
308

Anatoly Zelensky

© Anatoly Zelensky

ChaptEr «physiCal  
and MathEMatiCal sCiEnCEs»

AnAlYTiCAl And PrACTiCAl deVelOPMenT  
OF VAriAnT OF MATheMATiCAl TheOrY OF ShellS  
OF SMAll CUrVATUre OF ArBiTrArY ThiCKneSS

Anatoly Zelensky1

DOI: https://doi.org/10.30525/978-9934-588-15-0-63

Abstract. The subject of theoretical and practical research is a variant 
of mathematical theory (MT) of transversely isotropic homogeneous 
shells of small curvature of arbitrary thickness and methods for solving 
the systems of differential equations (DE) obtained on their basis with 
high-order partial derivatives. The object of the study is the analytical and 
numerical dependences of the stress-strain state (SSS) of these shells on the 
mechanical-geometric parameters (MGP), the type of loading and various 
approximations of the MT variant in the problems of static. The purpose of 
this work is to summarize and extend the theoretical and numerical studies 
of the constructed variant MT of transversely isotropic shells of small 
curvature of arbitrary constant thickness at transverse static loading. The 
developed version of the MT takes into account all the components of the 
SSS shell and considers them as functions of three variable coordinates. 
It is based on the method of decomposition of displacements, stresses and 
strains in infinite mathematical series with a transverse coordinate using 
Legendre polynomials. The three-dimensional problem of shell elasticity 
theory is reduced to two-dimensional by means of the Reisner variational 
principle. Three-dimensional theory of elasticity DE is used to represent 
the components of the transverse stresses in the form of a series of Leandra 
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polynomials. The boundary conditions on the front surfaces are met 
exactly. Representation of SSS components in the form of infinite series 
makes it possible to determine with high accuracy the internal SSS, which 
is independent of boundary effects, as well as of boundary effects – vortex 
and potential. Basic dependencies, DR equilibria, boundary conditions on 
the lateral surface are shown in general form. On this basis, dependencies 
and equations are obtained for different approximations, when the partial 
sums of the series take into account different numbers of additions. The 
DE system is obtained in displacements, reduced in general to a non-
homogeneous DE system, which is then transformed into a defining system 
of equations for new functions. Different approximations are considered 
as special cases. The analysis and research of the obtained DE systems is 
performed in general form and on the basis of different approximations. 
Selected equations describing the boundary effect (BE) of vortex. Internal 
SSS and potential BE are determined by an interdependent DE system. 
A common general method of algebraic and operator transformations of 
the obtained DE systems is developed and forms of common solutions 
are constructed. This makes it possible to obtain general solutions of 
equilibrium equations by splitting high-order differential equations to 
small-order equations. Numerical studies of internal SSS for a wide class 
of MGP shells have been carried out. It is established: 1) results obtained 
on the basis of low approximations, including the theory of Tymoshenko-
Reisner, can differ significantly from the exact ones; 2) Tymoshenko-
Reisner type theory satisfactorily describes the SSS of thin shells of small 
curvature with low susceptibility to transverse shear at smooth external 
loads (which slowly change over the shell region); 3) the approximation, 
which takes into account the first four additions in mathematical series for 
tangential displacements, describes with high accuracy the SSS of thin 
shells and shells of medium thickness at smooth loads over a wide range 
of MGP changes; 4) at non-smooth loads higher approximations should 
be used; 5) the internal SSS of the shells depends most significantly on 
the smoothness and locality of the transverse load, the curvature of the 
middle surface, the thickness, the susceptibility to transverse shear; the 
MT approximation accuracy is increased with decreasing thickness, 
curvature, susceptibility to transverse displacements, and increasings load 
smoothness.
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1. introduction
Plate and shell structural elements are widely used in power engineering, 

engineering, industrial and civil engineering, and other industries. Ensuring 
their reliable operation requires the involvement of high-precision theories 
and adequate implementation techniques that take into account all 
components of the SSS and margins and effects.

Problem solving based on classical plate and shell theories [19, p. 3; 
20, p. 22], which are subjected to local loads, have openings, a sharp change 
in MGP, as well as at considerable thickness and in other cases, which lead 
to a large gradient of SSS change, give unsatisfactory results.

Nonclassical clarifying theories [1, p. 242; 2; 5, p. 49; 10, p. 3; 16; 
17, p. 52; 22, p. 195; 25; 26, p.184; 28, p. 32; 29, p. 744], which are based on 
different physico-geometric hypotheses or different models of representation 
of deformation of these elements [1, p. 242; 13, p. 910], for a certain class of 
boundary value problems also cannot accurately describe the SSS of plates and 
shells, since finding the components of SSS with arbitrary accuracy is limited 
by accepted assumptions. This is due to the image of the SSS components in 
the form of a small number of additives (or parametric functions) [1, p. 242; 
13, p. 910], which are accepted on the basis of certain physical considerations. 
The resulting DE systems tend to be of low order.

