states, specifically Estonia, Latvia, and Lithuania, for AI-driven HR and recruitment practices. Specifically, the objectives are: (1) to compare digital skills among youth in each country and assess whether they are sufficient for using AI-based recruitment tools; (2) to measure the level of awareness and understanding of AI applications in HR; (3) to analyze perceptions of benefits and risks associated with these technologies, including concerns about fairness, privacy, and job security; and (4) to identify notable differences between countries and age subgroups (e.g., university students versus late-twenties professionals) in readiness and attitudes.

This research was conducted in February-April 2025 by HR Line EU, a Latvia-based employment agency specializing in HR innovation throughout the EU. The study draws on original survey and interview data to provide new empirical evidence regarding the digital and attitudinal readiness of Baltic youth for the future of AI-mediated recruitment. The results are intended to inform educational policy, HR practitioners, and future research on supporting youth as they enter an increasingly AI-oriented labour market.

Methods. This study employed a mixed-methods approach, combining a quantitative survey of Baltic youth with qualitative interviews to gain deeper insight. The research was based on original data collected from respondents in Estonia, Latvia, and Lithuania. The research design and survey

instruments were developed by the HR Line EU research team in consultation with regional experts, ensuring that the data accurately reflected each country's context.

Survey Design and Sample. An online questionnaire was constructed consisting of multiple sections: (1) respondents' background (age, gender, education, and employment status), (2) digital skills self-assessment, (3) awareness and knowledge of AI in HR, (4) attitudes toward AI-driven recruitment, and (5) personal experiences (if any) with AI tools in job seeking or hiring. Many survey items were designed as statements on a 5-point Likert scale (from "Strongly Disagree" to "Strongly Agree"). For example, participants rated statements such as "I feel confident in my ability to succeed in a job interview conducted by an AI system" and "AI algorithms can evaluate job candidates more fairly than human recruiters." To measure attitudes toward AI, the General Attitudes towards Artificial Intelligence Scale (GAAIS) (Schepman & Rodway, 2022) was included in the survey. The GAAIS consists of two subscales: Positive Attitude (e.g., "Artificial intelligence makes my daily life easier") and Negative Attitude (e.g., "Artificial intelligence makes me feel anxious"). Each subscale comprises five statements rated on a 5-point Likert scale (1 = strongly disagree, 5 = strongly agree). For analysis, mean scores for each subscale were calculated for all respondents and by subgroup.

The target population consisted of young people aged 18–30 in Estonia, Latvia, and Lithuania. The final sample included 600 respondents, with 200 participants from each country. Each national subsample was stratified by two age groups (18–24 and 25–30), resulting in 100 respondents per age group in each country. Participants were selected to ensure proportional representation of urban and rural youth, as well as alignment with national distributions in tertiary education enrollment, reflecting varying levels of digital exposure. The gender distribution in the sample was approximately equal, mirroring general survey participation trends among young adults in the Baltic region.

Interview Procedure. To complement the survey, semi-structured interviews were conducted with a smaller sample of participants from each country. In each nation, 10 young people were selected to represent diverse backgrounds, including university students, recent graduates, early-career professionals, and unemployed youth. All interviews were conducted via video call and followed an open-ended interview guide. Key prompts included: "Can you describe what you know about how AI is being used in hiring or at workplaces?", "How would you feel if a company's first interview with you was conducted by an AI (for example, a chatbot or automated video analysis)?", and "In your opinion, what are the biggest benefits and risks of using AI in recruitment processes for young job-seekers?" Interviewers also asked for personal experiences, such as whether the participant had ever applied for a job using an AI-based system, and explored their sense of preparedness (e.g., "Do you think your education or past experience has prepared you to deal with AI in the workplace?"). All interviews were audio-recorded (with consent) and transcribed for qualitative analysis.

Each interview lasted approximately 30–40 minutes. The qualitative data were analyzed using thematic analysis to identify common themes and country-specific differences in perceptions and experiences. For example, some Estonian interviewees described their familiarity with automated systems gained through university e-services and national digital platforms. In contrast, several Latvian participants noted that their awareness of AI in hiring stemmed primarily from news, social media, or recent educational reforms. Lithuanian interviewees often discussed hands-on experiences with digital tools in both education and job-seeking contexts. These qualitative insights helped to contextualize the survey findings, revealing nuanced attitudes and experiences among Baltic youth regarding AI adoption in recruitment and HR practices.

Analysis. For the quantitative analysis, survey responses, including GAAIS scores, were processed using descriptive statistics and comparative analysis across countries and age groups. Mean scores and standard deviations were calculated for each GAAIS subscale (Positive Attitude, Negative Attitude) within each country and age group. Key indicators, such as the proportion of respondents agreeing with core statements (e.g., "AI makes my life easier," "AI makes me anxious"), were compared across groups to identify substantive differences in attitudes and readiness.

Analysis of GAAIS results revealed clear cross-country variation in attitudes toward AI (see Table 1). Estonian youth demonstrated the most positive attitudes toward artificial intelligence ($M = 4.0$, $SD = 0.7$), while Lithuanian youth followed ($M = 3.7$, $SD = 0.8$), and Latvian respondents reported the lowest positive attitudes ($M = 3.4$, $SD = 0.9$). In terms of concerns or negative attitudes, Estonian participants scored lowest ($M = 2.2$, $SD = 0.8$), suggesting less anxiety and apprehension about AI. Lithuanian youth had slightly higher concerns ($M = 2.5$, $SD = 0.9$), and Latvians reported the highest levels of concern ($M = 2.8$, $SD = 1.0$).

Further breakdown by age groups indicated that participants aged 18-24 across all three countries tended to express more optimistic attitudes toward AI (Positive Attitude subscale: $M = 3.9$) and lower anxiety (Negative Attitude subscale: $M = 2.3$) compared to those in the 25-30 cohort ($M = 3.5$ and $M = 2.7$, respectively). These patterns were consistent across Estonia, Latvia, and Lithuania, although absolute values varied, with Estonian youth consistently showing the greatest openness to AI and the least apprehension.

