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INTRODUCTION 

Booms of special lifting machines have the form of circular arches. 

The use of circular arches is due to the advantages over rectilinear rods in 

strength and rigidity. In this regard, arch elements of crane structures very 

often have a large ratio of the axial moments of inertia of cross-sections. 

In this case, the design meets the requirements of strength and rigidity, but 

at the same time, there is a risk of lateral-torsional buckling. After 

buckling, the rod experiences two bends and torsion. Significant cross-

section displacements often lead to various accidents. 

The phenomenon of buckling can be prevented by calculation. 

However, this requires appropriate, sufficiently accurate and reliable 

mathematical models of buckling processes. At present, theoretical 

developments of stability of the simple bending of the circular arch are 

rudimentary and do not allow solving important practical problems in the 

needed amount. Thus, the problem of creating computational models of 

stability problems of circular arches is relevant and necessary for practice. 

 

1. Literature review and problem statement 

The problem of stability of the simple bending of rectilinear beams 

with sections in the form of a narrow strip has been posed as early as the 

19th century. Much later, the theory of spatial stability of plane and 

spatial rods and rod systems has been generalized. 

The constructed theory could not be used for a long time because the 

corresponding differential equations had variable coefficients and 

integration encountered serious mathematical difficulties. There are 

known solutions to various problems of calculating the curves of rods in 

the form of circular arches taking into account only bending deformation. 

This problem has found the effective resolution only with the advent of 

a numerical-analytic version of the boundary element method (BEM). 

This method allows mathematically rigorous and exact solution of 

boundary value problems for the linear homogeneous and inhomogeneous 

differential equations with variable coefficients. 
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Various solutions of differential stability equations are accumulated 

for rectilinear rods, while for circular arches there are no fundamental 

solution functions for Cauchy problems of stability of the simple bending. 

The problems of stability of the simple bending of circular arches can be 

solved by means of professional packages of the finite element method 

(FEM) such as Ansys, Solid Works, Abaqus, etc. At this time, the FEM is 

the most common numerical method, has a rather simple algorithm logic 

and a large number of arithmetic operations. However, the lack of an 

exact stiffness matrix of the problems of stability of the simple bending of 

structural elements in the form of circular arches does not allow obtaining 

accurate and reliable results with an arbitrarily large sampling of the 

structure. 

The application of the BEM algorithm compares favorably. It uses an 

exact system of differential equations of the problem, a mathematically 

rigorous procedure for constructing its solution, and a very logically 

simple process of forming a resolving system of linear algebraic equations 

of the boundary value stability problem. In addition, as shown in, the 

BEM allows obtaining exact values of the problem parameters (forces, 

displacements, stresses, natural vibration frequencies, buckling forces) 

both at the boundary and within the region. Moreover, the BEM has the 

simplest algorithm logic among other numerical methods, good 

convergence of the solution, high stability of arithmetic operations, and a 

very small accumulation of rounding errors in numerical operations. 

At the same time, the method is characterized by the simplicity of the 

algorithm logic, good convergence of the minimum error of the solution 

results and high stability. This is reflected in the works of Orobey V.F.
1
, 

Kolomietc L.V.
2
., Dashchenko O.F.

3
, 

In this regard, the literature review logically leads to the following 

formulation of the aim and objectives of the study. 

 

                                                 
1
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3
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2. The aim and objectives of the study 

The aim of this paper is to construct a system of fundamental 

orthonormal functions for problems of stability of the simple bending of 

circular arches with sections with two or more axes of symmetry. 

To achieve the aim, the following objectives were set: 

– to simplify the general differential equations of stability of circular 

arches with allowance for the symmetry of their sections; 

– to obtain the resolving ordinary differential equation of the 

problems under consideration; 

– to construct the systems of fundamental orthonormal functions of 

the differential equation for the two most important cases of the roots of 

the characteristic equation; 

– to present practical recommendations on the application of the 

resulting calculated ratios of boundary value problems of stability of 

arches. 

 

3. Development of software 

The system of equations of stability of the simple bending of a circular 

rod, after taking into account the symmetry of the section, is reduced to 

the following form. 