Solution of boundary value problems for linearly elastic plates and 
shells in three-dimensional formulation [9; 19, p. 3; 20, p. 22] is associated 
with great mathematical difficulties. These are complex three-dimensional 
boundary value problems of mathematical physics in which the components 
of the SSS are functions of three variable coordinates. Only in a limited 
number of cases can an analytical solution be found.

A study of recent publications shows that Tymoshenko-Reisner-type 
theory is used in solving problems for plates and shells [17, p. 52; 26, p. 184; 
29, p. 744] or their refining variants [3; 5, p. 49; 10, p. 3; 14, p. 238; 
22, p. 195]. The validity of using this type of theory to solve the relevant 
problems requires additional research.

Hence the relevance and purpose of the study, which is the need to build 
and develop new MT options and develop effective methods that would 
give a real opportunity to determine all components of the SSS plates and 
shells (functions of three variables) with high accuracy, taking into account 
the boundary effects.
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There are different approaches to constructing theories that do not use 
assumptions (MT variants). SSS components are considered to be functions 
of three coordinates. They can be represented in the form of tensor series 
[12], power series [15, p. 475], mathematical series using Legendre 
polynomials [3; 4, p. 238 ; 6; 8, p. 77; 11; 21, p. 84; 23, p. 335; 24, p. 51; 
30, p. 191; 31, p. 54]. Three-dimensional problems are reduced to two-
dimensional by different methods: projection [6; 8, p. 77; 30, p. 191], 
variational [11; 21, p. 84; 23, p. 335; 24, p. 51; 31, p. 54]. There are other 
approaches described in [3; 7, p. 49; 11; 19, p. 3].

Reviews and development of plate and shell theories can be found, in 
particular in [3; 6; 9; 11; 19, p. 3; 20, p. 22].

The scientific novelty of the obtained results is the following:
1). A mathematical approach to the analytical solution of boundary value 

prob-lems of transversal isotropic shells of small curvature of arbitrary 
thickness under static transverse loading is developed. The approach is 
based on the use of three-dimensional equations of the theory of elasticity, 
decomposition of all components of the SSS (functions of three variables) 
into infinite mathematical series with transverse coordinate using Legendre 
polynomials. Three-dimensional problems of the theory of elasticity are 
reduced to two-dimensional on the basis of the Reisner variational principle 
[27, p. 90] and interdependent equations [32, p. 67; 33, p. 92; 34, p. 137; 
35, p. 496]. The boundary conditions are fulfilled precisely on the upper and 
lower surfaces of the shell.

2) Generalized and developed variant of MT of small curvature shells 
with higher approximations, which is reduced to high order DE systems, 
which allows to determine SSS with great accuracy.

3) Formulated boundary value problems in the general case; a unified 
mathematical technique of differential transformations of a system of 
equations of high order to convenient determining systems of differential 
equations of lower order is developed. Forms of general solutions are found.

4) A class of problems for shells for determining internal SSS in different 
approximations at different loads, slow-change and fast-varying in the 
region is solved; established the qualitative impact of MGP on SSS; limits 
of application of approximate theories depending on MGP and load type; 
obtained new qualitative effects and important conclusions. The validity 
of the method of construction of the considered variant of MT is given in 
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[31, p. 54], which shows the high accuracy and effectiveness of this MT 
option based on comparing the results for SSS with other theories.

In this work, theoretical and practical studies of the constructed variant 
of MT of transversely isotropic shells of small curvature of arbitrary 
thickness at any transverse load, which were obtained in previous works, 
are generalized and extended [32, p. 67; 33, p. 92; 35, p. 496].

2. Formulation of the problem
The purpose of the problem is theoretical and applied research of the 

constructed variant MT of homogeneous elastic transversal-isotropic shells 
of small curvature of arbitrary thickness, development on the basis of it of 
methods of solving DE of boundary value problems with consideration of 
all components of SSS and BE and analysis of numerical results obtained.

We shall consider shells of small curvature of arbitrary constant thickness 
h  in a rectangular Cartesian coordinate system x y z, , . The dimensions of the 
shell in plan a b× . The z  axis is pointing up (in the direction of the bulge).

On the upper and lower surfaces of the shell there is a static transverse load 
q x y1( , )  and q x y2( , ) . The boundary conditions on the surfaces have the form:

σ z z h q x y( / ) ( , )= = −2 1 ; σ z z h q x y( / ) ( , )= − =2 2 ;            (1)
σ σxz yzz h z h( / ) ( / )= ± = = ± =2 2 0 .                      (2)

For convenience, the transverse loading on the surfaces is depicted in the 
form of an algebraic sum of symmetric p x y( , )  and skew-symmetric q x y( , )
components. Then the boundary conditions (1) are written as follows:

σ z z h q x y p x y( / ) ( ( , ) ( , ) ) /= ± = −2 2 ,                  (3)
where p x y q x y q x y( , ) ( , ) ( , )= −1 2 , q x y q x y q x y( , ) ( , ) ( , )= +1 2 .
Conditions on the side surface of the shell can be static, kinematic or mixed.
All SSS components are considered functions of three variable coordinates. 

