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Abstract. The most reliable method for calculating linear equations of 
the least squares principle, which can be used to solve incorrect geodetic 
problems, is based on matrix factorization, which is called a singular 
expansion. There are other methods that require less machine time and 
memory. But they are less effective in taking into account the errors of the 
source information, rounding errors and linear dependence.

The methodology of such research is that for any matrix A and any two 
orthogonal matrices U and V there is a matrix Σ, which is determined from 
the ratio. The idea of a singular decomposition is that by choosing the right 
matrices U and V, you can convert most elements of the matrix to zero and 
make it diagonal with non-negative elements.

The novelty and relevance of scientific solutions lies in the feasibility 
of using a singular decomposition of the matrix to obtain linear equations 
of the least squares method, which can be used to solve incorrect geodetic 
problems.

The purpose of scientific research is to obtain a stable solution of 
parametric equations of corrections to the results of measurements in 
incorrect geodetic problems.

Based on the performed research on the application of the singular 
decomposition method in solving incorrect geodetic problems, we can 
summarize the following. A singular expansion of a real matrix A  is 
any factorization A U WT� �  of a matrix with orthogonal columns U , an 
orthogonal matrix W  and a diagonal matrix Σ , the elements of which are 
called singular numbers of the matrix A , and the columns of matrices U  
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and W  left and right singular vectors. If the matrix A  has a full rank, then 
its solution will be unique and stable, which can be obtained by different 
methods. But the method of singular decomposition, in contrast to other 
methods, makes it possible to solve problems with incomplete rank. Research 
shows that the method of solving normal equations by sequential exclusion 
of unknowns (Gaussian method), which is quite common in geodesy, does 
not provide stable solutions for poorly conditioned or incorrect geodetic 
problems. Therefore, in the case of unstable systems of equations, it is 
proposed to use the method of singular matrix decomposition, which in 
computational mathematics is called SVD. The SVD singular decomposition 
method makes it possible to obtain stable solutions of both stable and 
unstable problems by nature. This possibility to solve incorrect geodetic 
problems is associated with the application of some limit τ, the choice of 
which can be made by the relative errors of the matrix of coefficients of 
parametric equations of corrections A  and the vector of results of geodetic 
measurements L . Moreover, the solution of the system of normal equations 
obtained by the SVD method will have the shortest length.

Thus, applying the apparatus of the singular decomposition of the 
matrix of coefficients of parametric equations of corrections to the results 
of geodetic measurements, we obtained new formulas for estimating the 
accuracy of the least squares method in solving incorrect geodetic problems. 
The derived formulas have a compact form and make it possible to easily 
calculate the elements µ  and QX  estimates of accuracy, almost ignoring 
the complex procedure of rotation of the matrix of coefficients of normal 
equations.

1. Introduction
The most reliable method for calculating the coefficients in the general 

least squares problem is based on matrix factorization, which is called a 
singular decomposition. There are other methods that require less machine 
time and memory. But they are less effective in taking into account the 
errors of the source information, rounding errors and linear dependence [1].

Singular Value Decomposition or SVD is a powerful computational tool 
for analyzing matrices and matrix problems that has applications in many 
areas. This algorithm is a typical representative of the most currently used 
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algorithms for solving various matrix problems on so-called eigenvalues and 
can be used simultaneously in numerical methods of these problems [2].

The methodology of such research is that for any matrix A and any two 
orthogonal matrices U and V there is a matrix Σ, which is determined from 
the ratio � �U AVT . If the elements u j and v j  are columns of matrices U and 
V, then the individual components of the matrix Σ will be equal �ij i

T
ju Av� .

The idea of a singular decomposition is that by properly choosing the 
matrices U and V, most elements σij  can be converted to zero; moreover, 
you can even make the matrix Σ diagonal with non-negative elements.

It is little known that the singular decomposition has a long history. 
The works of the scientist Golub and his colleagues Kohan, Bizinger and 
Reinsch were fundamental in the vast majority. In particular, the article by 
Golub and Reinsh was published in 1971 [2]. The authors of the known 
algorithms for matrix eigenvalues are scientists Francis, Ruttishauser and 
Wilkinson; these algorithms were described in their works in 1965 [5].  
In their work, scientists Lawson, Hanson (1974) and Stewart (1973) 
consider the SVD method and a number of related problems [3; 4].