In addition to attitudes, an "AI readiness index" was calculated for each respondent by aggregating responses related to digital skills, awareness of AI applications, and attitude scores. This index, scaled from 0 to 100, provided a synthetic measure of overall readiness and enabled direct comparison between groups. As expected, Estonian youth had the highest average AI readiness index, followed by Lithuanian and then Latvian respondents.

For the qualitative component, thematic analysis of interview transcripts identified several recurring themes. These included "trust in technology," "importance of human interaction," "concerns about bias and fairness," and "enthusiasm for increased efficiency." Differences emerged between countries: Estonian participants often described greater familiarity and comfort with automated systems, citing personal experiences in educational or public service settings, while Latvian interviewees expressed more uncertainty and a desire for increased transparency in AI-mediated recruitment. Lithuanian youth commonly highlighted the practical benefits of AI but voiced concerns about data privacy and the erosion of personal contact during hiring.

These qualitative findings provided valuable context for interpreting the quantitative data, offering deeper insight into both the origins of optimism and the roots of skepticism among Baltic youth. The integrated analysis thus delivers a nuanced, evidence-based account of readiness for AI-driven HR practices in the region.

Results. Digital Skills Landscape. The survey results indicate that digital proficiency among Baltic youth is high, with notable disparities remaining between the three countries. In Estonia and Lithuania, nearly all respondents (over 90%) rated their computer and internet skills as "good" or "excellent." By contrast, in Latvia, only 78% of youth described their skills at this level, with the remainder reporting "fair" or "basic" digital competence. Across all countries, younger participants (aged 18-24) tended to rate their digital abilities higher than those in the 25-30 age group. These findings are consistent with

Table 1
Mean GAAIS Scores by Country and Age Group

Country	Age Group	Positive Attitude (M, SD)	Negative Attitude (M, SD)
Estonia	18-24	4.1 (0.7)	2.1 (0.7)
Estonia	25-30	3.8 (0.8)	2.3 (0.8)
Lithuania	18-24	3.8 (0.7)	2.4 (0.9)
Lithuania	25-30	3.6 (0.8)	2.6 (0.8)
Latvia	18-24	3.5 (0.8)	2.6 (1.0)
Latvia	25-30	3.3 (0.9)	3.0 (0.9)

Note: Scores range from 1 ("Strongly disagree") to 5 ("Strongly agree").

Source: Developed by the authors

broader European trends but highlight a persistent digital gap for Latvian youth even within the younger cohort (Machackova et al., 2024; Andersson, Dalquist, Ohlsson, & N., 2018).

Awareness of AI in HR. The majority of Baltic youth are aware that AI technologies are being introduced into recruitment, though exposure levels vary by country. The survey asked respondents whether they had heard of specific AI applications in hiring, such as CV-scanning algorithms or AI-powered video interview platforms. In Estonia, 90% of respondents indicated awareness of at least one such application, while the figures were 78% in Lithuania and 64% in Latvia. Estonian youth frequently referenced exposure through university career center workshops and news articles about AI-driven hiring. In contrast, a significant proportion of Latvian respondents, particularly those from outside major urban areas, noted that the concept was relatively new to them. For some participants, taking part in this survey represented their first introduction to AI in recruitment. Lithuanian participants typically reported informal awareness, most often via social media or peer discussions.

Notably, across all countries, few participants reported direct experience as applicants in an AI-mediated hiring process. Only about 10% of the sample believed they had ever been evaluated by an algorithm during recruitment, and many were uncertain due to the lack of employer transparency regarding the use of AI in candidate screening. An exception was a tech-oriented Estonian respondent who described completing an online gamified psychometric assessment, which he suspected was AI-scored. Thus, while general awareness of AI in HR is high, firsthand experience with AI-mediated recruitment remains limited among Baltic youth. These findings are in line with recent international research on youth perceptions of AI in employment (Tanvi, Rutika, & Vidani, 2025; Yarovenko, Kuzior, Norek, & Lopatka, 2024; Weiss, Liu, Mieczkowski, & Hancock, 2022; Yasin, 2022).

Attitudes and Perceptions. Survey results indicate a pattern of cautious optimism among Baltic youth toward AI in recruitment. Most respondents recognized that AI can improve hiring efficiency: 70% of Estonians, 65% of Lithuanians, and 55% of Latvians at least "somewhat agreed" that AI could speed up recruitment and reduce feedback wait times. This emphasis on faster processes aligns with global findings (Gilbert et al., 2020; Kaplan, Klein, Wilson, & Graves, 2020).

Qualitative interviews confirmed this sentiment. One Lithuanian participant remarked, "If an AI system schedules interviews or updates you instantly, that's a big plus. It's better than waiting weeks."

At the same time, concerns about fairness and loss of human touch were pronounced. Only 30% of Estonian, 25% of Lithuanian, and 15% of Latvian youth trusted AI to make fair hiring decisions. More than 60% of Latvian respondents disagreed that AI would improve fairness, suggesting a deeper mistrust in new technologies.

Interviewees, especially in Latvia, worried that AI might overlook unique qualities in CVs: "A human might catch my potential, but a computer might not," explained one. Across all countries, 68% agreed that human recruiters can perceive qualities that AI cannot, echoing other research about the limits of automated assessment (Lashkari & Cheng, 2023; Armstrong, Everson, & Ko, 2023).

Privacy and data security ranked among the most prominent concerns for Baltic youth. Around half of respondents in each country (50–60%) reported unease about how personal data such as video recordings or social media profiles might be used by AI systems. For example, an Estonian participant noted that, even with strong data protection laws, there is uncertainty about where their information might end up and who could access it. About 55% of Lithuanian and 65% of Latvian participants said they felt uncomfortable with AI analyzing their facial expressions or voices. This suggests a significant proportion of young people, particularly in Latvia, feel uneasy about the intrusive aspects of AI evaluation.