Tangential components of the displacements in expressions for the transverse 
angular deformations γ γx z y z, , which are neglected in the theory of thin 
shells, are also taken into account. The deformations are defined as follows:

ε x U x kW= ∂ ∂ +/ 1 ;  ε y V y kW= ∂ ∂ +/ 2 ;  
ε z W z= ∂ ∂/ ;  γ xy U y V x= ∂ ∂ + ∂ ∂/ / ;

γ xz W x U z kU= ∂ ∂ + ∂ ∂ − ′/ / 1 , ( x y U V k k, ; ; )→ ′ → ′1 2 , 
( k R k k ii i i i= ′ = =1 1 2/ ; , , ) ,
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where R R1 2,  is the principal radii of curvature of the middle surface of 
the shell.

Physical dependencies for a transversal isotropic shell whose isotropy 
surface is parallel to the median surface are as follows:

ε σ σ σx x y zv E v E= − − ′ ′( ) / / ,  ( x y, ) ; ε σ σ σz z x yv E= − ′ + ′[ ( )] / ;

γ σyx yx G= / ; γ σxz xz G= ′/ ;  γ σyz yz G= ′/ , (G E v= +/ ( ( ))2 1 ),
where E E G G v v, , , , ,′ ′ ′ – the generally accepted mechanical 

characteristics of the material.

3. image of the SSS components by mathematical series
3.1. Movement components. We represent the components of 

displacements in the form of infinite Fourier-Legendre series:
U x y z P z h u x y V x y z P z h v x yk k

k
k k

k

( , , ) ( / ) ( , ); ( , , ) ( / ) ( , );= =
=

∞

=
∑ 2 2

0 0
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−
=

∞

∑

∑=W x y z P z h w x yk k
k

( , , ) ( / ) ( , );1
1

2
 (4)

where u v wk k k, , , are the unknown functions sought; they must continue to 
satisfy DE equilibria and boundary conditions. The representation of the SSS 
components as infinite rows by Legendre polynomials enables the solution to 
be obtained with any high precision. In practical calculations in mathematical 
series (4) a certain number of additions is taken. If the components of the 
displacement take into account the u v u v w u v wn n n0 0 1 1 1, , , , , ..., , ,  components, 
then we call this approximation K01… n or K0-n.

3.2. Stresses components. The transverse stresses σ xz (x, y, z), σ yz  (x, y, 
z) satisfy the boundary conditions (2) and are represented as follows:
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where

αk k kz P P h k( ) ( ) / ( ( ))= − +− +3 2 11 1 , ( k = 1 2, ,...) .
Functions Q Qk x k y,  are unknown. They are determined by the Reisner 

variational principle:
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where h  and l  with the lower indices – MGP shell, they are different 
for different approximations.

The normal stresses σ z x y z( , , )  satisfy the boundary conditions (1), (3) 
and are defined as follows:

σ χ ωz k k
k

x y z z x y( , , ) ( ) ( , )=
=

∞

∑
0

,                               (7)
where

χ χ0 1 1 31 3 5 10( ) ; ( ) / /z z P P= = − + ; 

χk k k kz P k k P k k P k( ) ( / (( )( )) / (( )( )) / ((= − − + − − + + +− +3 2 1 2 1 2 2 1 2 3 22 2 11 2 3 2

2

)( )) / ,

.

k

k

+
≥χk k k kz P k k P k k P k( ) ( / (( )( )) / (( )( )) / ((= − − + − − + + +− +3 2 1 2 1 2 2 1 2 3 22 2 11 2 3 2
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The functions ω ω0 1( , ), ( , )x y x y  are determined from the boundary 
conditions (1), (3). The functions ωk x y( , )  ( xsi → ) – are un-known. They 
are determined by the 

Reisner variational principle:
ω ω0 12( , ) ( , ) / ; ( , ) ( , );x y p x y x y q x y= − =

ω φk ki i
i

ki
i

i kqx y q w e e q( , )
,,
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=
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=
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1 32 3

, ( , , ...)k = 3 5 ; (8)
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where e e eki kq kp, ,  is MGP; they have different meanings for different 
approximations. ωk x y( , )  functions depend on the components in the 
movements with even and odd indexes. If (8) put k1  and k2  equal to 
zero, then we obtain the corresponding functions for the transversal 
isotropic plate.

Dependencies between stresses and components in displacements for 
the shell, taking into account the above relations (5) – (8), are represented 
by infinite mathematical series:
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In (9) t t s s s txi yi zi xi yi y x i, , , , ,  depends on the components in the 
displacements.
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4. differential equilibrium equations and boundary conditions
4.1. differential equilibrium equations in the approximation K0-n. 

The DE equilibrium system and boundary conditions are derived from the 
Reisner variational equation. We are leading a system of DE equilibria and 
boundary conditions in the approximation K0-n.

System of DE of equilibrium transtropic shell of small curvature:

( ) ( , ) ( , ), (, , ,D u D v D w D p x y D q x y iu i k k v i k k
k

n

w i k k
k

n

i p i q+ + = +
= =
∑ ∑

0 1

== +1 2 3 2, ,..., )n , (10)

where D D Dui k v i k w i k, , ,, ,  is the differential operators not higher than the 
second order, Di p, Di q  is the differential operators not higher than the first 
order. Equally marked operators in different approximations are different.