 

 

Fig. 1. Design scheme of the problem of stability of a circular rod 

 

       

       





  
           

 


              

           (1) 

where EIy – rigidity of the section in the horizontal xOz plane; 

     w(α) – flexural motion of the rod axis along the Oz axis (Fig. 1); 
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     EIω – sectorial rigidity of the section under the constrained torsion; 

R – radius of the axis of the circular rod; 

     θ(α) – angle of torsion of the section around the Oх axis; 

    MZ(α) – bending moment in the section caused by a given transverse 

load; 

    GId – rigidity of the section under torsion; 

    α – angular coordinate of the current section. 

It can be seen that the system (1) has variable coefficients in the form 

of the bending moment MZ(α). Considering that this is generally a set of 

simple functions, the difficulties that will be encountered in the 

integration of this system become obvious. 

The problem can be substantially simplified if we use the numerical-

analytical version of the BEM. In this method, it is necessary to have a 

solution of the Cauchy problem for equations (1), but with constant 

coefficients. We now describe the procedure for integrating the simplified 

system of equations. The initial parameters of the constrained torsion and 

bending in the horizontal plane are as follows: 

 0dGI   – torsion angle, kNm2; 

 0I

dGI   – derivative of the torsion angle, kNm; 

   2
0 0IIdGI

B
k

     – bimoment, kNm
2
; 

dGI
k

EI
  – flexural-torsional characteristic of the section, 

1
;

m
 

   2
0 0IIIdGI

M
k

     – flexural-torsional moment, kNm; 

 0yEI w  – motion of the
 
section towards the Oz axis, kNm

3
; 

   ' 0 0y yEI w EI   – angle of rotation of the section, kNm
2
; 

   '' 0 0y yEI w M   – bending moment in the horizontal plane, kNm; 

   ''' 0 0y zEI w Q   – transverse force in the horizontal plane, kN. 

These initial parameters and the system of equations (1) form the 

Cauchy problem of stability of the plane of the bending shape of the 

circular rod. To form fundamental solutions of the Cauchy problem, we 

perform a number of transformations. 

From the second equation of the system (1), it follows that (MZ = const) 

     
1

'' .IV II

d

y

Z

w EI GI
EI

M
R


          

 
 

                 (2) 
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By double integration of this expression, we obtain a connection 

between the flexural motion w(α) and the torsion angle θ(α) 

     

 

1

1
,

II

d

y

Z

y

Z

w EI GI
EI

M
R

A B
EI

M
R


           

 
 

  
 

 
 

                       (3) 

where the integration constants are equal to 

     0
0 0 ;

y II

Z d

EI
B M w EI GI

R


 
      
 

 

     0
' 0 ' 0 .

y III

Z d

EI
A M w EI GI

R


 
      
 

                          (4) 

If we substitute w’’(α) from (2) into the first equation of the system 

(1), we obtain the resolving differential equation of stability of the simple 

bending the circular rod 

     1 2 3 0,VI IV IIz z z
  

                                                (5) 

where 

1 ;
y

y

Z

EI EI
z

EI
M

R



 

 
 

 2 ;
y d

y

Z

EI GI EI
z

EI R
M

R




 
 

 
 

 
3 .dZ

GI
z M

R
          (6) 

The equation (5) is classified as the sixth-order linear homogeneous 

differential equation with constant coefficients. Its solution can be 

obtained according to the standard scheme. The characteristic equation for 

(5) has the form 

  6 4 2

1 2 1 0.z t z t z t                                      (7) 

Its roots are of various kinds. Consider the two most important 

combinations of the roots. 

First case 

1,2 0t  – valid multiples; 

2

2 2 1 3

3,4

1

4

2

z z z z
t

z

  
 


 – two valid roots;              (8) 
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2

2 2 1 3

5,6

1

4

2

z z z z
t i

z

 
   – two imaginary roots. 

The general solution of the equation (5) can be written in the form 

  1 2 3

4 5 6

ch

sh cos sin ,

C C C a

C a C b C b

       

      
                                 (9) 

where 

2

2 2 1 3

1

4
;

2

z z z z
a

z

  



 

2

2 2 1 3

1

4
.