Thus, the novelty and relevance of scientific solutions lies in the 
feasibility of using a singular decomposition of the matrix to obtain linear 
equations of the least squares method, which can be used to solve incorrect 
geodetic problems.

2. Least squares data alignment
Suppose that given m points

t y i mi i, , , ,� � �1 .
We consider the value of t as an independent variable, and the value of y 

as a dependent associated with the value of t by some unknown functional 
dependence

y y ti i� � � .
We also assume that the value of y must be approximated by a linear 

combination of n given basic functions φj

y t c t c t c tn n� � � � � � � � � � � �1 1 2 2� � � .

The linear combination in the right part of the approximate equation is 
called a linear mathematical model. The problem is to choose n coefficients 
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c1, …, cn so that the model is more or less consistent with the measurement 
results. The model is linear because the coefficients are included in it 
linearly, although the basis functions can be nonlinear functions from the 
parameter t.

The most common linear model is a polynomial

y t c c t c t c tn
n� � � � � � � �

1 2 3
2 1
 .

It is obtained if taken � j
jt t� � � �1 , although in practice other basic 

polynomials may be more favorable.
Among other cases of the linear model is the trigonometric approximation

y t c t c t c ntn� � � � � �1 2 2sin sin sin ,
where � j t jt� � � sin .
Consider also the exponential approximation with fixed exponents

y t c e c e c et t
n

tn� � � � � �1 2
1 2� � �

 ,

in which � �j jt t� � � � �exp  for given λ j . If you need to determine the 
value λ j , then our model will become nonlinear.

Consider the case when the number of m given points is greater than or 
equal to the number of n unknown coefficients. In this case, the problem of 
choosing the coefficients is overdetermined and, as a rule, it is not possible 
to build a model that would accurately interpolate our measurement results.

Of the many different criteria for determining the coefficients cj, the least 
squares method is most often used. For any choice of coefficients cj, the 
residual at the i-th given point will be equal

r c t yi j j i i
j

n

� � � �
�
� �

1

.

The least squares principle requires that the coefficients cj be chosen 
from the condition of the minimum value of the sum of the squares of the 
residuals, that is

ri
i

m
2

1�
� � min .

If the model exactly satisfies the measurement results, then this minimum 
will be zero, so that the interpolation here is considered as a special case.

The least squares principle does not necessarily define a single set of 
coefficients. If the basis functions are linearly dependent at given points, 
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which means the presence of coefficients γj, among which there are nonzero, 
such that

� �j j
j

n

it i m
�
� � � � �
1

0 1, , , ,

then any multiple of the coefficients γj can be added to the coefficients 
cj without changing the sum of the squares of the residuals. An important 
task in aligning the results of observations by the method of least squares 
with arbitrary basis functions is to identify such dependence and ambiguity.

There are many different algorithms for calculating a set of coefficients 
that gives the minimum sum of squares. One of the possibilities is the 
application of mathematical analysis [1].

Let

r c t yj j i i
j

n

i

m

� � � ��

�
�

�

�
�

�

�
�
�

�

�
�
���

�� �
1

2

1

1 2

.

Our goal is to minimize the value of r or to minimize the value of r2. To 
do this, the condition must be met

�
�

�
r

ck

2

0 ,

where k=1, …, n.
Taking partial derivatives and changing the order of summation, we 

obtain

� � �j i k i
i

m

j
j

n

i k i
i

m

t t c y t� � � ��

�
�

�

�
� � � �

�� �
�� �

11 1

.

It is a system of n linear equations with n unknowns cj. It can be written 
in matrix form

Pc q= ,
where

p t tkj k i j i
i

m

� � � � �
�
�� �

1

,

q t yk k i i
i

m

� � �
�
��

1

.

For example, when approximating by the method of least squares using 
a straight line

y t c c t� � � �1 2
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we have
P

m t

t t
i

i i

�
�

�
��

�

�
��

�
� � 2 ,

q
y

t y
i

i i

�
�

�
��

�

�
��

�
�

.

The equation Pc = q is called normal equations. Note that the matrix 
P depends only on the basis functions, because the values of yi are not 
included in it.

However, there are fundamental claims against the use of normal 
equations. It turns out that the matrix P often has a very large number of 
conditions, so no matter how the normal equations are solved, the errors in 
the input information and rounding errors introduced in the solution process 
increase excessively in the calculated coefficients.

