CURRENT ISSUES OF MATHEMATICS

DOI https://doi.org/10.30525/978-9934-26-043-8-1

ROBUST STABILITY AND EVALUATION OF THE QUALITY FUNCTIONAL FOR LINEAR CONTROL SYSTEMS WITH MATRIX UNCERTAINTY

Aliluiko A. M.

Candidate of Physical and Mathematical Sciences, Associate Professor, Associate Professor at the Department of Applied Mathematics West Ukrainian National University Ternopil, Ukraine

Aliluiko M. S.

Candidate of Economic Sciences, Lecturer at the Service, Technology and Labor Protection Department Ternopil Volodymyr Hnatiuk National Pedagogical University Ternopil, Ukraine

Consider a continuous linear dynamical control system:

$$\dot{x} = (A + \Delta A(t))x + (B + \Delta B(t))u, \quad y = Cx + Du, \quad (1)$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$ and $y \in \mathbb{R}^l$ are state, control, and observable object output vectors respectively, A, B, C and D are constant matrices of corresponding sizes $n \times n$, $n \times m$, $l \times n$ and $l \times m$, and $\Delta A(t) = F_A \Delta_A(t) H_A$, $\Delta B(t) = F_B \Delta_B(t) H_B$ are system uncertainties, where F_A , F_B , H_A , H_B are constant matrices of corresponding size and matrices uncertainties $\Delta_A(t)$ and $\Delta_B(t)$ satisfy the constraints

$$\left\|\Delta_A(t)\right\| \le 1 , \quad \left\|\Delta_B(t)\right\| \le 1 \quad \text{or} \quad \left\|\Delta_A(t)\right\|_F \le 1 , \quad \left\|\Delta_B(t)\right\|_F \le 1 , \quad t \ge 0 \,.$$

Hereinafter, $\|\cdot\|$ is Euclidean vector norm and spectral matrix norm, $\|\cdot\|_F$ is matrix Frobenius norm, I_n is the unit $n \times n$ matrix, $X = X^T > 0$ (≥ 0) is a positive (nonnegative) definite symmetric matrix.

We control the system (1) with output feedback:

$$u = Ky, \quad K = K_0 + \tilde{K}, \quad \tilde{K} \in \mathbb{E},$$
(2)

where E is an ellipsoidal set of matrices $E = \{K \in \mathbb{R}^{m \times l} : K^T P K \le Q\}$, where $P = P^T > 0$ and $Q = Q^T > 0$ are symmetric positive definite matrices of corresponding sizes $m \times m$ and $l \times l$.

We introduce on the set of matrices $K_D = \{K : \det(I_m - KD) \neq 0\}$ a nonlinear operator

$$\mathsf{D}: \mathbb{R}^{m \times l} \to \mathbb{R}^{m \times l}, \ \mathsf{D}(K) = (I_m - KD)^{-1}K \equiv K(I_l - DK)^{-1}$$

Theorem 1. Suppose that for a positive definite matrix $X = X^T > 0$ and for some $\varepsilon_1, \varepsilon_2 > 0$ the matrix inequalities $\Delta = D^T Q D - G^T P G < 0$, $G = I_m - K_0 D$ and

$$\begin{bmatrix} \Omega & XB + \varepsilon_2 C^{\mathsf{T}} D^{\mathsf{T}}(K_0) H_B^{\mathsf{T}} H_B & C_0^{\mathsf{T}} & XF_A & XF_B \\ B^{\mathsf{T}} X + \varepsilon_2 H_B^{\mathsf{T}} H_B D(K_0) C & -G^{\mathsf{T}} PG + \varepsilon_2 H_B^{\mathsf{T}} H_B & D^{\mathsf{T}} & 0 & 0 \\ C_0 & D & -Q^{-1} & 0 & 0 \\ F_A^{\mathsf{T}} X & 0 & 0 & -\varepsilon_1 I & 0 \\ F_B^{\mathsf{T}} X & 0 & 0 & 0 & -\varepsilon_2 I \end{bmatrix} < 0$$

holds, where $C_0 = C + DD(K_0)C$,

$$\Omega = (A + BD(K_0)C)^{\mathrm{T}}X + X(A + BD(K_0)C) + \varepsilon_1 H_A^{\mathrm{T}}H_A + \varepsilon_2 C^{\mathrm{T}}D^{\mathrm{T}}(K_0)H_B^{\mathrm{T}}H_B D(K_0)C .$$

