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Abstract. Purpose. The purpose of the research work is:
– possibility to combine different ways of solving certain mathematical 

problems. In general, the term “non-standard” methods of solving problems 
in mathematics has not defined yet, but many authors use this term in their 
researchers. It should be noted that there are many school problems that use 
unusual considerations. These are the tasks that are considered to be more 
complex and require non-standard methods of solving. These methods 
illustrate the wide possibilities of using well-acquired school knowledge and 
instill skills in using non-standard methods of reasoning in solving problems;

– the performance of comparative analysis in the calculations of spent 
work with different adjacent geometry of three-dimensional figures, which 
are given in this work;

– establishing a mathematical law for calculating the maximum number 
of embeddings of a set of homogeneous circular objects inside a certain 
external geometric structure.

Methodology. Research of this work is based on the use of modern 
mathematics, such as school and analytical geometry, the basics of integral 
calculus and their practical application, progression.

Practical implications. The first part of the paper presents several 
different methods for solving one geometric (stereometric) problem using 
both elementary geometry and higher mathematics, in particular, analytical 
geometry. These different ways of solving one specific problem demonstrate 
the versatility of the modern mathematical apparatus, link the mutual goals 
and methods of elementary and higher mathematics in specific applications. 
It is shown that the problem with the school formulation of the condition can 
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be solved by means of higher mathematics with the use of actions on vectors, 
the use of types of products of vectors and so on. The second part considers 
mathematical models of a specific technical problem based on the known law 
of physics, such as the calculation of some work under the action of gravity 
in a particular case. As such work, as it is established, is differentiated on a 
certain independent variable, therefore at first the value of a separate element 
of such work is established and integration of this element on this variable 
within its limits is executed. The given models with different geometry of 
the location of the three-dimensional body (reservoir, etc.), for which the 
study of this numerical characteristic is studied, are studied and compared, a 
comparative analysis is made in these two different positions of this body. The 
third part investigates the maximum filling of certain geometric both flat and 
three-dimensional external structures with many circular (spherical) figures, 
establishes a mathematical law for calculating the quantitative characteristics 
of such maximum filling, proposed and tested the criterion (coefficient) of 
efficiency and usefulness of such filling. For each of the parts of the given 
researches the corresponding figures, tables which supplement accordingly 
received results in the form of formulas and calculations are offered. 
Conclusions have been also made on the research conducted in the work.

Value/originality. The originality of the research is as follows:
– use and combination of school and higher mathematics in solving a 

specific geometric problem;
– the use of mathematical apparatus in calculating the work of solving 

a physical problem;
– establishment of the mathematical law of the maximum filling of a 

certain geometric structure by a homogeneous set of circular figures.
By solving one geometric problem in different methods or ways, it 

is possible to better understand the specific method, its advantages and 
disadvantages depending on the content of the problem. The use of different 
methods of such a solution provides an opportunity to replace it with another 
solution, which encourages to find alternative effective creative approaches 
to solving this problem. 

It is not necessary to solve each problem in different ways or methods, 
just to choose one or two. In order to enhance cognitive activity and learn 
different methods of solving geometric problems, it is proposed to use non-
standard methods of solving geometric problems.
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Regarding the amount of work spent, the main element of novelty is 
the comparative analysis of such calculations in two related cases of the 
location of a geometric body (cylinder): when its foundations are vertical 
or horizontal.

The main element of the novelty of the results of the maximum filling 
of one geometric structure by a set of circular objects is the establishment 
of the mathematical law of quantitative characteristics of such filling, while 
proposing and testing a logical convenient coefficient of usefulness of such 
maximum filling.

1. Introduction
We can successfully translate the language spoken by nature into the 

language of mathematics and understand the structure of the relationships of 
any phenomenon. And once we formalize these connections, we can build 
certain mathematical models, predict the future states of the phenomena 
that these models describe, only on paper or inside computer memory. At 
the heart of modern mathematics are operations of counting, measuring and 
describing the shapes of the object under study. Translated from the ancient 
Greek, its name means “science”, “study”. This is the basis on which 
knowledge of structure, order and relations is based. They are the essence 
of science. Einstein, when asked where his lab was, smiled and pointed to 
a pencil and paper. Therefore, the role of mathematics is too important in 
human life, of course, this has not always been the case, people used to do 
without it, but modern man can not do without calculations of various types 
of complexity in today’s world.

Thus, the main purpose of the research of this work is the possibility 
and necessity of using a modern mathematical apparatus to solve 
specific mathematical technical or economic problems and to analyze the 
theoretical results of these studies. In mathematics, geometric problems 
play an important and multifaceted role. Solving such problems serves to 
achieve the goals set by the study of mathematics in both high school and 
higher education. Therefore, a lot of time in the study of mathematics is 
devoted to solving geometric problems. Such tasks allow to master the 
most important mathematical concepts, master mathematical symbolism, 
teach to perform proofs of various hypotheses, formulas, theorems and 
statements. 
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The purpose of the research work is to demonstrate:
– versatility of modern mathematical apparatus on the example of 

solving one specific mathematical problem;
– use of the known physical law of calculation of work in one applied 

problem in various variants of placement of a geometric working body;
– study of the maximum filling of certain geometric structures with 

many other homogeneous bodies (figures). 
Mathematical problems of different directions can serve as a foundation 

for mastering new theoretical issues, consolidate acquired knowledge, 
illustrate the practical application of the studied material in new approaches 
in solving certain problems. Thus, the skills and abilities of a certain 
mental activity are formed, which is combined with such important traits 
of character as persistence, attentiveness, concentration. The well-known 
law of physics on the calculation of work under the action of gravity on 
a certain displacement has some application in another problem of the 
results of research data, which leads to the formation and calculation of the 
corresponding integral expressions. The question of the optimal maximum 
filling of certain external geometric structures with a homogeneous internal 
set of circular objects is also always an important and urgent task.