As a last resort, when the basis functions � j t� �  are linearly dependent, 
we can say that the matrix P is degenerate and the number of conditionality 
can be considered as leading to infinity. Therefore, methods that avoid a 
large number of conditionalities associated with normal equations are at 
the same time methods that can detect a linear relationship among the basic 
functions.

As we noted earlier, the most reliable method for calculating the coefficients 
on the principle of least squares, which is based on matrix factorization, is the 
method of singular decomposition or SVD method [1; 2].

3. Singular value decomposition
The SVD method begins with the compilation of a matrix known in 

statistical analysis as the plan matrix. It is a rectangular matrix with the 
number of m rows and the number of n columns, the elements of which are 
equal

a tij j i� � �� .
If the value of y denotes the vector of dimension m with elements yi, and 

the value of c denotes the vector of dimension n with elements cj, then the 
approximate equations

c t y i mj j i i
j

n

� � � � �
�
�
1

1, , ,
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can be rewritten as
Ac y≈ .

The singular decomposition of the original matrix A gives us three 
matrices Σ, U and V. The matrix Σ is a diagonal matrix with non-negative 
diagonal elements, which are called singular numbers of the matrix A. The 
matrices U and V are used to convert equations

Ac y≈

into an equivalent diagonal system
�c y� .

Let � j j n( , , )�1  be the diagonal elements of the matrix Σ. In 
principle, if all elements σ j  are nonzero, then the transformed equations 
can be solved as follows

c
y

j nj

j

j

� �
�
, , ,1 .

But in practice it is not always possible to obtain such solutions if the 
values σ j  are small.

It turns out that all values σ j  are not equal to zero if and only if the basis 
functions φ j  are linearly independent at given points. Therefore, the key to 
the correct use of the SVD method is the introduction of some limit τ, which 
reflects the accuracy of the original data. Any value σ j  that is greater than 
the limit τ is acceptable and the corresponding element c j  is calculated 
as y j jσ . Any value σ j  that is less than the limit τ is considered to be 
quite small and the corresponding element c j  can be given an arbitrary 
value. This arbitrariness of values is associated with the ambiguity of the 
set of coefficients obtained by the method of least squares. Changes in the 
input data and rounding errors that are less than the limit of τ can lead to a 
completely different set of coefficients. Since it is preferably desirable that 
these coefficients be as small as possible, we specify c j = 0  if � �j � .

The relation σ σmax min  where σmax  is the largest nonzero singular number 
and a σmin  is the smallest nonzero singular number can be considered as the 
conditionality number of the matrix A.

Dropping numbers σ j that are less than the limit of τ reduces the number of 
conditionalities to a value � �max . Since the number of conditionality is a factor 
in increasing the error, the result will be a more reliable determination of the 
coefficients c j. The price of such reliability is a possible increase in residuals.
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Finally, it can be noted that an important feature of the SVD method is the 
ability to detect dependence and ambiguity and find very small singular numbers.

This type of additional information for least squares problems is called 
singular analysis. It is used in the analysis of complex mathematical 
models [2; 5].

4. Singular numbers and vectors
In elementary linear algebra, a set of vectors is said to be linearly 

independent if none of them can be represented as a linear combination of 
the others. In computational linear algebra, it is very important to know the 
quantitative estimation of such independence [1; 2].

Since two vectors are dependent if they are parallel, it is reasonable to 
consider them very independent if they are perpendicular or orthogonal. Two 
vectors u and v are called orthogonal if their scalar product is zero, that is

u vT = 0 .
The vector u has length 1 if

u uT =1 .
A square matrix is called orthogonal if its columns are pairwise 

orthogonal vectors of length 1. Thus, the matrix U is orthogonal if
U U IT = ,

where I is a unit matrix. Note that the orthogonal matrix is automatically 
nondegenerate because U UT� �1 .

Multiplication by orthogonal matrices does not change either the length 
of the vector or the angle between the two vectors. Orthogonal matrices are 
also characterized by the fact that they do not increase errors.

For any matrix A and any two orthogonal matrices U and V, consider the 
matrix Σ, which is determined from the ratio

� �U AVT .
If the elements u j  and v j  are columns of matrices U and V, respectively, 

then the individual components of the matrix Σ will be equal
�ij i

T
ju Av� .