4.2. Boundary conditions in the K0-n approximation. To obtain the 
boundary conditions, we decompose the load X Y Zν ν ν, ,  acting on part Ã1  
of the lateral surface Ã  of the shell into series by Legendre polynomials in 
the transverse coordinate:

X z s P z h x si s i
i

n

ν ( , ) ( / ) ( ),=
=
∑ 2

0

                         (11)

where functions xs i  are defined on part S1  of the contourS  of the shell 
( ,x y S∈ 1 ):

x x y
i
h

X x y z P z h d zs i i( , ) ( , , ) ( / )=
+
∫

2 1
2ν , (X Y Zν ν ν→ → ,  xsi → y zsi si→ ).

Let us represent the components of the displacement U x y zÃ2
( , , ),  

V x y zÃ2
( , , ),  W x y zÃ2

( , , )  given on part Ã2  of the lateral surface ( Ã Ã Ã= +1 2 )  
of the shell in the form of finite sums:
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where the functions u x yjÃ 2( , ),  v x yj Ã2
( , ),  w x yj Ã2

( , )  are defined on part 
S2  of the contour S  shell ( , ;x y S S S S∈ + =2 1 2 ):
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The boundary conditions are obtained from the Reisner variation equation:

{
( )

(( ) ( )
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where l lx y, −  is the guide cosines normal to the lateral surface.
Equation (14) with respect to (11) – (13) yields different boundary 

conditions in the approximation K0-n. Here are some of them.
1) Boundary conditions in displacements. Only the displacement 

components U x y zÃ ( , , ),  V x y zÃ ( , , ),  W x y zÃ ( , , ) . are known on the side 
surface of the shell. Boundary conditions:

u x y u x y v x y v x y j n

w x y w
j jÃ j jÃ

j j

( , ) ( , ); ( , ) ( , ), ( , , ..., );

( , )

= = =

=

0 1

ÃÃ x y j n x y S( , ), ( , ..., ); , .= ∈1
     (15)

2) Boundary conditions in stresses. Only the external load X Y Zν ν ν, ,  is 
set on the side surface Ã . Then we have the following boundary conditions:
s x y l t x y l x x y t x y l s x y l yx j x y x j y s j y x j x y j y s j( , ) ( , ) ( , ); ( , ) ( , )+ = + = (( , ),

( , , ..., ); ( , ) ( , ) ( , ), ( ,

x y

j n t x y l t x y l z x y jx j x y j y s j= + = =0 1 0 1,,..., ), , ,n x y S− ∈1
 (16)

where sxj ,  syj ,  tyxj ,  txj ,  tyj  – functions from uj ,  v j ,  wj .

5. Basic dependences and equations in the approximation K0-n
We assume that n  is an odd integer. The components of dis-placements 

and stresses are expressed by partial sums of infinite series.
Movement components:
U x y z P z h u x y V x y z P z h v x yk k
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k k
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Stresses components:
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To approximate K0-5, functions t t tx i y i y x i, , ...,  are given in [35, p. 496].
differential equilibrium equations. The DR equilibrium system has 

the form (10). It has order ( )6 4n + .
Boundary conditions. The boundary conditions are determined by 

equations (11) – (16).
The main dependencies and equations are obtained in the approximations 

K01, K0-3, K0-5 from (10) – (18) if we put n n n= = =1 3 5, ,  in them.  
The order of systems of differential equations of equilibrium is ( )6 4n + .

It is shown analytically that the differential matrix in all approximations 
is symmetric:. Expressions for system operators in the approximation 
K0-5 are given in [32, p. 67].

6. Transformation of de systems. Forms of general solutions
DE systems for the shell of small curvature of arbitrary thickness in 

all approximations are not divided into separate systems that describe 
symmetric and oblique deformation. If ′k1  and ′k2  are taken into account, 
these systems are not divided into the equation of vortex and potential BE 
with internal SSS.

Additional studies show that for shells with parameters R a a a b1 2 2, / ; ;≥ ≥  
in the equations can be put ′ = ′ =k k1 2 0 . Then, a system of vortex BE 
equations and a system describing the internal SSS with potential BE are 
singled out from these systems. Hereinafter we shall consider ′ = ′ =k k1 2 0.

6.1. The approximation K0-n (n-odd). Consider the transformation of 
the system DR (10) in the general case in the approximation K0-n.

The vortex BE is described by a system of order 2n, which is divided 
into two separate systems. One order system (n + 1) determines the BE at 
skew symmetric deformation:

Í i nc і j j
j

n

ψ
=
∑ = =

1 3

0 1 3
,

, ( , , ..., ) .                        (19)

The other system is of the order (n-1) and determines the BE in 
symmetric deformation:

Í i n u y v xs і j j
j

n

jψ ψ
=

−

∑ = = − = ∂ ∂ − ∂ ∂
2 4

1

0 2 4 1
,

, ( , , ..., ); / / .     (20)

In (19) and (20) H Hci j s i j,  the differential operators are not higher 
than the second order, which depends on the MGP, except for the curves. 
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Therefore, the curvature of the shell does not affect the eddy BE, and the 
equations coincide with the equations for the plates.