2

z z z z
b

z

 
                     (10) 

By five-time differentiation of the expression (9), taking into account 

the ratios between the initial parameters and expression (3), we can form a 

system of linear algebraic equations for the integration constants C1–C2 

 

 

 

 

 

 

2

1

2
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0
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1

0
,

0

0

d

d

y

y

z

y
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A A C M

A A C GI

Q

EI





 
 

 
 

     
   

 
   

 
        

    
 

   
 
        

   
 
 

  
 

                    (11) 

where elements of the coefficient matrix of the equation (11) have the form 

 2 2

53 ;
d

y

Z

a EI a GI
A

EI
M

R

 




 
 2 2
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d

y

Z

b EI b GI
A

EI
M

R

 




 

 3 2

64 ;
d

y

Z

a EI a GI
A

EI
M

R

 




 
 3 2

66 .
d

y

Z

b EI b GI
A

EI
M

R

 




                 (12) 

The integration constants after solving the system of the equations (11) 

are written in the form 
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 

    2
2 2
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1 0 2 2 2 2

1 2 1 2
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BMa b x x
C
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z kI

y d

MQa b x x
C
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
   

       
         

    2
2

0 02
3 2 2 2 2

1 2 1 2

;
y k

y d

BMb x
C

x b x a EI x b x a GI


  

     
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(13) 

 
 

 
  2

2
0 02

4 2 2 2 2

1 2 1 2

;
z k

y d

MQb x
C

EI GIa x b x a a x b x a


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     
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0 01
5 2 2 2 2

1 2 1 2

;
y k

y d

BMa x
C

x b x a EI x b x a GI


  
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       

 

where the following are denoted 

 2 2
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y

Z

a EI a GI
x

EI
M

R

 




 
 2 2
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d

y

Z

b EI b GI
x

EI
M

R

 
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

                     (14) 

The constants C1–C6 are substituted into the expression for the torsion 

angle θ(α) (9) and then four bending parameters (using the expression (3)) 

and four parameters of the constrained torsion relative to the 

corresponding initial parameters can be formed. After rationing of the 

fundamental functions, it is convenient to present these expressions in the 

matrix form as follows 

 

 

 

 

 

 

 

 

13 14 17 18

23 24 27 28

33 34 37 38

43 44 47 48

53 54 57 58

63 64 67 68

73 74 77 78

83 84 87 88

1
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y

z

d

d

A A A AEI w

A A A AEI

A A A AM

A A A AQ
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
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        
   

      
   
   

   
        
   

       
  
  

    

 

 

 

 

 

 

 

 

0

0

0

0
.

0

0

0

0

y

y

y

z

d

d

EI w

EI

M

Q
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B

M





 
 

 
 
 
 
 
 

 
 
 

  
 

(15) 

From this expression, it follows that when solving the problems of 

stability of circular arches by the BEM, it is necessary to solve only eight 
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equations, with an error of less than 1%. According to the FEM, as the 

experiment shows, it will be required to derive a thousand equations, with 

an error of 5 % or more. 

The fundamental orthonormal functions of the equation (15) take the 

form 

 

 2 2 2 21 2

2 2

13 2 2

1 2

cos
;

x x
a b c b cha a b

a aA
x b x a

     



 

;d

y

z

GI
C

EI
M

R





 

 

 

2 2 3 31 2

2 2

14 2 2

1 2
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;

x x
ab a b c b sha a b

a aA
ab x b x a

      




 

   2 2 2 2 21 2
1 2 2 1 1 22 2

17 2 2

1 2
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;

y

d

x x
k x x c k x cha k x b x b x a c EIa bA

x b x a GI

      
 


 

   

 

2 2 2 2 21 2
1 2 2 1 1 22 2

18 2 2

1 2

sin

;
y

d

x x
k ab x x c k x b sha k ax b ab x b x a c EIa bA

GIab x b x a

         

 


 

3 31
1 22

23 2 2

1 2

sin

;

x
x b sha x a b

aA
ab x b x a

  




 24 13;A A  34 23;A A  

 

2 2

1 2 1 2
27 2 2

1 2
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;

y

d

EIk x x bsha k x x a b
A

GIab x b x a

   
 


 

44 33;A A  

2 2

1 2
33 2 2

1 2

cos
;

x b cha x a b
A

x b x a

  



 

 2 2

1 2

37 2 2

1 2
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;

y

d

EIx x b cha b k
A
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 


 

2 2
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;
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A

x b x a
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


                             (16) 
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 2 2

1 2

47 2 2

1 2
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;

y

d

EIx x b asha b b k
A

x b x a GI

   
 