The idea of a singular decomposition is that by properly choosing the 
matrices U and V, most elements σij  can be converted to zero; moreover, 
you can even make the matrix Σ diagonal with non-negative elements.
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Thus, the singular expansion of a real matrix A dimension m n×  is called 
any of its factorization

A U VT� � ,
where U is an orthogonal matrix with dimension m m× , V is an 

orthogonal matrix with dimension n n× , and Σ is a diagonal matrix with 
dimension m n× . The quantities σi  are called singular numbers of the 
matrix A, and the columns of the matrices U and V are called left and right 
singular vectors [5].

5. Solving systems of linear equations
Let A be a given matrix of dimension m n× , moreover m n≥ , and b be 

a given vector of dimension m . You need to find all vectors x for which
Ax b= .

Moreover, we include here the case when the matrix A can be square 
and degenerate.

Theoretically, there are many different algorithms that solve this system 
of equations. But in computational practice, with its inaccurate measurement 
results, the SVD method is essentially the only known method with high 
reliability of solutions [1; 2; 3].

Using the singular decomposition of the matrix A, the linear system 
Ax b=  can be rewritten as

U V x bT� � ,
where to get

�z d� ,
where z V xT= , d U bT= . The system of equations �z d�  is diagonal, 

which greatly simplifies its solution. This system can be divided into three 
subsystems, depending on the values of dimensions m, n and rank k, ie the 
number of non-zero singular numbers:

� j j jz d�  if j n≤  and � j � 0 ,
0 � �z dj j  if j n≤  and � j � 0 ,

0 = d j  if j n> .
The second subsystem is empty if k=n; the third subsystem is empty if n=m.
The equations are compatible and the solution exists if and only if 

d j = 0  and also � j � 0  or j n> . If k<n, then an unknown parameter 
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z j  corresponding to the zero coefficient σ j  can be assigned an arbitrary 
value, then a solution of the system of equations can also be obtained. After 
returning to the original coordinates due to the transformation x Vz= ,  
arbitrary components z allow to parameterize the set of all possible solutions x.

Denote by u j  and v j  the columns of the matrices U and V. Then the 
decomposition A U VT� �  can be written as follows:

Av u j nj j j� �� , , ,1 .
The kernel of the matrix A is the set of vectors x for which Ax = 0

, and the range of values of the matrix A is the set of vectors b for which 
the system Ax b=  has a solution. If � j � 0 , then Av j = 0  and v j  belongs 
to the kernel of the matrix A; if so � j � 0 , then u j  belongs to the range of 
values of the matrix A.

It follows that we can obtain a complete description of the kernel and 
the range of values as follows. Let V0  be a system of columns v j  for which 
� j � 0 , and let V1  be a system of other columns v j . Let U1  be a system of 
columns u j  for which � j � 0 , and let U0  be a system of other columns u j ,  
including those for which j n> . In the system V0  there are n–k columns, in 
the system V1  there are k columns and as many in the system U1 , finally, in 
the system U0  there are m-k columns. Therefore:

1. V0  is the orthonormal basis for the nucleus of the matrix A.
2. V1  is the orthonormal basis for orthogonal complement of the nucleus A.
3. U1  is the orthonormal basis for the range of values of the matrix A.
4. U0  is the orthonormal basis for orthogonal complement of the range 

of values of A.

6. The linear problem of the least squares method
Let us now consider the generalization of the previous problem, but 

we will already look for vectors x of dimension n , for which Ax  it will 
only be approximately equal to the vector b under the condition of the 
minimum length of the residual. By residual length here we mean a vector 
of dimension m , that is

r Ax b� � .
Therefore, the task is to choose a vector x that will minimize the length 

of the residual r (or rather, the square of the length of the residual)
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r ri
i

m
2 2

1

�
�
� .

This problem in statistics is called the linear regression problem. If the 
matrix A has a full rank, then the solution x will be unique and stable. This 
solution can be obtained using different methods than the SVD method. But 
the SVD method, unlike other methods, makes it possible to solve problems 
with incomplete rank [1; 2; 5].

Since orthogonal matrices remain normal, then
r U AVV x b z dT T� �� � � �� .