Beyond these concerns, respondents frequently identified the potential of AI to increase fairness and mitigate bias in recruitment. Many respondents, especially from Estonia and Lithuania, indicated that AI has the potential to reduce human prejudices in hiring. In Lithuania, 58% agreed that AI might make recruitment more merit-based by focusing on qualifications rather than personal factors. This

proportion was even higher in Estonia, at 65%, while in Latvia it was lower at approximately 45%, suggesting a more cautious or skeptical attitude among Latvian respondents. Several interviewees suggested that, if properly designed, AI would not be influenced by characteristics such as gender or surname, but would prioritize skills and qualifications. Some participants also noted that AI could address issues of nepotism or bias that occasionally occur in local hiring practices. These perspectives are consistent with international findings, including those from Gen Z focus groups in Germany (Talay et al., 2023), which highlight both the perceived opportunities and the condSelf-Reported Readiness.

Survey participants were asked to assess their own preparedness for AI-mediated hiring situations. Results indicate significant variation across countries and age groups. In Estonia, the majority of respondents expressed confidence: 80% of those aged 18–24 and 75% of those aged 25–30 reported feeling “prepared” or “very prepared” to participate in AI-driven recruitment, such as taking an AI-scored assessment or interacting with automated chatbots. In Lithuania, the proportions were slightly lower, with 70% of the younger group and 68% of the older group feeling ready. Latvian youth were the least confident, as only 62% of respondents aged 18–24 and 58% of those aged 25–30 described themselves as prepared for such processes.

The pattern across all three countries suggests that younger respondents (18–24) consistently feel more at ease with AI in recruitment than those aged 25–30, which is consistent with the notion that recent graduates and university students are more familiar with new technologies in daily life and education (Hekkala & Hekkala, 2021; Asif, 2024). Estonia’s results, in particular, may be influenced by the greater integration of AI tools in their education system and public services, as documented in national digital transformation reports (Liutkevicius & Yahia, 2022).

These findings align with trends observed in broader European studies (Azzolini & Schizzerotto, 2017; Labudová & Fodranova, 2024; Vasilescu, Ţerban, Dimian, Aceleanu, & Picatoste, 2020), where younger digital natives display higher confidence in technology-mediated environments. However, the gap between Estonia and Latvia highlights the ongoing digital skill divide in the region (Caravella, Cirillo, Crespi, Guarascio, & Menghini, 2023; Natalia, 2024; Soshynska & Soshynska, 2020).

Table 2 provides a summary of the main survey indicators that illustrate key dimensions of youth readiness for AI-driven HR practices across Estonia, Lithuania, and Latvia. The table highlights comparative measures, including levels of awareness about AI in recruitment, perceived benefits, concerns about risks, willingness to engage with AI tools in hiring, and preferences regarding human involvement in the final decision-making process.

As shown in Table 2, Estonian youth demonstrate both higher awareness of AI applications in recruitment and greater comfort with AI-mediated assessments. Furthermore, nearly two-thirds of

Table 2
Simulated Survey Findings – Comparative Metrics by Country

Survey Item	Estonia	Lithuania	Latvia
Aware of AI use in recruitment (heard of at least one AI tool)	90%	80%	70%
Believe AI can improve diversity/fairness in hiring	65%	55%	45%
Concerned about AI causing bias or privacy invasion	50%	55%	60%
Comfortable taking an AI-administered interview or test	78%	70%	60%
Prefer final hiring decisions be made with human oversight	85%	90%	95%

Note: All figures indicate the percentage of respondents who answered in the affirmative (“yes” or “agree/strongly agree”). The data are based on the 2025 HR Line EU survey of youth in the Baltic states. “Human oversight” refers to the preference for final hiring decisions to involve human review, even if AI tools are used during the assessment process.

Source: Developed by the authors

Estonian respondents see the potential for AI to enhance diversity and fairness in hiring. By contrast, Latvian youth exhibit greater concern regarding the risks of bias and privacy invasion (60%) and express the strongest preference for human involvement in recruitment outcomes (95%). Lithuanian youth are positioned between their Estonian and Latvian peers, expressing moderate optimism about the advantages of AI in recruitment while simultaneously exhibiting caution about its potential risks.

A noteworthy finding is the high level of consensus across all three countries that, while AI systems can improve efficiency and objectivity, the majority of youth believe that human oversight remains essential in hiring decisions. This supports the broader view identified in recent European and international studies that youth prefer a hybrid model, where AI augments rather than replaces human judgment in HR processes (Parul & Alok, 2025; Gonzalez et al., 2022; Will, Krpan, & Lordan, 2022).

Qualitative Insights. The interviews provided essential context for the quantitative findings. In Estonia, participants expressed high levels of trust in digital systems and described the integration of AI in HR as a natural progression from the country's established e-services. A number of Estonian respondents indicated enthusiasm for AI-driven recruitment, viewing it as an opportunity for further innovation in the labour market. Importantly, several also raised concerns about digital exclusion, noting that individuals with limited digital skills, such as older adults or those from rural areas, could encounter new barriers as AI becomes more prevalent in recruitment.

Lithuanian youth demonstrated a pragmatic yet optimistic stance. They welcomed the efficiency and objectivity AI could offer, but emphasized the necessity of transparency and procedural fairness. Participants repeatedly called for clear communication from employers about how AI is used in hiring and requested mechanisms to explain or contest automated decisions. This reflects a broader desire for accountability and aligns with recommendations in the literature regarding AI transparency in recruitment (Xiong & Kim, 2025; Jamal, Aissaoui, & Kassal, 2024; Musrifah & Hasanah, 2025).

Latvian respondents, by contrast, demonstrated greater skepticism and apprehension. Many cited lower confidence in their digital skills and expressed concerns that the introduction of AI in hiring might create a more impersonal process or exacerbate existing inequalities. Some feared that greater reliance on technology could marginalize those less technologically adept or reinforce perceived barriers to employment. Nevertheless, a subset of participants recognized potential benefits of AI, particularly in reducing nepotism or bias in public sector recruitment.