 

28 17;A A 38 27;A A  48 37;A A  

   2 2

53 2 2

1 2

1 1 cos
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y

b cha a b GI
A

x b x a EI

     
 
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   

 

3 3

54 2 2
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;d

y

b a sha a b b GI
A

EIa x b x a

       
 

 
 

    2

2 1

57 2 2

1 2

1 1 cos
;

x cha x b k
A

x b x a

      
  

   

 

2

2 1
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1 2

1 cos
;

bx a sha ax b k
A

ab x b x a

       


 

2 2
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;d

y

ab sha a b b GI
A

x b x a EI

  
 


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  2

2 1

67 2 2

1 2
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;
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A

x b x a

   



 

68 57;A A  
 2 2 2

73 2 2 2

1 2
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;d

y

a b cha b k GI
A

x b x a k EI

  
 


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;
A

A
k


 

2 2

2 1
77 2 2
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cos
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A

x b x a

   



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78 2

;
A

A
k
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3 2 2 3

83 2 2 2

1 2

sin
;d

y

a b sha a b b GI
A

x b x a k EI

  
 


 

84 73;A A  

3 3

2 1
87 2 2

1 2

sin
;

x a sha x b b
A

x b x a

   



 88 77.A A  

The expression (15) is the resolving equation of the BEM for solving 

boundary value problems of stability of the simple bending of structures 

in the form of individual arches, rings, ring systems, and combined arch 

systems. 

Second case. 

The roots are valid multiple and imaginary 
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4 4 0;r s  4 0;s   
4 0.r   

2 4 4

1 ;b r r s     
2 4 4

2 ;b r r s     

2 2

1

;
2

z
r

z


 

4 3

1

;
z

s
z


 

1 ;
y

y

z

EI EI
z

EI
M

R





 

2 ;
y d

y

z

EI GI EI
z

EI R
M

R

 
 

 
   

3 .d
z

GI
z M

R

 
  
 

                                                 (17) 

 

The general solution of the equation (5) takes the form 

  1 2 3 1

4 1 5 2 6 2

cos

sin cos sin .

C C C b

C b C b C b

        

     
                                 (18) 

 

The integration constants, expressed through the initial parameters of 

the equation (11) for this case, have the form 

 

   
22 2

0 02 1 2 1
1 0 2 2 2 2

1 2 2 1 1 2 2 1

;
y

y d

M B kb b x x
C

x b x b EI x b x b GI


   

       
         

 

     
22 2

1 2 2 1 0 01 1 2 3
2 0 3 3 3 3

3 2 4 1 3 2 4 1

;
z

y d

Q M kbb b b b x b x
C

x b x b EI x b x b GI


    

       
         

   
22

0 02 2
3 2 2 2 2

1 2 2 1 1 2 2 1

;
y

y d

M B kb x
C

x b x b EI x b x b GI


  

      
         

   
23

0 02 4
4 3 3 3 3

3 2 4 1 3 2 4 1

;
z

y d

Q M kb x
C

x b x b EI x b x b GI


  

      
       

                (19) 

   
22

0 01 1
5 2 2 2 2

1 2 2 1 1 2 2 1

;
y

y d

M B kb x
C

x b x b EI x b x b GI


  

     
       

 

   
23

0 01 3
6 3 3 3 3

3 2 4 1 3 2 4 1

;
z

y d

Q M kb x
C

x b x b EI x b x b GI


  

     
       
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 2 2

1 1

1 ;
d

y

z

b EI b GI
x

EI
M

R

 


 
 

 

 
 2 2

2 2

2 ;
d

y

z

b EI b GI
x

EI
M

R

 


 
 

 

 

3 1 1;x b x 4 2 2.x b x   

 

The fundamental orthonormal functions of the equation (15) after all 

transformations are written in the form 

 2 2 2 21 2
2 1 2 1 1 22 2

1 2
13 2 2

1 2 2 1

cos cos

;

x x
b b c b b b b

b b
A

x b x b

    


  

 2 2 3 33 4
1 2 2 1 2 1 1 23 3

1 2
14 3 3

3 2 4 1

sin sin

;

x x
bb b b c b b b b

b b
A

x b x b

     


  

