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Abstract. The effective management of transport and logistics issues is a critical component of contemporary 
supply chain management. In the context of a globalised economy and increasing demands for speed and 
quality of service, the optimisation of transport processes is becoming a strategic priority for achieving  
economic sustainability and enhancing the competitiveness of enterprises. In view of this, the aim of this study 
is to develop an innovative mathematical model that will minimise the total costs of organising complex, multi-
component transport operations. The proposed model framework is characterised by a high degree of realism, 
as it takes into account key practical constraints. These include the limited capacity of transport vehicles, the 
specific requirements for personnel qualifications and availability, and the detailed conditions for servicing final 
destinations. This approach offers flexibility and adaptability when modelling a variety of logistics scenarios, 
including those involving dynamic changes in consumer demand, resource availability, and infrastructure 
constraints. It is particularly well-suited to urban logistics and inter-platform delivery management, as well as other 
sectors requiring a high degree of coordination and precision in resource allocation. The mathematical formulation 
transforms the transport problem into an integer programming optimisation model. In this model, binary variables 
play a key role in representing discrete solutions for allocating tasks and resources. The model ensures compliance 
with operational, logistical and regulatory requirements by incorporating precisely defined constraints. Due 
to the problem's high combinatorial complexity, the solution is implemented using a combined approach that 
includes both exact (e.g., branch-and-bound) and heuristic (e.g., greedy algorithms and local search) optimisation 
methods. This hybrid methodological approach enables the discovery of solutions that are close to optimal within 
an acceptable computational time, which is critically important for real-world applications. The empirical part of 
the study comprises simulations and quantitative analyses demonstrating the model’s ability to efficiently allocate 
transport tasks while reducing costs. This is achieved by making balanced use of different types of transport vehicle, 
engaging qualified drivers optimally, and providing an adequate service to geographically diverse destinations. 
This work's scientific contribution is demonstrated through the creation of a compact, applicable optimisation 
framework that integrates multidimensional, practically significant constraints, and through the demonstration 
of its effectiveness and applicability in real scenarios. The main achievements of the study can be summarised 
as follows: development of a detailed optimisation model for multi-component transport processes; formulation 
of the problem as an integer model with multiple constraints; application of a hybrid approach combining exact 
and heuristic methods for finding solutions; demonstration of practical applicability through simulations and 
quantitative evaluation of the results. All models and calculations are implemented in the MATLAB programming 
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environment, which offers the computing power and flexibility required for the real-time simulation and  
analysis of transport scenarios.

Keywords: transportation logistics, integer optimisation, resource allocation, heuristic methods, operational 
efficiency, MATLAB. 
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1. Introduction
Cost optimisation plays a key role in enhancing the 

efficiency and sustainability of supply chains in the 
modern transport and logistics industry (Christopher, 
2023; Azimov et al., 2024; Iliev et al., 2023).  
The increasing complexity of transport operations, 
driven by dynamic changes in demand, resource 
constraints and the geographical dispersion of 
destinations, necessitates the development of 
mathematical models for optimally allocating available 
resources (Behnke & Kirschstein, 2022; Deneva 
et al., 2022; Labunska et al., 2017). In this context,  
the effective management of vehicles, drivers, and 
transport routes is critical for minimising operational 
costs and ensuring timely deliveries.

The present study examines an optimisation problem 
related to the organisation of transport activities 
under multiple constraints. The available resources 
consist of a predetermined number of drivers, vehicles, 
and destinations, with each shipment required to 
be delivered in accordance with vehicle capacity 
and driver qualifications. The financial implications 
of transportation are represented by a matrix that 
calculates the cost of each vehicle to each destination.  
It is important to note that additional constraints  
specify that not every driver is able to operate every 
vehicle or serve every destination. The primary  
objective of the problem is to devise a feasible 
assignment plan that minimises the total transportation 
cost by determining which driver will operate which 
vehicle to which destination.

The problem is formulated as an integer optimization 
task (Furini & Ljubić, 2021; Wolsey & Nemhauser, 
2022), where solutions are represented by a three-
dimensional binary array. It is evident that, due to its 
combinatorial complexity, finding a globally optimal 
solution requires the application of a combination  
of exact and heuristic methods. The employment of 
such methods allows the discovery of near-optimal 
solutions within a reasonable time frame.

