DOI: https://doi.org/10.30525/2256-0742/2025-11-4-276-282

# STRATEGIC DEVELOPMENT OF RENEWABLE ENERGY ENTERPRISES AS A CATALYST FOR ENHANCING GLOBAL ENERGY EFFICIENCY AND ENERGY CONSERVATION

Olga Maslak<sup>1</sup>, Yuliia Demurdzhan<sup>2</sup>, Bogdan Kovalets<sup>3</sup>

Abstract. The article explores the strategic development of renewable energy enterprises as a key driver in advancing global energy efficiency and promoting energy conservation. In the context of increasing environmental challenges, rising energy demand, and the urgency of transitioning to sustainable energy sources, renewable energy enterprises play a pivotal role in shaping the future of the global energy system. The purpose of the study is to examine strategic approaches that can accelerate the development of renewable energy enterprises and assess their potential impact on enhancing energy efficiency and reducing energy consumption at both national and international levels. The objectives of the research include analyzing global trends in the renewable energy sector, identifying key barriers and opportunities for strategic growth, and developing a framework that integrates innovation, policy support, and market mechanisms to foster sustainable development. The study also considers the role of renewable energy enterprises in achieving international climate goals, increasing energy independence, and supporting socio-economic development through job creation and technological advancement. The methodological foundation of the paper is based on a systems approach, incorporating both qualitative and quantitative methods, including comparative analysis, case studies of leading renewable energy companies, and data modeling of energy efficiency outcomes. The research reveals that strategic development, including investment in innovation, policy alignment, and international cooperation, significantly contributes to the scalability and competitiveness of renewable energy enterprises. It highlights that integrating smart technologies, digital monitoring systems, and decentralized energy production enhances operational efficiency and supports the broader goals of energy conservation. Furthermore, the study underscores the importance of public-private partnerships and long-term policy stability in enabling renewable energy enterprises to flourish. The findings of the research contribute to the theoretical and practical understanding of the strategic development of renewable energy enterprises and offer policy recommendations and strategic directions for governments, investors, and energy sector stakeholders. The proposed strategic framework emphasizes risk mitigation, capacity building, and regulatory incentives to unlock the full potential of renewable energy as a catalyst for global energy efficiency and sustainability.

**Keywords:** renewable energy enterprises, strategy, energy efficiency, energy conservation, sustainable energy, innovation, public-private partnerships, sustainability, enterprises.

JEL Classification: Q42, Q48, Q01, L52, O33, Q58

## 1. Introduction

In the current conditions of global development, the strategic reorientation of energy policy towards renewable energy sources has become a key direction for ensuring energy security, reducing dependence on fossil fuels and combating climate change. Increasing energy efficiency and energy saving are defined by international organizations as priority goals of sustainable development, requiring a systemic approach and deep transformations in the structure of energy



<sup>&</sup>lt;sup>1</sup> Kremenchuk Mykhailo Ostrohradskyi National University, Ukraine (corresponding author) E-mail: oimaslak2017@gmail.com

ORCID: https://orcid.org/0000-0001-6793-4367

 $<sup>^{\</sup>rm 2}$  O.M. Beketov National University of Urban Economy in Kharkiv, Ukraine

E-mail: julia.demurdzhan@ukr.net

ORCID: https://orcid.org/0009-0003-0858-6456

<sup>&</sup>lt;sup>3</sup> National University of Ostroh Academy, Ukraine

E-mail: bohdan.kovalets@oa.edu.ua

ORCID: https://orcid.org/0009-0002-2840-1706

markets. In this context, it is enterprises in the field of renewable energy (RE) that act as key actors in innovation, modernization and greening of energy systems. In the 21st century, the global energy system is undergoing significant transformations caused by global challenges: climate change, increasing energy consumption, depletion of traditional energy sources and geopolitical risks. In this context, the strategic development of renewable energy (RE) enterprises appears not only as a response to environmental and economic challenges, but also as a catalyst for increasing global energy efficiency and energy saving.

According to the International Energy Agency (IEA), the share of renewable energy in global electricity generation exceeded 30% by 2024, and is expected to reach 50% by 2030, provided that investment rates and political support are maintained. However, despite the positive dynamics, the effectiveness of integrating renewable energy into national energy systems varies significantly across regions, and the level of energy efficiency remains insufficient to achieve the climate goals of the Paris Agreement.

World practice demonstrates that the growth of investments in renewable energy contributes not only to environmental safety, but also stimulates the development of technologies, the creation of new jobs, the formation of local energy markets. However, on the way to the large-scale implementation of renewable energy, there are a number of barriers, including institutional instability, technological limitations, imperfect strategic planning, as well as the lack of a holistic system of motivation for enterprises to implement energy-efficient solutions.