   2 2 21 2
2 1 2 1 1 2 1 2 2 12 2

1 2

17 2 2

1 2 2 1

cos cos

;
y

d

x x
x x c x b x b k x b x b c

EIb b
A

x b x b GI

 
        
  

  

   2 3 33 4
1 4 2 3 4 1 3 2 3 2 4 13 3

1 2

18 3 3

1 2 2 1

sin sin

;
y

d

x x
b x b x c x b x b k x b x b c

EIb b
A

x b x b GI

 
         
  



2 21 2
2 1 1 2

1 2
23 2 2

1 2 2 1

sin sin

;

x x
b b b b
b b

A
x b x b

  


  

 2 2 3 33 4
1 2 2 1 2 1 1 22 2

1 2
24 3 3

3 2 4 1

cos cos

;

x x
bb b b c b b b b

b b
A

x b x b

    


  

21 2
2 1 1 2

1 2

27 2 2

1 2 2 1

sin sin

;
y

d

x x
x b x b k

EIb b
A

x b x b GI

 
    
  

  (20) 

  3 4
1 4 2 3 4 1 3 22 2

1 2

28 3 3

3 2 4 1

cos cos

;
y

d

x x
b x b x c x b x b

EIb b
A

x b x b GI

 
      
  

  
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2 2

2 1 1 1 2 2
33 2 2

1 2 2 1

cos cos
;

b x b b x b
A

x b x b

  


  

3 33 4
2 1 1 2

1 2
34 3 3

3 2 4 1

sin sin

;

x x
b b b b
b b

A
x b x b

  


  

  2

1 2 1 1 2 2

37 2 2

1 2 2 1

cos cos
;

y

d

EIx x b x x b k
A

x b x b GI

   
 

  

23 4
4 1 3 2

1 2

38 3 3

3 2 4 1

sin sin

;
y

d

x x
x b x b k

EIb b
A

x b x b GI

 
    
  

  
2 2

1 2 1 1 1 2 2 2
43 2 2

1 2 2 1

sin sin
;

bb x b b b x b
A

x b x b

   


  
3 3

2 3 1 1 4 2
44 3 3

3 2 4 1

cos cos
;

b x b b x b
A

x b x b

  


  

  2

1 2 1 1 1 2 2 2

47 2 2

1 2 2 1

sin sin
;

y

d

EIx x b b x x b b k
A

x b x b GI

  
 

  

23 4
3 4 1 3 4 2

1 2

48 3 3

3 2 4 1

cos cos

;
y

d

x x
x x b x x b k

EIb b
A

x b x b GI

 
    
  

  

   2 2

2 1 1 2

53 2 2

1 2 2 1

1 cos 1 cos
;d

y

b b b b GI
A

x b x b EI

    
 

  

   3 3

2 1 1 1 2 2

54 3 3

3 2 4 1

sin sin
;d

y

b b b b b b GI
A

x b x b EI

      
 

  

    2

2 1 1 2

57 2 2

1 2 2 1

1 cos 1 cos
;

x b x b k
A

x b x b

       
  

    2

4 1 1 3 2 2

58 3 3

3 2 4 1

sin sin
;

x b b x b b k
A

x b x b

         
  

2 2

1 2 1 1 2 2
63 2 2

1 2 2 1

sin sin
;d

y

bb b b b b GI
A

x b x b EI

  
 

  
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   3 3

1 2 1 1 2 2

64 3 3

3 2 4 1

1 cos 1 cos
;d

y

bb b b b b GI
A

x b x b EI

    
 

  

  2

2 1 1 1 2 2

67 2 2

1 2 2 1

sin sin
;

x b b x b b k
A

x b x b

   


  

    2

4 1 1 3 2 2

68 3 3

3 2 4 1

1 cos 1 cos
;

x b b x b b k
A

x b x b

       
  

 

2 2 2 2

1 2 1 1 2 2
73 2 2 2

1 2 2 1

cos cos
;d

y

b b b b b b GI
A

EIx b x b k

  
 

  

 

2 3 3 2

1 2 1 1 2 2
74 2 3 3

3 2 4 1

sin sin
;d

y

b b b b b b GI
A

EIk x b x b

  
 

  

2 2

2 1 1 1 2 2
77 2 2

1 2 2 1

cos cos
;

x b b x b b
A

x b x b

   