The study presents a novel model that integrates 
various constraints into a unified optimization 
framework, with a focus on the practical applicability 
of the method. The proposed optimisation strategy 
has been demonstrated to be applicable to a variety 
of logistics scenarios, including urban transportation, 
goods distribution, and inter-platform delivery 
management. Moreover, the findings from simulations 
and quantitative analyses corroborate the efficacy 

of the proposed solution in reducing costs and  
enhancing resource allocation.

In the contemporary context of modern logistics 
and transport systems, the evaluation of optimal and 
near-optimal solutions to transportation problems 
is becoming increasingly significant. This evaluation  
not only serves as an indicator of the solution's quality, 
but can also form the basis for addressing significantly 
more complex problems. Such problems may include 
vehicle routing tasks involving multiple time periods 
(multi-period problems) or decision-making in real-
time environments, which are typical of online settings.

One of the key metrics used to characterise routing 
solutions is the total distance travelled by vehicles in 
order to serve a given set of customers. The capacity 
to precisely predict or estimate this value, without 
resorting to the explicit resolution of the underlying 
combinatorial problem, engenders novel prospects  
for enhancing planning efficiency and decision- 
making processes. This study explores the applicability 
of simple regression models for this purpose, based 
on a limited but carefully selected set of features 
that describe the spatial configuration of customers,  
capacity constraints, and other structural aspects  
of the specific problem.

In addition to the commonly utilised features 
documented in the extant literature, such as the number 
of customers, the average and maximum distance to 
the depot, and the spatial dispersion of customers, 
this study introduces new classes of spatial indicators. 
These are designed to capture more subtle aspects of 
the geometric structure of customer distributions.  
The factors under consideration are local density, 
degree of symmetry, the presence of clusters, and 
deviation from isotropic structure. The incorporation 
of these new characteristics into the input space  
of the regression models has been demonstrated to 
engender a substantial enhancement in the precision  
of the approximated estimates.

The increasing scale and complexity of real-world 
logistics systems generate a growing need for methods 
capable of providing solutions or estimates within  
short time frames – sometimes within seconds 
(Nykyforov et al., 2021; Petrova, Tairov, 2022; 
Ramazanov, Petrova, 2020). This is of particular 
pertinence in the context of multi-period problems, 
wherein customer assignments must be distributed 
across multiple days while observing capacity 
constraints, or in the case of online problem variants, 
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where customer information arrives incrementally 
and decisions must be made dynamically. In such 
cases, it is often practically impossible to solve  
the full combinatorial problem for each new input, 
necessitating the use of approximation methods.

One of the primary applications of the developed 
models for approximating solution values is the 
decomposition of complex multi-period problems 
into a sequence of simpler single-period subproblems. 
For instance, in instances where it is not feasible 
to accommodate all customers within a stipulated 
timeframe, the estimation of solution value for various 
customer subsets can facilitate the selection of the 
most optimal or near-optimal subgroup for service. 
This facilitates the establishment of effective customer 
selection strategies that minimise total logistics costs 
while ensuring an acceptable level of service.

Furthermore, within the paradigm of online or 
adaptive planning, where prompt responses to  
emergent customer requests are imperative, the 
capacity to furnish a swift and dependable estimate 
of a solution's worth assumes paramount importance.  
The regression models that have been developed  
and trained on a substantial corpus of simulated 
or real-world data can be embedded into decision  
support systems. This provides a reliable basis for 
selecting actions in real time without the need for 
computationally expensive optimisation of the full 
problem.

The figure presents a sample two-dimensional 
configuration of customers (in blue) and a single 
depot (in red). The grey lines illustrate the Euclidean  
distances from each customer to the depot, which 
are utilised to compute spatial features that serve as  
inputs to the regression model. 

The provision of a high-quality service is of pivotal 
importance to the development of any company, 
irrespective of the economic sector in which it  
operates. The quality of service is directly linked 
to its demand; many clients consider it a leading 
factor, sometimes even more important than price. 
However, the most sought-after products and services 
on the market typically combine high quality with 
a competitive (low) price. This phenomenon is 
also evident in the context of maintenance services  
offered by automotive repair shops.

The pricing of services in a transport company 
can influence the number of completed deliveries,  
and this effect depends on a variety of factors,  
including:
–	 Price competitiveness. Transport services with 
excessively high prices risk losing clients to more 
affordable alternatives, unless they offer added value 
that justifies the cost.
–	 Service quality. Clients satisfied with the level 
of service are willing to pay more and are likely to 
recommend the company to others.