In summary, the qualitative data reveal clear distinctions in attitudes and readiness among Baltic youth. Estonian participants emerged as the most confident and future-oriented; Lithuanians combined openness with a strong demand for transparency and procedural justice; Latvians remained cautious, highlighting both skill gaps and cultural reservations. Across all countries, participants underscored the importance of maintaining human oversight in recruitment, even as AI adoption increases. These findings reinforce the quantitative results and confirm that, while enthusiasm for AI exists, support is contingent on demonstrated fairness, transparency, and the preservation of human involvement.

Discussion. This study examined the preparedness of Baltic youth for participation in AI-driven HR and recruitment practices. Empirical results both corroborate and extend real-world trends, yielding insights of scholarly and practical importance. The findings demonstrate that readiness is unevenly distributed across countries and demographic groups, with certain segments displaying high levels while significant gaps remain in others. In interpreting these results, the discussion draws upon existing literature and analyzes implications for key stakeholders, including youth, employers, educators, and policymakers. The section also presents targeted recommendations and directions for further research.

Country Differences and Digital Context. The results reveal clear differences in youth readiness for AI-driven HR among the Baltic states. Estonian youth consistently demonstrate the highest digital competence and confidence with AI, reflecting the country's sustained investment in ICT education and widespread use of digital government services. Most Estonian participants expressed both prepar-

edness for and trust in AI-based recruitment, with about 80% reporting that they feel ready to engage with these tools. In Lithuania, readiness levels are moderate and attitudes toward AI remain positive, though accompanied by greater caution. Lithuanian youth benefit from recent improvements in digital education and a growing tech sector, which may help narrow the gap with Estonia in the future. Latvian youth, however, show the lowest digital skills and the highest levels of skepticism toward AI in HR. Many Latvian respondents emphasized a need for human involvement in hiring decisions and reported less exposure to digital innovations in education and daily life. These findings suggest that national digital strategies and the degree of technology integration in society play a significant role in shaping how prepared and confident young people are to navigate AI-mediated recruitment (Schiff, 2021; Holmström, 2021).

Youth Attitudes – Parallels with Global Studies. Empirical findings indicate that Baltic youth attitudes toward AI in HR closely reflect patterns observed in international studies. Across Estonia, Latvia, and Lithuania, young people exhibit cautious optimism: they recognize AI's potential to make recruitment faster and more efficient, but consistently voice concerns about its limitations and risks. These results align with recent surveys of European job applicants and studies of German Gen Z, which found that, globally, youth appreciate functional benefits like prompt feedback and reduced human bias, yet remain wary of the technology's lack of nuanced judgment and potential for error (Horodyski, 2023; Talay et al., 2023).

For example, participants in the interviews frequently cited faster communication as a major advantage, echoing the emphasis on speed and efficiency highlighted in prior research (Majumder & Mondal, 2021; Pereira, Hadjielias, Christofi, & Vrontis, 2021). However, concerns about the lack of "human touch" were pervasive, particularly among Latvian youth, who were the least confident in AI's ability to fairly evaluate candidates. This wariness is consistent with recent literature describing "dehumanization by algorithm," where candidates fear being reduced to data points rather than recognized for their unique qualities (Fritts & Cabrera, 2021; Schultz, Clegg, Hofstetter, & Seele, 2024).

This emphasis on transparency and the need for human involvement aligns with broader research on AI acceptance, which underscores the importance of explainability and accountability in fostering trust in AI-driven recruitment (Rigotti & Fosch-Villaronga, 2024; Jamal, Aissaoui, & Kassal, 2024; Chen, 2023). Current European policy developments echo these findings, as regulations increasingly require high-risk AI systems, such as those in hiring, to provide clear explanations for decisions and ensure human oversight (Nannini, Alonso-Moral, Catalá, Lama, & Barro, 2024). The views expressed by Baltic youth in this research provide direct empirical support for these regulatory trends.

Finally, the results underscore strong support for a human-AI hybrid approach in hiring. A clear majority of youth preferred that AI serve as an assistive tool rather than an autonomous decision-maker, in line with current HR technology best practices (Parul & Alok, 2025; Peng, Nushi, Kıcıman, Inkpen, & Kamar, 2022). This "augmented HR" model (Prikshat, Malik, & Budhwar, 2021; Prikshat, Islam, Patel, Malik, Budhwar, & Gupta, 2023) was viewed as a way to maximize AI's efficiency while retaining the empathy and judgment of human professionals.

Implications for Stakeholders. The insights from this comparative study carry several implications:

1. For Youth (Job Seekers). The present study highlights a significant need for digital upskilling and AI literacy among Baltic youth, with particular urgency in Latvia. While many young people express confidence, a notable portion in Latvia and Lithuania report feeling unprepared for AI-mediated hiring. Embedding practical AI training into university and vocational programs – such as modules on applicant tracking systems or AI-based interviews – is supported by recent research, which highlights the growing prevalence of AI in recruitment and the need for both competence and confidence among job seekers (Hunkenschroer & Luetge, 2022; Suen, Hung, & Lin, 2019; Cui, Chen, & Huang, 2025). However, even in digitally advanced Estonia, ongoing learning is necessary as AI technologies rapidly evolve. Finally, it is essential that young people are informed of their rights in

AI-driven recruitment, including the EU provision for human review of automated decisions. Most participants indicated a lack of awareness regarding this right.