The relevance of the study is due to the need to form effective strategic approaches to the development of enterprises in the field of renewable energy, capable of acting as catalysts for systemic changes in the energy sector. Given the global challenges – such as the energy crisis, increased requirements for reducing greenhouse gas emissions, the implementation of ESG standards – the strategic management of RE enterprises is gaining particular importance.

Thus, there is a need to develop a scientifically sound strategic approach to the development of enterprises in the field of renewable energy, which will not only accelerate the "green" transition, but also ensure increased global energy efficiency, energy security, and sustainable development.

### 2. Literature Review

The strategic development of renewable energy enterprises plays a critical role in the global transition toward a low-carbon economy and increased energy efficiency. Recent academic research emphasizes the importance of interdisciplinary approaches,

institutional frameworks, policy stability, and social dynamics in shaping the success of renewable energy implementation and enterprise growth.

Sovacool et al. (2015) argue for the integration of social science into energy research, highlighting that technical innovation alone is insufficient for achieving sustainable energy systems. They suggest that understanding consumer behavior, cultural values, and political conditions is essential for creating effective and socially accepted renewable energy strategies. This perspective reinforces the need for renewable energy enterprises to adapt not only technologically but also socially and culturally.

Lüthi and Wüstenhagen (2012) focus on policy risk as a major barrier to investment in the European solar photovoltaic sector. Their empirical findings demonstrate that inconsistent and unstable policy environments – such as abrupt changes in feed-in tariffs or lack of long-term commitments – significantly undermine investor confidence. As a result, they stress the importance of stable and transparent regulatory frameworks for the strategic planning and financing of renewable energy enterprises.

Goldthau and Sovacool (2016) explore the political framing of energy technologies, using the example of shale gas fracking in Eastern Europe. Although not directly related to renewable energy, their analysis reveals how political narratives, public perceptions, and institutional biases can influence the acceptance or rejection of energy innovations. For renewable energy enterprises, this underscores the need for clear communication strategies, community engagement, and alignment with public values to secure societal legitimacy.

Wirth (2014) emphasizes the institutional preconditions for the successful development of community-based renewable energy projects. He argues that strong local participation, supportive governance structures, and accessible financing mechanisms are critical to scaling up renewable energy deployment. These findings are particularly relevant to small and medium-sized enterprises (SMEs) in the sector, which often operate within decentralized, community-driven frameworks.

In summary, the literature demonstrates that the strategic growth of renewable energy enterprises is shaped by a complex interplay of technological, political, economic, and social factors. Beyond the technical potential of renewable sources, success depends on policy stability, social acceptance, institutional capacity, and multi-level collaboration. As such, fostering energy efficiency and conservation through renewable energy development requires integrated, cross-sectoral strategies that engage both public and private actors.

# 3. Analysis of Current Global Trends in the Development of Renewable Energy and its Impact on Energy Efficiency

Current global trends in the development of renewable energy reflect a profound transformation of the energy sector, driven by both environmental and technological breakthroughs. Climate change, the need to reduce greenhouse gas emissions, international commitments under the Paris Agreement, and the desire to achieve carbon neutrality by 2050 are driving countries around the world to actively implement renewable energy. According to the IRENA report (2024), the share of renewable energy in total electricity production in the world has reached more than 30%, and solar and wind energy remain the most dynamically growing segments (Figure 1).

At the same time, the development of renewable energy is closely related to increasing energy efficiency. First, renewable energy companies are actively implementing digital technologies to monitor and optimize production processes, reducing energy losses in networks. Second, the integration of renewable energy into the energy system stimulates the decentralization of energy supply, which allows for more efficient use of resources at the local level. In addition, modern renewable energy facilities are often designed using energy-efficient standards, which reduces their environmental footprint and improves the overall efficiency of energy systems (Mamonov, 2022).

A global trend is also the growing role of energy cooperatives and municipal renewable energy projects, which are focused not only on energy generation, but also on promoting energy-saving practices among consumers. For example, subsidy programs for households that install solar panels and energy-efficient

appliances have become widespread in EU countries. This not only increases the energy independence of communities, but also contributes to the formation of a culture of responsible consumption.