After some algebraic and differential transformations of system (10), 
a 24-order DE system with partial derivatives with respect to functions 
u v w w n0 0 1, , , ..,  is obtained, which determines the interdependent internal 

SSS and potential BE:

Ð u Ð v P w Ð q Ð p i ni o i o i k k
k

n

i q i p1 2 2
3 4

2

1 2 2+ + = + = +−
=

+

∑
,

, ( , , ..., ) ,    (21)

where P  with indices are differential operators.
System (21) is not divided into independent systems of internal SSS 

and potential BE. This means that the curvatures of the shell affect the 
interdependence of the internal SSS and the potential BE. For the plates 
of the system of equations of internal SSS and potential BE are separated  
[31, p. 84; 32, p. 54].

The systems of solving equations (19) – (21) are reduced to more 
convenient systems of DE.

DE (19) is reduced to one DE (order ( )n + 1 ) with respect to the new 
function ψ c x y( , ) :

H x yc cψ ( , ) = 0 ,                                     (22)
where Hc  is the differential determinant of system (19):
H a a ac n= ∇ − ∇ − ∇ −( )( )...( )2

1
2

3
2 , a i ni ( , , ..., )= 1 3 –МGP.

The general solution of DE (22) is defined as:

ψ ψc c i
i

n

x y x y( , ) ( , )
,

=
=
∑

1 3

,                             (23)

where ψ c i x y( , )  are the general solutions of DE Helmholtz:
( ) ( , ) , ( , , ..., )∇ − = =2 0 1 3a x y i ni c iψ .                    (24)

The general solutions of system (19), taking into account (22) – (24), 
will be as follows:

ψ ψj c j cx y H x y j n( , ) ( , ), ( , , ..., )= =1 1 3 ,                 (25)
where Hc j1  is the adjuncts of the differential determinant of system (19).
Similarly, system (20) is reduced to one DE of order with respect to the 

new function ψ s x y( , ) :
H x ys sψ ( , ) = 0 ,                                      (26)

where Hs  is the differential determinant of system (20):
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H b b bs n= ∇ − ∇ − ∇ − −( )( )...( )2
2

2
4

2
1 ; b i ni ( , , ..., )= −2 4 1 –МGP.

Numerical studies show that in the approximations K01, K0-3, K0-5 the 
a bi i,  parameters are positive numbers.

The general solution of DE (26) will be:

ψ ψs s i
i

n

x y x y( , ) ( , )
,

=
=

−

∑
2 4

1

,                              (27)

where ψ s i x y( , )  are the general solutions of DE Helmholtz:
h a R a G G E E v v m n/ , ; / ; / , ; / , ; , ; , ; ;,= = ′ = ′ = ′ = = = =0 2 5 0 1 0 1 0 03 0 3 11 2 . (28)

The general solutions of system (20) taking into account (26) – (28) will 
take the form:

ψ ψj s j sx y H x y j n( , ) ( , ), ( , , ..., )= = −1 2 4 1 ,             (29)
where Hs j1  is the adjuncts of the differential determinant of the system (20).
The dependencies (25) and (29) are the forms of common solutions of 

DE vortex BE.
We reduce the system DE (21) to the system of relatively new required 

functions D x yi( , ) . To do this, we represent the components of the operator 
component of the displacement through these functions:

u x y P D x y v x y P D x yi i
i

n

i i
i

n

0 1
0

1 2

2

0 2
0

1 2

2

( , ) ( , ); ( , ) ( , );
, ,

= =
=

+

=

+

∑ ∑

ww x y P D x y k nk i k i
i

n

−
=

+

= = +∑2
0

1 2

2

3 4 2( , ) ( , ), ( , , ..., ),
,

             (30)

where Pi k0  is the adjuncts of system (21). To determine the required 
functions D x yi( , )  we obtain a system of DE of order 4 1( )n + :

P D x y P q x y P p x yi i q i p( , ) ( , ) ( , )= + , ( , , ..., ),i n= +1 2 2     (31)
in which P  is the differential determinant of system (21).
The general solutions of system (31) will appear as:

D x y D x y D x y D x y D x y i nr i i r1 10 1 2 3( , ) ( , ) ( , ); ( , ) ( , ), ( , , ...,, ,= + = = + 22), (32)
where D x y10( , )  is the general solution of the homogeneous equation 

PD x y1 0( , ) = ;
D x y D x yr n r1 2, ( ),( , ), ..., ( , )+ – partial solutions of inhomogeneous DE (31).
Taking into account (30) and (32) we obtain:

u x y P D x y P D x y v x y P Di i r
i

n

0 11
0

10 1
0

1

2

0 12
0

10( , ) ( , ) ( , ); ( , ) (,= + =
=

+

∑ xx y P D x y

w x y P D x y P D

i i r
i

n

k i k i k i r

, ) ( , );

( , ) ( , )

,

,

+

= +

=

+

−

∑ 2
0

1

2

2
0

10
0 (( , ).x y

i

n

=

+

∑
1

2
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i

n

0 11
0

10 1
0

1

2

0 12
0

10( , ) ( , ) ( , ); ( , ) (,= + =
=

+

∑ xx y P D x y

w x y P D x y P D

i i r
i

n

k i k i k i r

, ) ( , );

( , ) ( , )

,

,

+

= +

=

+

−

∑ 2
0

1

2

2
0

10
0 (( , ).x y

i

n

=

+

∑
1

2

                   
(33)

Formulas (33) determine the forms of the general solution of the system 
(21) of internal SSS and potential BE. Components u v u u vn n1 1 2, , , ...,, ,  are 
determined from the system of equilibrium DE (10). The stress components 
are given by formulas (18).