2. For Employers and HR Professionals. Organizations in the Baltics that implement AI in recruitment must recognize the range of youth attitudes, from trust to skepticism, especially in Latvia. Transparent communication about the use of AI in hiring processes can help build trust among younger applicants. Companies should clearly state how AI is used and how human oversight is maintained. Providing detailed feedback to candidates is also important, as many young people criticize the lack of clarity in recruitment outcomes, regardless of whether AI is used. Advanced AI systems can generate feedback, such as identifying missing skills, which helps candidates improve and demonstrates responsible use of technology. Employers should ensure that HR staff are trained to critically assess AI outputs and to provide the human element that applicants value. Literature supports developing hybrid HR competencies that blend analytical skills for AI management with the emotional intelligence necessary for fair decision-making (La Sala, Fuller, Rioli, & Temperini, 2024; Tabor-Blažewicz, 2022; McCartney, Murphy, & McCarthy, 2020). Regular training and critical engagement with AI systems will help organizations both use these tools effectively and maintain applicant trust.

3. For Educators and Policy Makers. The study highlights the importance of embedding digital and AI skills into youth development strategies. Latvia, for example, has set a national target of 70% basic digital skills by 2027, underscoring the need for policy interventions to close existing gaps (Pelše & Leščevica, 2020; Čāne, 2021). Achieving such targets will have direct consequences for employment readiness among young people. Updating educational curricula to address AI in the workplace, for example, by incorporating simulations of AI-based recruitment into school and university career guidance programs, can help students build both confidence and competence. Regional cooperation could further accelerate progress: Estonia's advances in digital literacy serve as a model for Latvia and Lithuania. Although cross-border initiatives already exist in the Baltic and Nordic regions, greater emphasis should be placed on youth involvement and knowledge exchange. As the EU AI Act is implemented in the coming years, governments need to inform young citizens about new safeguards and the right to human review of automated hiring. Policymakers should also encourage practical learning, supporting hackathons, workshops, and digital labs that give youth hands-on experience with AI tools, preparing them as both job seekers and future contributors to AI innovation.

Several limitations should be considered when interpreting the findings of this study. Focusing exclusively on Baltic youth aged 18–30 provides valuable insights into this demographic's readiness for AI in HR, but it also introduces several limitations. Research in AI-enabled recruitment emphasizes the importance of including broader perspectives, such as those of employers, HR professionals, and older workers, to fully understand the adoption and impact of AI in HR practices (França, Mamede, Barroso, & Santos, 2023; Budhwar, Malik, Thedushika, Silva, & Thevisuthan, 2022). Studies also highlight that factors like language proficiency, international aspirations, and unique cultural or economic contexts can significantly influence attitudes toward AI-driven hiring, yet these are often underexplored in youth-focused research (Chen, 2023). Additionally, cross-national studies may overlook country-specific variables that shape perceptions and readiness for AI, underscoring the need for more nuanced, multi-stakeholder approaches (Charlwood & Guenole, 2022). Future research is recommended to address these gaps by incorporating diverse age groups, professional backgrounds, and socio-demographic factors, as well as by examining the organizational and societal dimensions of AI adoption in HR. This broader approach would help build a more comprehensive and actionable understanding of digital and AI readiness in the workforce.

Recommendations. Building on the empirical evidence from this comparative study, several targeted recommendations are proposed to advance youth readiness for AI-driven HR practices in the Baltic region.

1. Integrate AI and Digital Skills into Education Systems. Educational institutions across Estonia, Latvia, and Lithuania should systematically embed AI literacy and digital employability modules within school and university curricula. Career development programs should instruct students on the mechanics of algorithmic recruitment, including how to optimize application materials for AI screening and how to prepare for automated interviews. Estonia's successful digital education initiatives could serve as a model, informing curricular reforms in Latvia and Lithuania to bridge persistent skills gaps.

2. Engage Youth in Policy Development. Policy makers and civil society organizations should ensure that youth perspectives are actively represented in the formulation of national and regional AI strategies. This could be achieved through the establishment of youth advisory boards, consultation exercises, and participatory formats such as hackathons and focus groups. Incorporating the concerns and priorities identified in this study, especially those related to privacy, fairness, and access, will foster more responsive and effective policy interventions.

3. Promote Transparency and Feedback in Recruitment Processes. Employers, particularly large firms and multinational corporations operating in the Baltic states, should adopt transparent recruitment practices when deploying AI tools. Providing candidates with clear information about the use of AI in selection processes, as well as individualized feedback generated by these systems, can significantly improve trust and candidate experience. Explicitly communicating the role of both AI and human oversight in hiring decisions is likely to address skepticism and increase applicant confidence, as indicated by participant feedback.

4. Prioritize Digital Empowerment in Latvia. Given Latvia's comparatively lower digital readiness among youth, a focused national initiative to accelerate digital skills acquisition and AI literacy is recommended. This could involve the expansion of government- or EU-funded online courses, targeted outreach to NEET youth, and practical workshops on AI-based hiring methods. Although Lithuania is more advanced, further initiatives aimed at advanced digital skills and innovation would also support alignment with EU digitalization targets.

5. Foster Local Innovation and Language Inclusivity in AI Tools. To ensure equitable opportunities, the Baltic tech sector should prioritize the development of AI recruitment tools that are fully adapted to local linguistic and cultural contexts. The importance of fairness and transparency in AI systems emerges as a key theme, suggesting that future HR technologies should incorporate explainable AI features and robust multi-language support to prevent inadvertent discrimination against local candidates. Involving youth in the co-design and testing of such systems will ensure their relevance and user-friendliness.

By implementing these recommendations, stakeholders across education, policy, and business can collectively foster an environment in which Baltic youth are fully equipped, both technically and attitudinally, to navigate and shape the future of AI-mediated employment.

Conclusion. This empirical study assessed the readiness of youth in Estonia, Latvia, and Lithuania to engage with AI-driven HR and recruitment practices, providing a comparative analysis across digital skills, awareness, attitudes, and perceived risks. The results confirm that Baltic youth are adapting to digital transformation in HR, but substantial disparities remain between countries and subgroups. Estonian youth stand out for their robust digital skills and confidence in AI-assisted recruitment, reflecting sustained national investment in digital education and infrastructure. Lithuanian youth also demonstrate solid preparedness, yet their responses highlight an emphasis on transparency and ethical safeguards in AI use. In contrast, Latvian youth report greater skill gaps and more prevalent skepticism, underlining the need for targeted digital upskilling and awareness initiatives.