Particular attention in the global context is paid to innovations in energy storage - in particular, the development of battery systems, pumped storage plants and green hydrogen technologies. They provide flexibility and reliability of the system, reducing the need for traditional "support" capacities and reducing energy losses. In particular, the cost of solar energy has decreased by more than 80% over the past decade, making it one of the cheapest forms of generation in many regions of the world. At the same time, one of the determining factors for increasing efficiency in the field of renewable energy is government policy and support for innovation (Velychko, 2025). The adoption of "green" transformation strategies, the introduction of carbon pricing, tax incentives and "green" financing programs create conditions for large-scale deployment of renewable energy projects and motivation to increase energy efficiency. For example, in China, which is the world leader in installed renewable energy capacities, the government is actively investing in research and development infrastructure and energy-efficient management systems at the enterprise level.

Current trends in the development of renewable energy demonstrate a close relationship between renewable energy and energy efficiency and confirm the need for a strategic approach to the development of enterprises in this area, which involves innovation, systematicity and orientation towards long-term sustainable energy transformation (Klebanova, 2024).

Renewable energy enterprises play a key role in shaping a new paradigm of energy consumption based on the principles of sustainability, efficiency

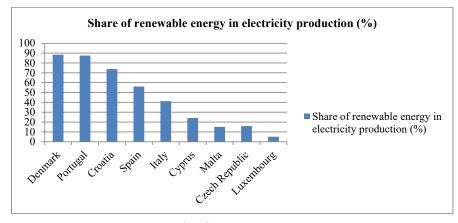



Figure 1. Share of renewable energy (RES) in electricity production as of the end of 2024 by EU countries

Source: developed by the authors

and low-carbon development. In the context of the global course towards decarbonization of the economy, these enterprises act as catalysts for energy saving through the implementation of innovative solutions in energy production, distribution and consumption. Their activities are focused not only on generating energy from clean sources, but also on the formation of an energy culture that involves the responsible use of resources and reducing energy losses.

Due to their high level of technological flexibility, renewable energy companies are actively implementing digital tools for monitoring, managing and forecasting energy consumption, which allows them to optimize processes and reduce the load on the energy system. They serve as testing grounds for new technologies such as smart grids, blockchain for energy trading, energy storage systems and intelligent platforms for energy consumption analysis. This significantly affects the reduction of energy losses and increases the overall efficiency of the energy chain. At the same time, renewable energy companies are the engines of decarbonization of the economy, as they replace coal, oil and gas and other high-emission energy sources. They ensure the energy transition through the implementation of projects in the fields of solar, wind, hydro and bioenergy, contributing to the reduction of greenhouse gas emissions. According to the International Energy Agency (IEA) (2024), renewable energy has avoided over 2.5 billion tons of CO<sub>2</sub> emissions in the past five years, making a significant contribution to achieving climate goals.

In addition to the technological component, renewable energy companies perform an important socio-economic function, creating new jobs in the field of "green" energy, stimulating local development and promoting responsible business models. Their activities contribute to the formation of new supply chains, the emergence of service companies, educational programs and research initiatives, which creates a multiplier effect for the economy as a whole (Gielen, 2019).

An important characteristic of renewable energy companies is also their ability to form partner ecosystems that include scientific institutions, governments, financial structures and the public. Through participation in international projects, climate programs and technology transfer, they strengthen global cooperation in the field of energy efficiency and decarbonization.

Renewable energy companies play a multifaceted role in the processes of energy conservation and reducing the carbon footprint of the economy. Their strategic development is a key factor in accelerating the energy transition, shaping a climate-neutral future and ensuring sustainable development in the new economic reality.

## 4. Research into Existing Barriers and Challenges that Hinder the Strategic Development of Renewable Energy Enterprises

The development of renewable energy companies is becoming increasingly relevant in the context of the global energy transformation aimed at decarbonizing the economy, increasing energy efficiency and ensuring energy security. At the same time, despite significant technological progress, increasing investment and political support, the pace of implementation of renewable energy sources remains insufficient to achieve sustainable development goals. One of the main reasons for this is the presence of numerous barriers that complicate the strategic development of companies operating in the renewable energy sector. The barriers are complex in nature - they cover both the external environment (imperfect regulatory policies, institutional constraints, access to infrastructure) and internal factors (lack of financing, human resources, technological dependence). As a result, even in favorable market conditions, renewable energy companies often face challenges that hinder their development, innovation, and ability to scale green projects (Zhang, 2016).

Researching and understanding these challenges is critical to developing an effective industry support strategy that reduces risks, removes administrative barriers, and fosters sustainable growth. In this context, it is important to analyze the main obstacles to strategic expansion for companies and propose practical approaches to overcome them (Figure 2).