–	 Marketing strategies. Promotions, loyalty programs, 
and bundled offers can successfully attract customers, 
even when prices are higher.
–	 Target audience. A clear understanding of customer 
needs and expectations enables better pricing and 
service positioning.

In the majority of cases, the most effective strategy 
is one that balances reasonable prices with high  
quality. This principle is applicable not only in 
the transport sector but also in financial services,  
biological systems, artificial intelligence, and others.

Efficient Transport Management
Effective management of transport operations  

is a key element in maintaining the balance between 
cost and quality. Some of the core strategies include:
–	 Needs analysis and forecasting. Using statistical  
data to identify the most commonly used parts and 
forecast future requirements.
–	 Determining optimal inventory levels. Maintaining 
adequate stock to avoid delays while limiting 
unnecessary storage costs.
–	 Supplier partnerships. Long-term contracts with 
reliable suppliers can ensure better prices and shorter 
delivery times.
–	 Use of specialized software. Management systems 
facilitate tracking, forecasting, and order optimisation.

Application of Mathematical Models
Mathematical modeling provides a powerful tool for 

optimising operations management. Among the most 
popular approaches are:
–	 EOQ model (Economic Order Quantity). 
Determines the optimal order quantity to minimise 
total ordering and holding costs.
–	 JIT model ( Just-in-Time). Aims for minimal 
inventory by delivering parts exactly when needed, 
requiring excellent coordination with suppliers.
–	 Demand forecasting. Based on historical data and 
statistical methods to estimate future demand.
–	 Simulation models. Use computer simulations to 
analyse various management scenarios.

These models can be combined and adapted 
to the specific characteristics of a company.  
The quality of input data and the precise definition  
of the parameters affecting transportation are critical  
to achieving effective results.

To estimate the value of the optimal solution  
(e.g., the total minimum distance) in a vehicle routing 
problem, a regression model of the following type can 
be used:

z x
i

p

i i= + +
=
∑β β ε0
1

where:
z is the predicted value of the optimal solution  

(e.g., the total distance),
xi are the input features (e.g., number of customers, 

average distance to the depot, customer dispersion),
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βi  are the model parameters,
ε  is the random error term.
The corresponding example spatial features used in 

the model include:
1. Average distance to the depot:

d
n

x x y y
i

n

i i= −( ) + −( )
=
∑1
1

0

2

0

2

where 
( , )x yi i  are the coordinates of customer r, and 
( , )x y0 0  are the coordinates of the depot.

2. Customer dispersion based on coordinates:
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Clustering and local density. The number of customers 
within a radius r around each customer is used to assess 
local concentration.

Exhibition
Cost optimisation is essential for the efficient 

functioning of transport and logistics systems and 
the supply chain. Against this backdrop, the present 
study addresses the issue of optimally allocating 
resources –drivers, vehicles and routes – under various 
constraints.

The goal of the optimisation model is to minimise 
total transportation costs while ensuring that:
–	 Each shipment is delivered to its designated 
destination;
–	 drivers operate only suitable vehicles and are 
assigned to permitted routes;
–	 vehicle capacity is efficiently utilised.

This problem is formulated as a nonlinear integer 
optimisation model [5, 6], which is solved using exact 
or approximate methods due to its high combinatorial 
complexity.

To formulate the problem, the following known 
parameters are introduced:

- m  – number of drivers;
- n  – number of vehicles;
- p  – number of destinations.
The specific characteristics of the transportation 

system are defined by the following matrices and 
vectors:
–	 Cost matrix: c jk  denotes the cost of transporting 
cargo with vehicle j  to destination k .
–	 Destination eligibility matrix D : dik  equals 1 if 
driver i  is authorised to travel to destination k ,  
and 0 otherwise.
–	 Vehicle eligibility matrix B: bij  equals 1 if 
driver i  is authorised to operate vehicle j , and 0 
otherwise.
–	 Demand vector Q: qk  is the amount of cargo to be 
delivered to the k th  destination.

Figure 1. Two-dimensional configuration of customers and a single depot
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Vehicle capacity vector R : rj  indicates the maximum 
cargo load that vehicle j  can transport.