  
2 2

4 1 1 3 2 2
78 3 3

3 2 4 1

sin sin
;

x b b x b b
A

x b x b

   


  

 

3 3 2 3

1 2 1 1 2 2
83 2 2 2

1 2 2 1

sin sin
;d

y

b b b b b b GI
A

EIk x b x b

   
 

  

 

3 3 3 3

1 2 1 1 2 2
84 2 3 3

3 2 4 1

cos cos
;d

y

b b b b b b GI
A

EIk x b x b

  
 

  

 

3 3

2 1 1 1 2 2
87 2 2

3 2 2 1

sin sin
;

x b b x b b
A

x b x b

  


  

3 3

4 1 1 3 2 2
88 3 3

3 2 4 1

cos sin
;

x b b x b b
A

x b x b

   


  

.d

y

z

GI
C

EI
M

R


 

 
 

 

 

These fundamental functions, as well as the expressions (16), serve as 

the initial mathematical model of stability problems of circular arches. 
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4. Discussion of the proposed approach to solving stability problems 

 

4.1. The case when MZ=const 

This case for circular arches is very rare and is possible only with the 

hinge support and loading by concentrated equal bending moments. In this 

case, equation (15) can be used directly for the entire structure using the 

BEM algorithm. 

 

4.2. The case when MZ is some function of the angular coordinate α. 

This is the most common case for arch structures. Here it is necessary 

to have an analytical expression for the MZ (α) function. This function can 

be constructed most simply by the BEM algorithm, where the procedure 

for calculating the MZ (α) function from the existing loads is described 

exhaustively. Then the arch is broken into n parts. In each part, the values 

of the bending moment MZ are calculated from the known expression so 

that the area of the step figure MZ is equal to the area of the valid plot MZ. 

If this condition is met, then for n ≥ 30 almost exact results of critical 

loads Mcr,

 

Fcr,

 

qcr are obtained. 

It should be noted that the conducted studies have removed the 

problems of mathematical modeling of very complex problems of stability 

of structural elements of lifting machines. 

 

CONCLUSIONS 

1. When solving the problems of stability of the simple bending of the 

arch by the FEM, it is necessary to solve about 1,000 linear algebraic 

equations. The error of the solution will be about 5%. To solve the 

problems of stability of arches by the BEM, it will be required to solve 

only eight equations and the error of the results will be less than 1%. 

2. The simplified system of differential equations of problems of 

stability of the simple bending of rods in the form of circular arches with 

variable coefficients is presented. Horizontal motions and angles of 

torsion of the axis of circular arches serve as unknowns. 

3. The sixth-order ordinary differential equation with constant 

coefficients for the considered stability problems and use of the BEM 

technology is derived. The resulting equation allows constructing an exact 

analytical solution of the problems of stability of circular arches according 

to the known theory. 

4. The matrix equation of boundary value problems of stability of the 

simple bending of circular arches by the BEM is formed. This equation 
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makes it possible to substantially simplify the logic of solving stability 

problems and obtain exact values of critical loads. 

The analysis of the presented material shows that in the framework of 

the algorithm of the numerical-analytical version of the BEM it is possible 

to construct the resolving equation of stability problems of the simple 

bending of circular rods. This equation can be applied to the solution of 

very complex problems of stability of various structures containing rods, 

outlined along the circle arch. 

 

SUMMARY 

System of differential equations of stability of circular arches with 

symmetric sections and the sixth-order resolving ordinary differential 

equation are derived. It is noted that these equations have variable 

coefficients and their analytical solution under existing external loads 

leads to serious mathematical difficulties. The problem of finding exact 

solutions can be substantially simplified if we use the numerical-analytical 

version of the boundary element method (BEM). Here it is necessary to 

have a solution of the resolving equation of the problem, but with constant 

coefficients. This problem is much simpler than the initial one and can be 

realized according to the known procedure for constructing the 

fundamental functions of an ordinary differential equation. In this regard, 

the constants for integrating the general solutions of the differential 

equation are determined for the two most common cases and rationing of 

the fundamental functions in the matrix resolving form is performed. 

Recommendations are given on the solution of various boundary-value 

problems of stability of the simple bending of arch elements of special 

lifting mechanisms using them. 
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