Then any control (2) ensures asymptotic stability of the zero state for system (1) and the general Lyapunov function $v(x) = x^T X x$.

Consider a control system (1), (2) with quadratic quality functional

$$J(u, x_0) = \int_0^\infty \varphi(x, u) dt, \quad \varphi(x, u) = \begin{bmatrix} x^T & u^T \end{bmatrix} \Phi \begin{bmatrix} x \\ u \end{bmatrix}, \quad \Phi = \begin{bmatrix} S & N \\ N^T & R \end{bmatrix} > 0, \quad (3)$$

where x_0 is initial vector, $S = S^T > 0$, $R = R^T > 0$, and N given constant matrices.

We need to describe the set of controls (2) that would provide asymptotic stability for the state $x \equiv 0$ of system (1) and a bound

$$J(u, x_0) \le \omega, \tag{4}$$

where $\omega > 0$ is some maximal admissible value of the functional.

Theorem 2. [1, p. 61] Suppose that for a positive definite matrix $X = X^{T} > 0$ and for some $\varepsilon_{1}, \varepsilon_{2} > 0$ the matrix inequalities $x_{0}^{T}Xx_{0} \le \omega$ and

$$G^{\mathrm{T}}PG - D^{\mathrm{T}}QD > R, \tag{5}$$

$$\begin{vmatrix} Z & N_0 & C_0^{\mathsf{T}} & XF_A & XF_B \\ N_0^{\mathsf{T}} & R - G^{\mathsf{T}}PG & D^{\mathsf{T}} & 0 & 0 \\ C_0 & D & Q^{-1} & 0 & 0 \\ F_A^{\mathsf{T}}X & 0 & 0 & -\varepsilon_1 I & 0 \\ F_B^{\mathsf{T}}X & 0 & 0 & 0 & -\varepsilon_2 I \end{vmatrix} < 0$$
(6)

holds, where

$$Z = (A + BD(K_0)C)^{\mathsf{T}}X + X(A + BD(K_0)C) + L_0^{\mathsf{T}}\Phi L_0 + \varepsilon_1 H_A^{\mathsf{T}}H_A + \varepsilon_2 C_*^{\mathsf{T}}C_*,$$

$$C_0 = C + DD(K_0)C, \ L_0^{\mathsf{T}} = \begin{bmatrix} I_n & C^{\mathsf{T}}D^{\mathsf{T}}(K_0) \end{bmatrix},$$

$$N_0 = XB + N + C^{\mathsf{T}}D^{\mathsf{T}}(K_0)R + \varepsilon_2 C_*^{\mathsf{T}}H_B, \ C_* = H_BD(K_0)C.$$

Then any control (2) ensures asymptotic stability of the zero state for system (1), the general Lyapunov function $v(x) = x^T X x$, and a bound on the functional (4).

Numerical experiment. Consider a control system for a double oscillator. It is system of two solids that connected by a spring and slide without a friction along of horizontal rod (Fig. 1). This system is defined with two linear differential equations of order two, or, in vector-matrix form:

$$\dot{x} = (A + \Delta A(t))x + Bu, \qquad (7)$$

where

$$A + \Delta A(t) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_0}{m_1} & \frac{k_0}{m_1} & 0 & 0 \\ \frac{k_0}{m_2} & -\frac{k_0}{m_2} & 0 & 0 \end{bmatrix} + F_A \Delta(t) H_A, \ B = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \ F_A = \begin{bmatrix} 0 \\ 0 \\ -\delta \\ \delta \end{bmatrix},$$
$$H_A = \begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}, \ x = \begin{bmatrix} x_1 & x_2 & \dot{x}_1 & \dot{x}_2 \end{bmatrix}^{\mathrm{T}}.$$