One of the main challenges is regulatory instability: frequently changing rules of the game, unpredictable tariff policies or reduction of subsidies create an environment of uncertainty for investors. In many countries, the lack of a clear long-term energy strategy or coordinated legislation on the "green transition" forces companies to act at their own peril and risk, limiting the scale of investments in new technologies.

The second important barrier is the infrastructural deficiency. Energy networks in many regions, especially in Central and Eastern European countries, are not adapted to the integration of a large number of decentralized energy sources, such as solar and wind power plants. The lack of storage systems (batteries), the weak development of smart grids (smart networks), as well as the difficulty in connecting new facilities to the energy system significantly hinder the development of small and medium-sized businesses in the industry.

The third factor is limited access to financing, especially for startups and small businesses. Banks and other financial institutions often lack sufficient knowledge of the specifics of renewable energy projects, leading to excessive collateral requirements,

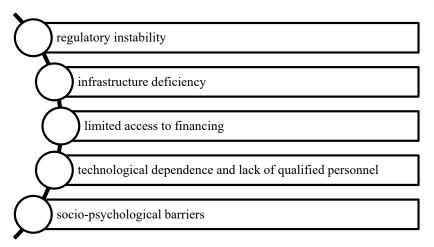



Figure 2. Barriers that complicate the strategic development of renewable energy companies

Source: developed by the authors

high interest rates or denials of loans. There is also uneven access to international climate funds, grants and support programs, which often focus on large multinational corporations (Sovacool, 2021).

An equally significant challenge is technological dependency and a shortage of skilled personnel. In many countries, companies are forced to import high-tech equipment or know-how from abroad, which increases the cost of projects and dependence on global supply chains. At the same time, there is a shortage of engineers, energy managers, installers and specialists in the operation of renewable energy, which limits the ability of companies to scale.

Additionally, the strategic development of enterprises is hampered by socio-psychological barriers. In some regions, society resists the construction of wind or solar farms due to concerns about the impact on the landscape, health or property value. The lack of an effective information campaign and transparent communication between authorities, businesses and communities deepens these conflicts, creating additional risks for the implementation of projects (Baker, 2014).

Taken together, all these factors form multi-level challenges, overcoming which requires a systemic approach – from reforming the regulatory framework to stimulating investments, modernizing infrastructure and developing human capital. Without this, a strategic breakthrough in the field of renewable energy will remain a partially unrealized potential.

Stimulating the sustainable development of enterprises in the field of renewable energy requires coordinated actions by the state, investors and business entities themselves. First of all, government agencies should focus on creating a stable and predictable regulatory environment. It is necessary to adopt a long-term strategy for the development of renewable

energy sources with clearly defined goals, support mechanisms, benefits and guarantees for investors. It is also important to simplify permitting procedures, ensure transparent access to energy infrastructure and introduce a "single window" for project support.

To stimulate investment activity, it is advisable to expand financial support instruments: introduce tax breaks, compensation of part of interest on loans, "green" bonds and mechanisms of public-private partnership. Particular attention should be paid to supporting small and medium-sized enterprises, which often do not have access to classic sources of financing, but can be drivers of local energy solutions. It is also advisable to create a state "green transformation fund" that will finance innovative projects in the field of renewable energy sources.

Investors, in turn, should be more actively involved in the analysis of the long-term prospects of the renewable energy market, understanding that this industry is not only environmentally important, but also economically attractive. Transparency, technical expertise and a sustainable approach to risk management will allow for more effective formation of project portfolios. In addition, investors should pay attention to the social component: support for local communities, development of infrastructure and transparent communication with the population will help reduce the level of conflicts around "green" projects.

Companies that are already working in the field of renewable energy or plan to enter this market should develop flexible business models focused on innovation, local partnership and energy efficiency. This may include cooperation with the agricultural sector (for example, agro-photovoltaics), development of microgrids or participation in distributed generation programs. It is also important to invest in personnel

training, R&D development, digitalization of processes and monitoring of environmental impact.

Finally, the success of the industry largely depends on dialogue between all stakeholders. It is necessary to develop platforms for cooperation between business, science, local communities and state institutions. Such an approach will create a common vision for the development of the industry and ensure its sustainability in the long term.