Therefore, the SVD method reduces the general least squares problem to 
a diagonal matrix problem. It is not difficult to note that the vector z, which 
minimizes r , can be expressed by the following relations:

z
d

j

j

j

�
�

 if � j � 0 ;

z j  arbitrary if � j � 0 .
Thus, k equations of diagonal shape are solved exactly. Other equations 

boil down to the fact that the residual vector will be nonzero, and its norm 
will be equal to r d j

2 2� � , where the sum is taken for all j, for which 
� j � 0  or j n> . Then the inverse transformation x Vz=  allows us to solve 
our original problem.

If the problem has an incomplete rank, then its solution, which 
minimizes r , will be non-unique. In this situation, we get a single solution 
by choosing x

2 → min . This solution can be achieved if accepted
z j = 0  when � j � 0 .

In the case of full rank, the solution will be the only one.
Modified least squares problems are often considered in practice, in 

which some combination of r  and x , that is

r x
2 2� �� min ,

here λ  is some coefficient of proportionality.

7. Solving incorrect geodetic problems
The linear equations of the least squares method obtained in the previous 

paragraph can be used to solve incorrect geodetic problems. To do this, 
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we represent the linear regression equation in the form of known in the 
alignment of geodetic networks of parametric equations of corrections. We 
present them in matrix form

AX L V� � ,
where A is the matrix of coefficients of parametric equations of 

corrections, the elements of which are obtained as partial derivatives of 
some function for unknown parameters; X is a vector of unknown quantities, 
called parameters; L is the vector of measurement results; V is the vector of 
corrections to the measurement results.

This system of equations is indeterminate, so it does not have a single 
solution. Of the many different criteria for determining the unknown 
parameters of X, as we noted earlier, we use the principle of least squares. We 
impose an additional condition on the system of equations AX L V� � , that is

� � ��V C VT
nn
1 min ,

where Cnn
−1  is the inverse covariance matrix of errors of measurement 

results.
In order to operate with simpler expressions of obtaining unknowns and 

their assessment of accuracy, it is advisable to use the representation of non-
equivalent results of measurements in equivalent form.

If we substitute the condition of the minimum value of the vector V from 
the parametric equations of corrections, we obtain

� � �� � �� � ��AX L C AX L
T

nn
1 min .

Opening parentheses, we will have
� � � � �� � �X A C AX X A C L L C LT T

nn
T T

nn
T

nn
1 1 12 min .

For a valid symmetric positive definite inverse covariance matrix Cnn
−1  

we use the following theorem.
Theorem. For a valid symmetric positive definite matrix Cnn

−1, there 
is such a symmetric positive definite matrix Cnn

−1 2 that C Cnn nn
� �� � �1 2 2 1.  

Moreover, C Y Y Y Y Y Y Cnn
T T T

nn
� �� � � � � �1 2 2 1 2 1 2 1� � � , where 

�1 2 1
1 2

2
1 2 1 2� � �diag m� � �, , ,  is the diagonal matrix of the eigenvalues of 

the matrix Cnn
−1 2, and the columns of the matrix Y are the eigenvectors of the 

matrix Cnn
−1 2.

Using the definition of this theorem, the minimum condition can be 
represented as follows:
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� � � � �� � � � � �X A C C AX X A C C L L C C LT T
nn nn

T T
nn nn

T
nn nn

1 2 1 2 1 2 1 2 1 2 1 22 minn .
If you enter the following notation

A C Ann� �1 2 , L C Lnn� �1 2 , V C Vnn� �1 2 ,
then the condition of the minimum will finally take the form

� � � � � �X A AX X A L L L V VT T T T T T2 min .
As is known from mathematical analysis, a necessary condition for the 

minimum of the function Φ is the zero equality of its partial derivatives, 
that is � � �� X 0 .

As a result, already for the case of equilibrium measurements L C Lnn� �1 2  
we obtain a system of normal equations

A A X A LT T� � � 0

Unknown parameters are obtained here as
X A A A LT T� �� � �

�1
.

Research shows that the method of solving normal equations by 
sequential exclusion of unknowns (Gaussian method), which is quite 
common in geodesy, does not provide stable solutions for poorly conditioned 
or incorrect geodetic problems. Therefore, in the case of unstable systems 
of equations, it is desirable to use a method that would guarantee a stable 
solution. One of such methods can be a singular matrix decomposition, 
which in computational mathematics is called SVD [1; 2].