Across all three Baltic states, young people recognize the efficiency and objectivity that AI can bring to hiring. At the same time, they express a strong preference for maintaining human oversight in recruitment processes and voice concerns related to fairness, data privacy, and the risk of deper-

sonalization. These attitudes are consistent with global trends and underscore that successful implementation of AI in HR depends on transparent practices, clear communication, and education that empowers applicants to navigate algorithmic systems with confidence.

“Youth readiness” for AI-driven recruitment emerges as a multifaceted concept shaped not only by technical skills, but also by trust, perceived agency, and knowledge of rights. Addressing these multidimensional factors through educational reform, policy measures, and employer engagement will be essential as the Baltic states continue to modernize their economies and labour markets. The experience of Estonia, Latvia, and Lithuania offers valuable lessons for other regions facing similar challenges at the intersection of youth employment and digital innovation.

In summary, fostering both the technical and attitudinal preparedness of young people will determine whether AI in HR acts as a force for inclusion and opportunity, or exacerbates existing divides. With ongoing investment in education, policy alignment, and human-centered implementation, the Baltic states are well-positioned to set a benchmark for responsible and equitable integration of AI in recruitment.

References:

1. Andersson, Y., Dalquist, U., Ohlsson, J., &, N. (2018). Youth and News in a Digital Media Environment : Nordic-Baltic Perspectives.
2. Armstrong, L., Everson, J., & Ko, A. (2023). Navigating a Black Box: Students’ Experiences and Perceptions of Automated Hiring. *Proceedings of the 2023 ACM Conference on International Computing Education Research – Volume 1*. <https://doi.org/10.1145/3568813.3600123>.
3. Asif, A. (2024). Integrating AI in Recruitment: A Review of Perceptions, Acceptance, Adoption and Ethical Considerations of AI Usage. *Frontiers in Business, Economics and Management*. <https://doi.org/10.54097/c759fx45>.
4. Azzolini, D., & Schizzerotto, A. (2017). The second digital divide in Europe. A crossnational study on students’ digital reading and navigation skills.
5. Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). ‘It’s reducing a human being to a percentage’: Perceptions of justice in algorithmic decisions. *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems*, 377, 1–14. <https://doi.org/10.1145/3173574.3173951>.
6. Budhwar, P., Malik, A., Thedushika, M., Silva, D., & Thevisuthan, P. (2022). Artificial intelligence – challenges and opportunities for international HRM: a review and research agenda. *The International Journal of Human Resource Management*, 33, 1065–1097. <https://doi.org/10.1080/09585192.2022.2035161>.
7. Cāne, R. (2021). DEVELOPMENT OF SMART VILLAGES AS A FACTOR FOR RURAL DIGITAL TRANSFORMATION. ENVIRONMENT. TECHNOLOGIES. RESOURCES. *Proceedings of the International Scientific and Practical Conference*. <https://doi.org/10.17770/etr2021vol1.6553>.
8. Caravella, S., Cirillo, V., Crespi, F., Guarascio, D., & Menghini, M. (2023). The diffusion of digital skills across EU regions: structural drivers and polarisation dynamics. *Regional Studies, Regional Science*, 10, 820 – 844. <https://doi.org/10.1080/21681376.2023.2265498>.
9. Charlwood, A., & Guenole, N. (2022). Can HR adapt to the paradoxes of artificial intelligence? *Human Resource Management Journal*. <https://doi.org/10.1111/1748-8583.12433>.
10. Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The adoption of artificial intelligence in human resource management: A systematic literature review and a framework for future research. *Technological Forecasting and Social Change*, 166, 120783. <https://doi.org/10.1016/j.techfore.2021.120783>.
11. Chen, P., Wu, L., & Wang, L. (2023). AI fairness in data management and analytics: A review on challenges, methodologies and applications. *Applied Sciences*, 13(18), 10258. <https://doi.org/10.3390/app131810258>.
12. Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. *Humanities and Social Sciences Communications*, 10, 1-12. <https://doi.org/10.1057/s41599-023-02079-x>.