The equilibrium system of DE (10) can be solved analytically by methods 
of double and single trigonometric series depending on the boundary 
conditions of the shell contour [33, p. 92], by the method of perturbation of 
the geometric parameters of the shell [34, p. 137], by methods of integral 
transformations. The perturbation method leads to the solution of the recurrent 
sequence of two DE systems, the right parts of which in each approximation 
to a small parameter depend on the solution in the previous approximation. 
The perturbation method can also be applied to the DE (31) determination 
system since the vortex equations BE (22) and (26) are solved directly. 
Integral conversion methods are also better applied to system (31) than to DE 
(10). This makes it much easier to find common solutions.

6.2. The approximations K01, K0-3, K0-5. We obtain all transformed 
equations from equations (10), (19) – (33) if we put in them k = 1  (in 
approximation K01), k = 3  (in approximation K0-3), k = 5  (approximation 
K0-5). The SSS components for these approximations will be determined 
by formulas (18) with the corresponding k . Expanded ratios and basic 
equations to approximate K0-5 are given in [32, p. 67].

7. numerical results and their analysis
Based on the obtained systems of differential equations for different 

approximations (19) – (21), we investigate the SSS of transstropic shells  
(a b h× × ) of small curvature at boundary conditions Navier from the effect 
of transverse loading

q x y q
m x
a

n y
bmn( , ) sin sin=

π π , p x y p
m x
a

n y
bmn( , ) sin sin=

π π

( q pmm mn,  – const) for different MGP a h G G E E R a k m n/ , '/ , '/ , ', , / , , ,ν ν ′12  
at p q p qmn mn mn mn/ , /= =0 1 . The internal SSS components were found 
by classical theory and by the approximations K01, K0-3, K0-5, using 
the corresponding dependencies for these approximations. Based on the 



321

Chapter «physical  and Mathematical sciences»

developed algorithms, we investigate the SSS of the square in the plane of 
the transtropic shells of different thickness at smooth and non-smooth loads 
for a wide class of MGP. This provided an in-depth analysis of the impact 
of MGP and the type of load on SSS, as well as the convergence of results 
and their accuracy, depending on the approximation of the MT variant. 
Hereafter σ σx x q= / ; W WE qh= / ( ) ; z z h= / . SSS at skew-load is 
characterized by the parameter p qmn mn/ = 0 , and when loaded on the upper 
face plane – by the parame-ter p qmn mn/ = 1  ; ∆ with lower indices means a 
corresponding difference in percentages. The lines in the graphs correspond 
to:  is the approximation of K0-5 (or K135);  – K0-3 (or K13); 

 – K01 (or K1);  – Classical Theory (CT).
Figures 1,2 show the graphs of the dependencies of the SSS components 

at R a1 2 5, / = ; ′ =G G/ ,0 1 , which characterize the nonlinearity of the SSS 
and the difference between the results of the approximations. The following 
results are for ′ =E E/ 1 , ′ = =ν ν 0 3, .
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Figure 1. The stress component σ x  ( / , ; ; / )h a m n p qmn mn= = = =0 1 9 1
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Figure 2. The stress component σ z  ( / , ; ; / ).h a m n p qmn mn= = = =0 1 9 1

Tables 1-4 characterize the components of the SSS depending on 
the approximation, the MGP, the type of load, and the consideration of 
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the curvatures ( ′ =k k1 2 1 2, , ) in the transverse shear deformations. In the 
table. 1, 2 ∆ characterizes the effect of ′k1 2,  curvature on SSS. A practical 
analysis of the series convergence for the SSS components is performed. 
Additional numerical studies show a high convergence of results with a 
skew-symmetric, slowly varying loading region even for thick isotropic  
( h a R a/ , ; / ; ,,= = =0 5 5 0 31 2 ν ) shells.