Let us perform a singular expansion of the matrix A . A singular 
decomposition of the real matrix A  of dimension m n×  is any factorization 
of the form

A U WT� � ,
where U  is a matrix with orthogonal columns of dimension m n× , 

W  is an orthogonal matrix of dimension n n× , Σ  is a diagonal matrix of 
dimension n n×  in which �ij � 0  at i j≠  and � �ij j� � 0 . The quantities 
σ j  are called singular numbers of the matrix A , and the columns of the 
matrices U  and W  are called left and right singular vectors. The following 
relations are valid for matrices U  and W

U U IT = , UU IT ≠

W W IT = , WW IT = ,
where I is a unit matrix.
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Let us now substitute the value of the singular decomposition of the 
matrix A  into a system of normal equations and obtain it

U W U W X U W LT T T T T
� � �� � � � � � � � � 0 .

After the actions of transposing matrices, we obtain
W U U W X W U LT T T� � �� � � � 0 .

After the reductions, the new system of normal equations will take the form
W W X W U LT T�� �� � � � 0 .

Then the solution of such a system can be written as
X W W W U LT T� �� � �

�
�� �

1
.

Given the orthogonality of the matrix W , and making the appropriate 
reductions, we finally obtain a solution of the system of normal equations

X W U LT� � ��� 1 ,
where the matrix ��1 is a diagonal matrix whose members are equal 1 σ j.
Therefore, this solution makes it possible to obtain unknown parameters 

X using a singular decomposition of the matrix A .
We reduce it to an equivalent diagonal system

� � �Z D ,
where

Z W XT= ,
D U LT� � .

If all values σ j  are nonzero, then the equivalent diagonal system can be 
solved by assuming

z
d

j nj

j

j

� �
�
, , ,1 ,

where z j  are the elements of the vector Z, d j  are the elements of the 
vector D .

However, in practice it is not always possible to obtain a correct solution 
to such a problem if some values σ j  are small.

According to the statements described in the previous paragraphs, we 
can say that all values of σ j  will not be equal to zero in the case when the 
columns of the elements aij  of the matrix A  are linearly independent.

As we noted earlier, to obtain a correct solution, you need to enter some 
limit τ, which reflects the accuracy of the original data used in geodetic 
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problems. Changes in the original data and rounding errors that are less than 
the limit of τ can lead to a completely different set of coefficients. Given that 
these coefficients are as small as possible, we can write

z j = 0  if � �j � .
The choice of z j = 0  has a special meaning. It results in a solution that 

has the shortest length of all possible solutions.
The relation σ σmax min  is called the number of conditionality of the 

matrix A , that is
cond A� � � �

�
max

min

,

where σmax  is the largest nonzero singular number, and σmin  is the 
smallest nonzero singular number.

Therefore, rejecting the numbers σ j  that will be less than the limit τ, we 
obtain a decrease in the number of conditionality to the value � �max , that is

cond A� � � �
�
max .

Studies have shown that discarding some small values σ j  is appropriate 
when the number of conditionality of the matrix cond A� �  exceeds the 
inverse relative errors of the matrix A  and the vector of free terms L , 
which is the vector of the results of measurements of geodetic quantities.

Then, we can obtain a stable solution of our problem if the following 
condition is met

cond A d� � � ,
where d is the denominator of the relative errors of the matrix A  and the 

vector of geodetic measurements L .
If we substitute the value of cond A� � � � �max  into the inequality 

cond A d� � � , we obtain
�
�
max � d .

Then the boundary τ can be determined from the condition

�
�

� max

d
.

Thus, we have shown the problem of solving incorrect geodetic problems 
in the form of a system of normal equations, which makes it possible, given 
the original covariance matrix Cnn , to obtain a fairly simple expression 
for finding unknown quantities X, using a singular matrix decomposition 



126

Andrii Sohor, Markiian Sohor

of parametric equations A . The singular decomposition method makes it 
possible to obtain stable solutions of both stable and unstable problems 
by nature. This ability to solve incorrect geodetic problems is associated 
with the use of some limit τ, which allows not to include in the calculation 
process very small singular numbers σ j  and thus improve the conditionality 
of the system of normal equations. The choice of the limit τ can be made 
by the relative errors of the matrix of coefficients of parametric equations 
of corrections A  and the vector of results of geodetic measurements L . 
Moreover, the solution of the system of normal equations obtained by the 
SVD method will have the shortest length.