To solve the problem, a binary variable xijk  is 
introduced:

x
if driver i operatesvehicle j todestinationk

ijk =
1, � � � � � �� � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �0,otherwise �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �




In the optimisation problem under consideration, 
a set of constraints is defined in order to ensure that 
the solutions are realistic and comply with specific 
requirements. These constraints are formulated 
mathematically and reflect real-world conditions 
relating to driver assignments, vehicle utilisation and 
deliveries to destinations. Each constraint is examined 
in more detail to clarify its meaning and the real-world 
condition it represents.

j

n

k

p

ijkx i m
= =
∑∑ ≤ ∀ =
1 1

1 1, ,� �     	 (1)

Constraint (1) reflects the fact that a driver can 
be assigned to at most one trip with a single vehicle.  
The constraint ≤ 1 ensures that driver i  can be assigned 
to no more than one combination of vehicle and 
destination.

i

m

j

n

j ijk kr x q k p
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1 1
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Constraint (2) conveys that the total cargo capacity 
of all vehicles assigned to destination k must be at least 
equal to the required quantity of goods qk  for that 
destination.

i
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k

p

ijkx j n
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1 1

1 1, ,�   (3)

Constraint (3) corresponds to the fact that a vehicle 
cannot be used simultaneously for more than one 
destination.

 
j

n

ijk ikx d i m k p
=
∑ ≤ ∀ = ∀ =
1

1 1, , , ,� � � � �   	 (4)

Constraint (4) reflects that driver i  may be assigned 
to destination k only if no legal or regulatory restrictions 
prevent it. These may include:
–	 Customs-related criminal offenses.
–	 Entry bans for specific countries.
–	 Lack of a valid passport for non-European 
destinations.
–	 Personal refusal to travel to the destination. 

k

p

ijk ijx b i m j n
=
∑ ≤ ∀ = ∀ =
1

1 1� � � � �, , , ,   	 (5)

Constraint (5) represents that driver i  may operate 
vehicle j  only if they possess the required license or 
qualification. The condition ≤ ″ �bij  ensures that the driver 
will not be assigned to a vehicle for which they are not 
certified. 

x i m j n k pijk �� � � � � � � �∈{ } ∀ = ∀ = ∀ =0 1 1 1 1, , , , , , ,                (6)

Constraint (6) requires the decision variables xijk  to 
be binary, meaning they can take only the values 0 or 1. 

The main objective of the model is to deter mine 
a feasible assignment plan that minimises the total 
transportation costs. This is formalised by the following 
objective function: 

min
i

m

j

n

k

p

jk ijkc x
= = =
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	 (7)

The final version of the mathematical model takes  
the following form:
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Numerical example: 
The transportation company in question operates with 

a total of twelve drivers, ten vehicles, and five regularly 
served destinations. Consequently, the objective is 
to enhance the efficacy of transportation planning to 
achieve optimal economic efficiency.

Table 1 presents the potential transportation costs 
(in arbitrary units) to each destination using a specific 
vehicle. Table 2 provides information about the load 
capacity of each vehicle. Table 3 shows the quantity 
of goods that need to be transported to the respective 
destination. Table 4 provides information on whether 
a specific driver is allowed to travel to a given destination. 
Table 5 shows whether a given driver is qualified to 
operate a specific vehicle. 

Solution:
As illustrated in Table 6, a proposed plan is presented 

in which all destinations are to be served by designated 
drivers operating specific vehicles. This approach is 
intended to ensure that all requirements and constraints 
are satisfied, thereby achieving minimal transportation 
costs. The solution shows that Destination No. 1 should 
be served by Driver No. 11 operating Vehicle No. 6. 
Destination No. 2 will be served by two drivers –  
No. 4 and No. 10 – operating Vehicles No. 2 and  
No. 8, respectively. The next destination, No. 3, is served 
by Vehicle No. 7 and Driver No. 7. For Destination  
No. 4, two drivers are again needed: No. 3 and  
No. 12, along with two vehicles: No. 4 and No. 9.  
The last destination, No. 5, is served by Vehicle  
No. 10 and Driver No. 9. With this schedule,  