Table 1
Components of the SSS of the transtropic shell  

(h a a b R a G G m n p qmn mn/ , ; ; / ; / , ; ; / ;,= = = ′ = = = =0 2 5 0 1 1 11 2  
′ ≠ ′ =k k1 2 1 20 0, ,/ )

z / h
К01 К0-3 К0-5 ∆ % ∆31% ∆53%

σ x

-0,5 3,479
3,444

4,844
4,832

4,841
4,832

0,19 28,2
-

0,06
-

W W

-0,5 -52,17
-51,91

-50,83
-50,59

-49,52
-49,28

0,48 2,64
-

2,65
-

Table 2
SSS components of the isotropic shell ( z h/ ,= 0 5 ; 

h a a b R a G G m n p qmn mn/ , ; ; / / ; / ; ; / ;,= = = ′ = = = =0 5 29 40 1 1 01 2

′ ≠ ′ =k k1 2 1 20 0, ,/ )
SSS CТ К01 К0-3 К0-5 ∆ % ∆1k% ∆31% ∆53%
σ x

-0,7789 -0,9052
-0,9038

-0,9740
-0,9091

-0,9921
-0,9267

6,59 14,0
13,8

7,06
0,58

1,82
1,90

W -0,3696 -0,8225
-0,6840

-0,7379
-0,5982

-0,7485
-0,6118

18,3 55,1
46,0

11,5
14,3

1,42
2,22

To determine the SSS for non-smooth loads on the shell region, higher 
approximations (K0-5 and higher) should be taken into account. For thick 
transtropic shells ( / , ; / ),h a R a≥ ≤0 5 11 2 , the dependence of the transverse 
shear deformations on the curvatures must be taken into account, and 
symmetrical components in the displacement components should be taken 
into account in the skew-symmetrical loading (Table 3) (the difference is 
characterized by the magnitude ′∆ ). Transverse crimping can significantly 
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affect the SSS not only for thick, but also for shells of medium thickness  
( h a/ , ,= ÷0 1 0 2 ), especially for non-smooth loads on the shell region 
(Table 4). The magnitude of ∆pq characterizes the difference between the 
results when the transverse compression is taken into account and not 
taken into account.

Tables 5-7 compare the components of the SSS for the shells with the exact 
components for the respective plates (∆po indicates the difference between the 
results for the plates and the shells with respect to the plates). The bold text in 
these tables shows MGP and loads, at which the shells of small curvature can 
be replaced by corresponding plates with an accuracy of up to 4%.

For isotropic shells, the discrepancy with the plates is less than 3.84%. 
This makes it possible to replace the calculation of shells in some cases with 
appropriate plates.

Table 3
Components of the SSS of the transtropic shell 

(h a a b R a G G m n/ , ; ; / / ; / , ; ;,= = = ′ = = =0 5 29 40 0 1 11 2  ′ ≠ =k p qmn mn1 2 0 0, ; / )

z
h

К01
К013
К0-3
∆ʹ %

К0135
К0-5
∆ʹ %

К01
К013
К0-3
∆ʹ %

К0135
К0-5
∆ʹ %

σ x
W

0,5
-0,874 -1,052

-0,939
12,0

-1,129
-1,013
11,5

-1,690 -1,726
-1,562
10,5

-1,719
-1,568
9,63

Table 4
Components of the SSS of the transtropic shell  

( z h h a/ , ; / , ;= − =0 5 0 1  a b R a G G m n= = ′ = = =; / ; / , ; ;,1 2 5 0 1 9
′ ≠ = =k p q p qmn mn mn mn1 2 0 0 1, ; / / / )

SSS К01 К0-3 К0-5 ∆pq% ∆31% ∆53% ∆51%

σ x

0,3595
0,1868

0,6126
0,5042

0,8815
0,6982

26,3 41,3
63,0

30,5
27,8

59,2
73,2

W
-1,979
-1,977

-1,886
-1,659

-1,852
-1,586

16,8 4,93
19,2

1,84
4,60

3,94
24,7
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Table 5
σ x  values for isotropic shells and plates

( ′ = ′ = ′ = = = = ′ ≠ = =G G E E v v m n k p q p qmn mn mn mn/ ; / ; , ; ; ; / / /,1 1 0 3 1 0 0 11 2 )
h
a

z
h

Plate
(The 
exact 

solution)

Shell
R

a
1 2 10, =

∆po
%

Shell
R

a
1 2 20, =

∆po
%

Shell
R

a
1 2 40, =

∆po
%

1
3

0,5 -1,995
-2,125

-2,040
-2,128

2,26
0,14

-2,019
-2,127

1,20
0,09

-2,007
-2,126

0,60
0,05

-0,5 1,995
1,865

1,936
1,766

2,96
5,31

1,966
1,816

1,45
2,63

1,981
1,840

0,70
1,34

1
5

0,5 -5,148
-5,244

-5,309
-5,330

3,13
1,64

-5,239
-5,298

1,77
1,03

-5,196
-5,274

0,93
0,57

-0,5 5,148
5,052

4,913
4,749

4,56
6,00

5,040
4,909

2,10
2,83

5,096
4,983

1,01
1,37

1
10

0,5 -20,02
-20,10

-20,82
-20,75

4,00
3,23

-20,54
-20,55

2,60
2,24

-20,29
-20,33

1,35
1,14

-0,5 20,02
19,94

18,00
17,79

10,1
10,8

19,10
18,95

4,60
4,96

19,57
19,45

2,25
2,46

Table 6
σ x  values for transtropic shells and plates

( ′ = ′ = ′ = = = = ′ ≠ = =G G E E v v m n k p q p qmn mn mn mn/ , ; / ; , ; ; ; / / /,0 1 1 0 3 1 0 0 11 2 )
h
a

z
h

Plate
(The 
exact 

solution)