13. Cino, D., Lacko, D., Mascheroni, G., & Šmahel, D. (2022). Predictors of children's and young people's digital engagement in informational, communication, and entertainment activities: Findings from ten European countries. *Journal of Children and Media*, 17(1), 37–54. <https://doi.org/10.1080/17482798.2022.2123013>.
14. Cui, M., Chen, Z., & Huang, M. (2025). The impact of human interviewers versus AI interviewers on applicant self-efficacy and offer acceptance. *Asian Journal of Social Psychology*. <https://doi.org/10.1111/ajsp.70009>.
15. Dastin, J. (2018). Amazon scraps secret AI recruiting tool that showed bias against women. *Reuters*. <https://www.reuters.com/article/world/insight-amazon-scaps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK0AG/>.
16. European Commission. (2021). Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206>.
17. Eurostat (2025). Young people – digital world. Data extracted in May 2025. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Young_people_-_digital_world.
18. França, T., Mamede, H., Barroso, J., & Santos, V. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. *Helion*, 9(4), e14694. <https://doi.org/10.1016/j.heliyon.2023.e14694>.
19. Fritts, M., & Cabrera, F. (2021). AI recruitment algorithms and the dehumanization problem. *Ethics and Information Technology*, 23, 791 – 801. <https://doi.org/10.1007/s10676-021-09615-w>.
20. Gilbert, L., Strine, T., Szucs, L., Crawford, T., Parks, S., Barradas, D., Njai, R., & Ko, J. (2020). Racial and Ethnic Differences in Parental Attitudes and Concerns About School Reopening During the COVID-19 Pandemic – United States, July 2020. *Morbidity and Mortality Weekly Report*, 69, 1848 – 1852. <https://doi.org/10.15585/mmwr.mm6949a2>.
21. Gonzalez, M., Liu, W., Shirase, L., Tomczak, D., Lobbe, C., Justenhoven, R., & Martin, N. (2022). Allying with AI? Reactions toward human-based, AI/ML-based, and augmented hiring processes. *Comput. Hum. Behav.*, 130, 107179. <https://doi.org/10.1016/j.chb.2022.107179>.
22. Hekkala, S., & Hekkala, R. (2021). Integration of Artificial Intelligence into Recruiting Young Undergraduates: the Perceptions of 20-23-Year-Old Students., 1-10. <https://doi.org/10.24251/HICSS.2021.021>.
23. Holmström, J. (2021). From AI to digital transformation: The AI readiness framework. *Business Horizons*. <https://doi.org/10.1016/J.BUSHOR.2021.03.006>.
24. Horodyski, P. (2023). Applicants' perception of artificial intelligence in the recruitment process. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.4359612>.
25. Hunkenschroer, A., & Luetge, C. (2022). Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda. *Journal of Business Ethics*, 178, 977–1007. <https://doi.org/10.1007/s10551-022-05049-6>.
26. Jamal, A., Aissaoui, K., & Kassal, S. (2024). Enhancing Recruitment Transparency and Efficiency with Explainable AI (XAI). *2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAII)*, 1-6. <https://doi.org/10.1109/ESAII62891.2024.10913744>.
27. Jatobá, A., Luz, C. G., Lima, E. P., Silva, L. C., & Costa, A. P. C. S. (2023). Applications of artificial intelligence in human resource management: A review and future research agenda. *Journal of Business Research*, 163, 113911. <https://doi.org/10.1108/JOCM-03-2022-0075>.
28. Kaplan, L., Klein, T., Wilson, M., & Graves, J. (2020). Knowledge, Practices, and Attitudes of Washington State Health Care Professionals Regarding Medical Cannabis. *Cannabis and cannabinoid research*, 5 2, 172-182. <https://doi.org/10.1089/can.2019.0051>.
29. Labudová, V., & Fodranova, I. (2024). The Impact of Socio-Economic Factors on Digital Skills in the Population of the EU 27 Countries. *Virtual Economics*. [https://doi.org/10.34021/ve.2024.07.03\(5\)](https://doi.org/10.34021/ve.2024.07.03(5)).
30. La Sala, A., Fuller, R., Rioli, L., & Temperini, V. (2024). The rise of hybrids: plastic knowledge in human-AI interaction. *J. Knowl. Manag.*, 28, 3023-3045. <https://doi.org/10.1108/jkm-10-2023-1024>.
31. Lashkari, M., & Cheng, J. (2023). "Finding the Magic Sauce": Exploring Perspectives of Recruiters and Job Seekers on Recruitment Bias and Automated Tools. *Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems*. <https://doi.org/10.1145/3544548.3581548>.

32. Liutkevicius, M., & Yahia, S. (2022). The Use of Artificial Intelligence in Job Seeking and Competence Development. *Human Factors, Business Management and Society*. <https://doi.org/10.54941/ahfe1002260>.

33. Machackova, H., Bedrosova, M., Muzik, M., Zlámal, R., Fikrlová, J., Literova, A., Dufkova, E., Šmahel, D., Boomgaarden, H., Song, H., Tolochko, P., d'Haenens, L., Joris, W., Kalmus, V., Tikerperi, M., Opermann, S., Napp, M., Soidla, I., Uibos, A., Soo, K., Salmela-Aro, K., Järvinen, J., Mannerström, R., Suvila, E., Waechter, N., Brando, C., Kadera, S., Mascheroni, G., Cino, D., Lombi, L., Van Deursen, A., Van Laar, E., Pyżalski, J., Walter, N., Iwanicka, A., Ponte, C., Batista, S., Baptista, R., Schneider, L., & Helsper, E. (2024). Digital skills among youth: A dataset from a three-wave longitudinal survey in six European countries. *Data in brief*, 54, 110396. <https://doi.org/10.1016/j.dib.2024.110396>.

34. Madej-Kurzawa, I., Pieczarka, K., & Węgrzyn, G. (2021). Professional and educational activity of youth in the digital economy. *Problems and Perspectives in Management*, 19(3), 166–179. [https://doi.org/10.21511/ppm.19\(3\).2021.15](https://doi.org/10.21511/ppm.19(3).2021.15).

35. Majumder, S., & Mondal, A. (2021). Are chatbots really useful for human resource management?. *International Journal of Speech Technology*, 24, 969 – 977. <https://doi.org/10.1007/s10772-021-09834-y>.

36. McCartney, S., Murphy, C., & McCarthy, J. (2020). 21st century HR: a competency model for the emerging role of HR Analysts. *Personnel Review*. <https://doi.org/10.5465/ambpp.2020.11928abstract>.

37. Musrifah, F., & Hasanah, I. (2025). Ethical Implications of AI-Driven Recruitment: A Multi-Perspective Study on Bias and Transparency in Digital Hiring Platforms. *Journal of Management and Informatics*. <https://doi.org/10.51903/jmi.v4i1.140>.

38. Nannini, L., Alonso-Moral, J., Catalá, A., Lama, M., & Barro, S. (2024). Operationalizing Explainable Artificial Intelligence in the European Union Regulatory Ecosystem. *IEEE Intelligent Systems*, 39, 37-48. <https://doi.org/10.1109/MIS.2024.3383155>.

39. Natalia, G. (2024). Spatial-temporal evolution of digital skills in the EU countries. *Telematics Informatics*, 94, 102185. <https://doi.org/10.1016/j.tele.2024.102185>.

40. Parul, S., & Alok, K. (2025). Integrating Human Judgment and AI: An Empirical Study of Hybrid Leadership Recruitment Models. *Journal of Information Systems Engineering and Management*. <https://doi.org/10.52783/jisem.v10i33s.5744>.