Fig. 1. A two-masse mechanical system

Here x_1 and \dot{x}_1 are coordinate and velocity respectively for the first solid, x_2 and \dot{x}_2 are coordinate and velocity respectively for the second solid, m_1 and m_2 are masses of the first and second solids respectively. We define a stiffness coefficient as variable periodic function of time $k = k_0 + \delta \Delta(t)$, where $\Delta(t) = \sin(\varpi t)$, $\delta << 1$ is the amplitude of harmonic oscillations, and ϖ is the frequency parameter.

Let
$$m_1 = 1$$
, $m_2 = 1$, $k_0 = 2$, $\delta = 0,02$, $\Delta(t) = \sin(t / 5)$.

We assume that the output vector

$$y = Cx + Du = \begin{bmatrix} \dot{x}_1 + u \\ x_2 \end{bmatrix}, \ C = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}, \ D = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

can be measured. We find control in the form static output feedback u = Ky, where $K = \begin{bmatrix} k_1 & k_2 \end{bmatrix} = K_0 + \tilde{K}$. We find the vector $K_0 = \begin{bmatrix} 1,6938 & 0,1089 \end{bmatrix}$ that ensures asymptotic stability for system $\dot{x} = (A + BD(K_0)C)x$, Here the spectrum equals $\sigma(M_0) = \{-0,3259 \pm 1,6913i; -0,8333; -0,3296\}$. The behavior of solutions of system with matrix uncertainty (7) with control $u = K_0 y$ and initial vector $x_0 = \begin{bmatrix} 1 & -2 & 0 & 2 \end{bmatrix}^T$.

For demonstration of Theorem 2 we define a matrix functional (3): $S = 0, 1I_4, R = 0, 01, N^T = \begin{bmatrix} 0, 01 & 0 & 0 & 0, 01 \end{bmatrix}$. Using the Matlab suite, we find P = 39,5751 and positive definite matrices

		114, 3996	-49,8299	42, 2629	37,6176	
$0 = \begin{bmatrix} 29,6673 \end{bmatrix}$	11,8521	-49,8299	55,1945	-15,0903	-5,6888	
Q = [11,8521]	$17,0069$, $\Lambda =$	42, 2629	-15,0903	36,7322	15,6111	,
	$\begin{bmatrix} 11,8521\\ 17,0069 \end{bmatrix}, X =$	37,6176	5,6888	15,6111	39,8411	

that satisfy the inequalities (5), (6) for $\varepsilon_1 = 0, 01$.

Thus, for all values of the vector of feedback amplification coefficients $K = K_0 + \tilde{K}$ from a closed region E_0 bounded by the ellipse $(K - K_0)Q^{-1}(K - K_0)^T \le P^{-1}$, the motion of the system of two solids in a neighborhood of the zero state is asymptotically stable. Here $v(x) = x^T X x$ is a general Lyapunov function, and the value of the given quality functional does not exceed $v(x_0) = 889,8436$.

The results are obtained based on the known generalizations statement on adequacy of Petersen's lemma about matrix uncertainties [2, p. 355], [3, p. 253].

References:

1. Aliluiko A, Ruska R. Robust stability and evaluation of the quality functional for linear control systems with matrix uncertainty. *Scientific Journal of TNTU*. 2020. Vol 99. No 3. P. 55–65.

2. Petersen I. A stabilization algorithm for a class of uncertain linear systems. *Syst. Control Lett.* 1987, Vol. 8, No. 4, P. 351-357.

3. Mazko A.G. Robust stability and evaluation of the quality functional for nonlinear control systems. *Automation and Remote Control*. 2015, Vol. 76, No. 2, P. 251–263.