Shell
R

a
1 2 10, =

∆po
%

Shell
R

a
1 2 20, =

∆po
%

Shell
R

a
1 2 40, =

∆po
%

1
3

0,5 -3,190
-3,299

-3,360
-3,393

5,33
2,85

-3,278
-3,349

2,76
1,52

-3,226
-3,316

1,13
0,52

-0,5 3,190
3,081

2,871
2,702

10,0
12,3

3,031
2,890

4,98
6,20

3,102
2,978

2,76
3,34

1
5

0,5 -6,593
-6,685

-6,981
-6,973

5,89
4,31

-6,823
-6,866

3,49
2,71

-6,715
-6,783

1,85
1,47

-0,5 6,593
6,502

5,921
5,748

10,2
11,6

6,285
6,150

4,67
5,41

6,445
6,332

2,24
2,61

1
10

0,5 -21,57
-21,65

-22,75
-22,67

5,47
4,71

-22,41
-22,41

3,89
3,51

-22,05
-22,09

2,23
2,03

-0,5 21,57
21,49

18,62
18,41

13,7
14,3

20,28
20,12

5,98
6,38

20,98
20,86

2,74
2,93
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Table 7
W values for transtropic shells and plates

( ′ = ′ = ′ = = = = ′ ≠ = =G G E E v v m n k p q p qmn mn mn mn/ , ; / ; , ; ; ; / / /,0 1 1 0 3 1 0 0 11 2 )
h
a

z
h

Plate
(The 
exact 

solution)

Shell
R

a
1 2 10, =

∆po
%

Shell
R

a
1 2 20, =

∆po
%

Shell
R

a
1 2 40, =

∆po
%

1
3

0,5 -15,56
-15,79

-15,25
-15,09

1,99
4,43

-15,47
-15,50

0,58
1,84

-15,54
-15,67

0,06
0,76

0,5 -15,56
-15,34

-15,42
-14,80

0,90
3,52

-15,54
-15,13

0,13
1,37

-15,55
-15,26

0,06
0,52

1
5

0,5 -55,15
-55,38

-53,87
-53,29

2,32
3,77

-54,78
-54,60

0,67
1,41

-55,04
-55,06

0,20
0,58

-0,5 -55,15
-54,92

-54,22
-53,18

1,69
3,17

-54,96
-54,32

0,34
1,09

-55,13
-54,70

0,04
0,40

1
10

0,5 -432,8
-433,0

-414,7
-411,9

4,18
4,87

-428,0
-426,6

1,11
1,48

-431,5
-430,9

0,30
0,48

-0,5 -432,8
-432,5

-416,0
-412,7

3,88
4,58

-428,6
-426,8

0,97
1,32

-431,8
-430,8

0,23
0,39

8. Conclusions
Based on studies of the MT variant of transversely isotropic shells of small 

curvature of arbitrary thickness, the following conclusions are obtained.
Derived DE systems and boundary conditions in general form and as 

special cases for different approximations. The obtained DE systems take 
into account the shear deformations of the transverse shear, which can 
significantly affect the SSS of the shells. The SSS of such shells in each 
approximation is determined by the solution of systems of interdependent 
differential equations with partial derivatives.

Forms of general solutions of the DE equilibrium system are constructed 
in arbitrary approximation. Approaches K01, K0-3, K05 are considered as 
special cases. Highlighted equations that describe vortex BE. Internal SSS 
and potential BE in the K0-n ( n  odd, n ≥ 3 ) approximations are determined 
by the interdependent DE systems.

Analytical solutions of boundary value problems of MT variant in 
double trigonometric series are constructed. The boundary value problems 
for determining the internal SSS for a wide class of MGP in different 
approximations are solved. The convergence of results is generally improved 
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by reducing the thickness, the shearability of the material in shear, and by 
reducing the curvature of the middle surface.

SSS in the scope of the BE, with non-smooth and local loads, should 
be determined by high MT approximations. The results obtained from low 
approximations may differ significantly from the exact ones. Tymoshenko-
Reisner-type theories satisfactorily describe the SSS of thin, low-curved 
shells with low transverse shear at smooth loads. The K0-3 approximation 
describes the SSS of thin shells and medium-thickness shells with high 
accuracy over a wide range of MGP variations. At non-smooth loads of 
approximation K01, K0-3 can give unsatisfactory results not only for 
medium thickness shells, but also for thin shells. This indicates the need to 
use higher approximations.

The internal SSS of the shells depends essentially on the nature of the 
variability of the transverse load, the curvature of the middle surface, the 
thickness, and the susceptibility to transverse displacement. The accuracy of 
the approximations increases with decreasing thickness, curvature, lateral 
displacement, and increasing the transverse smoothness.

The constructed variant of MT of transversely isotropic shells of small 
curvature of arbitrary thickness makes it possible to solve different classes 
of boundary value problems with high accuracy based on the analysis of the 
convergence of numerical results.
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