Baltic Journal of Economic Studies  

66

Vol. 11 No. 4, 2025
Table 1
Transportation costs for each vehicle to the respective destinations

n/p(Matrix C) 1(300km) 2(600km) 3(1000km) 4(2000km) 5(3000km)
1(N1) 0.60*300=180 0.6*600=360 0.55*1000=550 0.5*2000=1000 0.45*3000=1350
2(N1) 0.60*300=180 0.6*600=360 0.55*1000=550 0.5*2000=1000 0.45*3000=1350
3(N2) 0.96*300=288 0.96*600=576 0.91*1000=910 0.86*2000=1720 0.81*3000=2430
4(N2) 0.96*300=288 0.96*600=576 0.91*1000=910 0.86*2000=1720 0.81*3000=2430
5(N2) 0.96*300=288 0.96*600=576 0.91*1000=910 0.86*2000=1720 0.81*3000=2430
6(N3) 1.60*300=480 1.60*600=960 1.55*1000=1550 1.50*2000=3000 1.45*3000=4350
7(N3) 1.60*300=480 1.60*600=960 1.55*1000=1550 1.50*2000=3000 1.45*3000=4350
8(N3) 1.60*300=480 1.60*600=960 1.55*1000=1550 1.50*2000=3000 1.45*3000=4350
9(N3) 1.60*300=480 1.60*600=960 1.55*1000=1550 1.50*2000=3000 1.45*3000=4350

10(N3) 1.60*300=480 1.60*600=960 1.55*1000=1550 1.50*2000=3000 1.45*3000=4350

Table 2
Vehicle load capacities

t/n 1 2 3 4 5 6 7 8 9 10
4.5 4.5 8 8 8 20 20 20 20 20

Table 3
Quantity of goods (t) to be delivered

t/k 1 2 3 4 5
13 23 17 25 20

Table 4
Driver eligibility to travel to specific destinations (1 – allowed, 0 – not allowed)

Driver\Destination 1 2 3 4 5
1 1 1 1 1 1
2 0 1 1 1 1
3 1 1 1 1 0
4 1 1 1 1 1
5 1 0 1 1 0
6 1 1 1 1 1
7 1 1 1 1 1
8 1 0 1 1 1
9 1 1 1 0 1

10 1 1 1 1 1

Table 5
Driver qualifications to operate specific vehicles (1 – qualified, 0 – not qualified)

Driver\Vehicle 1 2 3 4 5 6 7 8 9 10
1 1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0
3 1 1 1 1 1 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0 0
6 1 1 1 1 1 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1

Table 6
Allocation of destinations served by a given driver and vehicle

Destination Driver No. Vehicle No.
1 11 6
2 4 2
2 10 8
3 7 7
4 3 4
4 12 9
5 9 10
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the total transportation costs are minimised to 
12,420 monetary units. 

Findings
The article hereby presented is an exposition 

of a mathematical model that provides a solution  
to a class of transport-logistics problems. The 
model yields an optimal (in terms of transportation 
costs) allocation of drivers servicing destinations 
with specific vehicles, taking into account all legal 
and physical constraints (Ray, Li & Song, 2005). 
A case study is considered in which 12 drivers must 
service 5 destinations using 10 vehicles, accounting 
for the specific legal and physical limitations.  
It is demonstrated that the most cost-effective plan is 
one in which seven drivers, operating the respective 
vehicles, service all destinations. The total cost of this 
plan is 12,420 monetary units. 

Conclusions
The study presented a mathematical model for 

the optimal allocation of transportation resources 
with the aim of minimising costs in logistics  
operations. The considered optimisation problem 
incorporates numerous constraints pertaining  
to vehicle capacity, driver qualifications, and service 
requirements for destinations. The formulated  
model uses binary variables (Pellinen, 2003)  
to describe the connections between drivers, vehicles 
and routes. This creates a complex, combinatorial 
structure.

The resolution of such issues poses a considerable 
challenge, primarily due to the exponentially expanding 
solution space. In this context, the application of hybrid 
methods combining exact approaches (linear and 
integer programming) and heuristic algorithms (genetic 
algorithms, particle swarm optimisation, etc.) (Eiben & 
Smith, 2023) is crucial for finding efficient solutions 
within a reasonable timeframe. As demonstrated by 
Law & Kelton (2023), simulation experiments based 
on the proposed optimization framework have shown  
that the model has the capacity to reduce transportation 
costs, improve resource utilisation, and ensure reliable 
task allocation. The main contributions of the study  
can be summarised as follows: 

1. Development of an optimisation model integrating 
real-world constraints in transport-logistics processes. 

2. Formulation of an integer optimisation problem 
encompassing driver qualifications, vehicle capacity, 
and mandatory coverage of transportation demands  
for each destination. 

3. Application of hybrid methods enabling effective 
search for near-optimal solutions in complex 
combinatorial environments. 

 4. Practical applicability, as the model can be adapted 
to various industrial scenarios – urban logistics, 
international transport, and distribution networks.
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