41. Pelše, M., & Leščevica, M. (2020). Analysis of digitalization referred to in strategic policy documents in the lifelong education context. <https://doi.org/10.22616/ESRD.2020.54.030>.

42. Peng, A., Nushi, B., Kıcıman, E., Inkpen, K., & Kamar, E. (2022). Investigations of Performance and Bias in Human-AI Teamwork in Hiring. <https://doi.org/10.1609/aaai.v36i11.21468>.

43. Rai, A., Constantinides, P., & Sarker, S. (2019). Next-generation digital platforms: Toward human–AI hybrids. *MIS Quarterly*, 43(1), iii–ix.

44. Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring: Evaluating claims and practices. *Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency*, 469–481. <https://doi.org/10.1145/3351095.3372828>.

45. Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2021). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. *Human Resource Management Review*. <https://doi.org/10.1016/j.hrmr.2021.100857>.

46. Rigotti, C., & Fosch-Villaronga, E. (2024). Fairness, AI & recruitment. *Comput. Law Secur. Rev.*, 53, 105966. <https://doi.org/10.1016/j.clsr.2024.105966>.

47. Peláez, A., Erro-Garcés, A., & Ciriano, E. (2020). Young people, social workers and social work education: The role of digital skills. *Social Work Education*, 39(7), 825–842. <https://doi.org/10.1080/02615479.2020.1795110>.

48. Prikshat, V., Islam, M., Patel, P., Malik, A., Budhwar, P., & Gupta, S. (2023). AI-Augmented HRM: Literature review and a proposed multilevel framework for future research. *Technological Forecasting and Social Change*. <https://doi.org/10.1016/j.techfore.2023.122645>.

49. Prikshat, V., Malik, A., & Budhwar, P. (2021). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. *Human Resource Management Review*. <https://doi.org/10.1016/j.hrmr.2021.100860>.

50. Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. *Computers in Human Behavior Reports*, 1, 100014. <https://doi.org/10.1016/j.chbr.2020.100014>.

51. Schiff, D. (2021). Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. *International Journal of Artificial Intelligence in Education*, 32, 527 – 563. <https://doi.org/10.1007/s40593-021-00270-2>.

52. Schultz, M., Clegg, M., Hofstetter, R., & Seele, P. (2024). Algorithms and dehumanization: a definition and avoidance model. *AI Soc.*, 40, 2191-2211. <https://doi.org/10.1007/s00146-024-02123-7>.

53. Soshynska, Y., & Soshynska, V. (2020). Digital skills of European citizens: To be on time. In K. S. Soliman (Ed.), *Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges: Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1–2 April 2020, Seville, Spain* (pp. 16654–16661). IBIMA Publishing. https://www.researchgate.net/publication/346472161_Digital_Skills_of_European_Citizens_To_Be_on_Time_Yaroslava_Soshynska_Viktoria_Soshynska_Education_Excellence_and_Innovation_Management_A_2025_Vision_to_Sustain_Economic_Development_during_Global_Cha.

54. Suen, H., Hung, K., & Lin, C. (2019). TensorFlow-Based Automatic Personality Recognition Used in Asynchronous Video Interviews. *IEEE Access*, 7, 61018–61023. <https://doi.org/10.1109/ACCESS.2019.2902863>.

55. Tabor-Błażewicz, J. (2022). The challenges of HR departments in hybrid work conditions. *Scientific Papers of Silesian University of Technology. Organization and Management Series*. <https://doi.org/10.29119/1641-3466.2022.162.38>.

56. Talay, D., Wolf, M., & Ruf, S. (2023). Generation Z's Opinion About AI in Recruiting – First Empirical Evidence from Germany. *Art and Society*, 2023-12-01

57. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. *California Management Review*, 61(4), 15–42. <https://doi.org/10.1177/0008125619867910>

58. Tanvi, S., Rutika, K., & Vidani, J. (2025). To Study the perception of Gen-Z about AI's impact on employment in Ahmedabad city. *International Journal of Finance and Business Management*. <https://doi.org/10.59890/ijfbm.v3i1.234>.

59. Vasilescu, M., Șerban, A., Dimian, G., Aceleanu, M., & Picatoste, X. (2020). Digital divide, skills and perceptions on digitalisation in the European Union—Towards a smart labour market. *PLoS ONE*, 15. <https://doi.org/10.1371/journal.pone.0232032>.

60. Wang, X., Haque, M., Li, W., Butt, A., Ahmad, H., & Shaikh, H. (2021). AI-Enabled E-Recruitment Services Make Job Searching, Application Submission, and Employee Selection More Interactive. *Information Resources Management Journal*. <https://doi.org/10.4018/irmj.2021100103>.

61. Weiss, D., Liu, S., Mieczkowski, H., & Hancock, J. (2022). Effects of Using Artificial Intelligence on Interpersonal Perceptions of Job Applicants. *Cyberpsychology, behavior and social networking*. <https://doi.org/10.1089/cyber.2020.0863>.

62. Will, P., Krpan, D., & Lordan, G. (2022). People versus machines: introducing the HIRE framework. *Artificial Intelligence Review*, 56, 1071-1100. <https://doi.org/10.1007/s10462-022-10193-6>.

63. Xiong, Y., & Kim, J. (2025). Who Wants to Be Hired by AI? How Message Frames and AI Transparency Impact Individuals' Attitudes and Behaviors toward Companies Using AI in Hiring. *Computers in Human Behavior: Artificial Humans*. <https://doi.org/10.1016/j.chbah.2025.100120>.

64. Yarovenko, H., Kuzior, A., Norek, T., & Lopatka, A. (2024). The future of artificial intelligence: Fear, hope or indifference?. *Human Technology*. <https://doi.org/10.14254/1795-6889.2024.20-3.10>.

65. Yasin, M. (2022). Youth perceptions and attitudes about artificial intelligence. *Izvestiya of Saratov University. Philosophy. Psychology. Pedagogy*. <https://doi.org/10.18500/1819-7671-2022-22-2-197-201>.