8. Estimated accuracy
We derive formulas for estimating accuracy using the singular 

decomposition method.
In general, the root mean square error of any quantity is determined 

from the formula
m QX X� � ,

where μ is the error per unit weight, Q PX X� �1  is the inverse weight of 
the vector of the estimated value.

Thus, the task of estimating accuracy is decomposed into two tasks:  
1) determining the error of a unit of weight; 2) determining the weight of the 
vector of the estimated value.

To determine the error of a unit of weight, you can use the formula from 
the theory of errors

� �
�

V V

m n

T

,

where m–n=k is the number of excessively measured values, and 
the product of matrices V VT , according to the formulas of the previous 
paragraph, is equal to V C VT

nn
−1 . Using the values of the function � �V VT  

given above, and performing some simplifications, we obtain
V V X A AX A L L AX L LT T T T T T� �� � � � .

But the expression that is in parentheses is zero because it represents  
a system of normal equations. Therefore, the value V VT  will take the form

V V L AX L LT T T� � .
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Then, using the singular decomposition of the matrix A , this formula 
can be represented as

V V L U W X L LT T T T� �� .
If we replace the vector X with its value obtained from the solution of 

the system of normal equations, then we have
V V L U W W U L L LT T T T T� � ��� � 1 .

Using the properties of the transposed, orthogonal and inverse matrices, 
the value V VT  is written

V V L UU L L LT T T T� � � .
Then the root mean square error of the unit of weight will finally take 

the form

� �
�
�

L L L UU L

m n

T T T

.

For the inverse weight QX  in the theory of errors take the value

Q A C AX
T

nn� � �� �1 1
.

Using the theorem of symmetric positive definite matrix C Cnn nn
� �� � �1 2 2 1  

formulated in the previous paragraph, the inverse weight QX  can be written
Q A AX

T� � ��1
.

After performing a singular decomposition of the matrix A , the inverse 
weight QX  will take the form

Q U W U WX
T T T� � ��

��
�
��
�

� �
1

.

After transposing and simplifying the expression, the value of QX  will 
be written

Q W WX
T� �� ��

�
��

1
.

Using the properties of the inverse matrix of the product and the 
orthogonal matrix, we finally obtain the inverse weight of the vector of the 
estimated value

Q W WX
T� � �� �1 1 .

Thus, applying the apparatus of the singular decomposition of the 
matrix of coefficients of parametric equations of corrections to the results 
of geodetic measurements, we obtained new formulas for estimating the 
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accuracy of the least squares method in solving incorrect geodetic problems. 
The derived formulas have a compact form and make it possible to easily 
calculate the elements µ  and QX  of the accuracy estimate, almost ignoring 
the complex procedure of rotation of the matrix of coefficients of normal 
equations.

9. Conclusions
Based on the research on the application of the SVD method in solving 

incorrect geodetic problems, we can summarize the following:
1. A singular decomposition of a real matrix A  is any factorization 

of A U WT� �  into a matrix with orthogonal columns U , an orthogonal 
matrix W  and a diagonal matrix Σ , the elements of which σ j  are called 
singular numbers of matrix A , and columns of matrices U  and W  are left 
and right singular vectors.

2. If matrix A  has a full rank, then its solution will be unique and stable, 
which can be obtained by different methods. But the method of singular 
decomposition, in contrast to other methods, makes it possible to solve 
problems with incomplete rank.

3. Research shows that the method of solving normal equations by 
sequential exclusion of unknowns (Gaussian method), which is quite 
common in geodesy, does not provide stable solutions for poorly conditioned 
or incorrect geodetic problems.

4. Therefore, in the case of unstable systems of equations, it is proposed 
to use the method of singular matrix decomposition, which in computational 
mathematics is called SVD.

5. The method of singular matrix decomposition or SVD makes it 
possible to obtain stable solutions of both stable and unstable problems by 
nature. This possibility to solve incorrect geodetic problems is associated 
with the application of some limit τ, the choice of which can be made by 
the relative errors of the matrix of coefficients of parametric equations of 
corrections A  and the vector of geodetic measurements L . Moreover, the 
solution of the system of normal equations obtained by the SVD method 
will have the shortest length.

6. We have obtained new formulas for estimating the accuracy of the 
SVD method in solving incorrect geodetic problems. The derived formulas 
have a compact form and make it possible to easily calculate the elements 
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µ  and QX  of the accuracy estimate, almost ignoring the complex procedure 
of rotation of the matrix of coefficients of normal equations.
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