#### 5. Conclusions

The strategic development of renewable energy companies is a key element of the global transition to a low-carbon economy and achieving sustainable development goals. In the context of growing energy needs, intensifying climate challenges and the need to improve energy efficiency, the renewable energy sector plays the role of a catalyst for the transformation of energy systems. At the same time, despite dynamic growth, companies in the sector face a number of systemic barriers – from regulatory instability and insufficient financing to technological dependence

and lack of infrastructure. To ensure the sustainable development of the industry, comprehensive efforts are needed from the state, investors and companies themselves. At the state level, the priority should be to create a favorable regulatory environment, support innovation, modernize network infrastructure and stimulate demand for "green" energy. Investors should assess the long-term profitability of renewable energy projects, diversify portfolios and include environmental, social and governance (ESG) criteria in their strategies. Enterprises should focus on implementing modern technologies, developing human capital, and engaging with communities and academia. The study confirms that, with effective collaboration among all energy market participants, renewable energy enterprises can not only ensure energy security and economic growth, but also become a powerful tool for decarbonization, energy efficiency, and environmental protection. Further research and practical steps in this direction are necessary to shape a competitive and sustainable energy system of the future.

#### **References:**

Sovacool, B. K., Ryan, S. E., Stern, P. C., Janda, K., Rochlin, G., Pasqualetti, M. J., & Wilhite, H. (2015). Integrating social science in energy research. *Energy Research & Social Science*, 6, 95–99. DOI: https://doi.org/10.1016/j.erss.2014.12.005

Lüthi, S., & Wüstenhagen, R. (2012). The price of policy risk: Empirical insights from choice experiments with European photovoltaic project developers. *Energy Economics*, 34(1), 100–107. DOI: https://doi.org/10.1016/j.eneco.2011.03.003

Goldthau, A., & Sovacool, B. K. (2016). Energy technology, politics, and interpretative frames: Shale gas fracking in Eastern Europe. *Global Environmental Politics*, 16(4), 50–69. DOI: https://doi.org/10.1162/GLEP\_a\_00370

Wirth, S. (2014). Communities matter: Institutional preconditions for community renewable energy. *Energy Policy*, 70, 236–246. DOI: https://doi.org/10.1016/j.enpol.2014.03.021

Mamonov, K., Yesina, V., Matvieieva, N., Slavuta, O., & Troian, V. (2022). Formation of investment attraction for intelligent building enterprises and definitions of stakeholders' influence on them. *Financial and Credit Activity Problems of Theory and Practice*, 2(43), 193–201. DOI: https://doi.org/10.55643/fcaptp.2.43.2022.3511

Velychko, V., Troian, V., & Viatkin, R. (2025). Formation of innovative development strategy of hromadas in the context of regional socio-economic systems. *Baltic Journal of Economic Studies*, 11(2), 184-190. DOI: https://doi.org/10.30525/2256-0742/2025-11-2-184-190

International Energy Agency (2023). Renewables 2023: Analysis and forecast to 2028. Available at: https://www.iea.org/reports/renewables-2023

European Commission (2024). Energy efficiency and renewable energy policies in the EU. Publications Office of the European Union. Available at: https://energy.ec.europa.eu/topics/energy-efficiency\_en

REN21 (2023). Renewables global status report 2023. REN21 Secretariat. Available at: https://www.ren21.net/reports/global-status-report/

Klebanova, T., Guryanova, L., Rudachenko, O., Gvozdytskyi, V., & Panasenko, O. (2024). Predictive modelling and analysis of the level of socio-economic tension in regional systems using machine learning methods. IOP Conference Series: Earth and Environmental Science. *International Conference on Urban Infrastructure Sustainable Development and Renovation*, Vol. 1376. 012047. DOI: https://doi.org/10.1088/1755-1315/1376/1/012047

Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., & Gorini, R. (2019). The role of renewable energy in the global energy transformation. *Energy Strategy Reviews*, 24, 38–50. DOI: https://doi.org/10.1016/j.esr.2019.01.006

IRENA. (2024). World Energy Transitions Outlook 2024. International Renewable Energy Agency. Available at: https://www.irena.org/publications/

Zhang, Y., & Gallagher, K. S. (2016). Innovation and technology transfer through global value chains: Evidence from China's PV industry. *Energy Policy*, 94, 191–203. DOI: https://doi.org/10.1016/j.enpol.2016.03.044

Sovacool, B. K. (2021). Who are the victims of low-carbon transitions? Towards a political ecology of climate change mitigation. *Energy Research & Social Science*, 73, 101916. DOI: https://doi.org/10.1016/j. erss.2021.101916

Baker, L., Newell, P., & Phillips, J. (2014). The political economy of energy transitions: The case of South Africa. New Political Economy, 19(6), 791-818. DOI: https://doi.org/10.1080/13563467.2013.849674

Received on: 23th of July, 2025 Accepted on: 15th of September, 2025 Published on: 09th of October, 2025