Review of recent research and publications. To study methods of 
proving and solving problems of a certain class, it is important to have 
algorithms, schemes and to understand the outlines of their applications 
[1]. The application of acquired mathematical knowledge must be found in 
solving standard and non-standard problems, to predict the results of certain 
studies. Therefore, at the beginning of solving the problem analyze certain 
ideas and methods, using illustrative tools, compare all ways of finding a 
solution to the problem and choose the most logical of them.

In geometry, it is important to form the need for proofs using a variety of 
methods and ways to solve such problems. When solving a certain problem 
in several ways or methods, the acquired skills are transferred to other 
conditions, repeated in new connections [2–3]. 

In many mathematics applications and the use of mathematical 
apparatus in solving physical or technical problems, the question of 
evaluation, calculation of work spent is an extremely important issue [3–6].  
The solution of one of such problems in the given two adjacent cases is 
offered in this work.
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The solution of the problem of maximum filling of certain external 
geometric structures with a homogeneous set of circular (spherical) 
objects is widely used in various spheres of human life [7–12]. Finding  
a quantitative characteristic of such a filling is given in these  
studies.

2. Several approaches to solving one geometric problem
Here is an example of one of these problems. It demonstrates methods 

to solve them.
Formulation of the problem is to determine the angle between the 

bisectors of two plane angles of a regular tetrahedron, which are drawn 
from one vertex.

Methods to solve the problem.
The first method. 
By the definition of a regular tetrahedron [3], whichever face we consider, 

we have an equilateral triangle. Drop from the vertex D of the tetrahedron 
DABC bisectors DM and DN on the face ADC and ADB (Figure 1). We 
obtain the angle between the bisectors of two plane angles.

 

М 
N 

D 

A 

C 

B 

Figure 1. DABC tetrahedron with the desired angle between  
the apophemes DM and DN

Suppose BC x= , then MN x=
1

2
 (the middle line of the triangle ABC), 

DN DM x= =
3

2
 (by the property of bisectors of equilateral triangles 

ADC, ADB) and ∠ =NDM α .
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∅NDM – isosceles, where – the height of the triangle and 

∠ =NDK
α
2

 and KN x=
1

4
, by the definition sin

α
2

1

2 3
= =
KN

DN
; 

cos
α
2

11

12

2 2

= =
−

=
DK

DN

DN KN

DN .

Then, cos cos sinα
α α

= − = − =2 2

2 2

11

12

1

12

5

6 , where α = arccos .
5

6
It should be noted that cosα can be found by the theorems of cosines 

and sines:

By the sine theorem: DN

DMN

MN

MDNsin sin
,

∠
=

∠
 where DN x=

3

2
, 

∠ = ∠ = −DMN DMK 90
2



α
, MN x=

1

2 .
3

2

90
2

1

2
x x

sin( ) sin−
=

α α
, 

3

2

1

2
2 2

cos sin cos
α α α
=

, 

sin
α
2

1

2 3
=

,

cos
α
2

3

4

1

16

3

2

11

12

2 2
2 2

= =
−

=
−

=
DK

DN

DN KN

DN

x x

x
, 

cos cos sinα
α α

= − = − =2 2

2 2

11

12

1

12

5

6 , where 
α = arccos .

5

6
By the cosine theorem:
MN DM DN DM DN MDN DN DN MDN2 2 2 2 22 2 2= + − ⋅ ∠ = − ∠cos cos

1

4
2
3

4
2
3

4
2 2 2x x x= − cosα ,
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cosα =
5

6
, де α = arccos .

5

6

The second method. Place the correct tetrahedron DABC in the Cartesian 
coordinate system, so that the vertex D lies on the positive half-axis and is 
projected in the center of the base Δ ABC, located in the XOY plane, ie at 
the p. (0; 0; 0) (Figure 2). 

х 

А 

у 

z 

B C 
O 

D 

М N 

Figure 2. The given tetrahedron in three-dimensional space,  
the base center of which coincides with the origin.

Suppose p. A (1; 0; 0), then p. B (x1; y1; 0) and p. C (x2; y2; 0).
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Figure 3. The base of the tetrahedron in the ХОY plane,  
inscribed in a circle with the center at the origin
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Describe around Δ ABC a unit circle and find the coordinates of points B 
and C with the definition of trigonometric functions (Figure 3).

x

y

1

1

60
1

2

60
3

2

= − = −

= =

cos ;

sin ;





 ie p. В( − 1
2

3

2
0; ; ).

x

y

2

2

60
1

2

60
3

2

= − = −

= − = −

cos ;

sin ;



  ie p. С( − −
1

2

3

2
0; ; ).

According to the formula for the distance between two points: 

АВ = − −





 + −









 + −( ) =

1

2
1

3

2
0 0 0 3

2 2

2
.

By placement in space p. D 0 0; ; z( ), тоді AD z
� ���

= −{ }1 0; ; , AD z
� ���

= +1 2 .

Since AD AB= = 3 , then we get equality 1 32+ =z ; out of here 
z1 2=  and z2 2= −  (does not satisfy the condition of placement p. D).

Then p. D( 0 0 2; ; ).
Draw from the vertex D of the bisector DM і DN  flat corners ∠ADC  і 

∠ADB (Figure 2). By construction MN – midline ΔАВС, ie p. М x y3 3 0; ;( )  –  
middle side АВ, p. N x y4 4 0; ;( )  – middle side АС.

Find the coordinates of the points M  і N :

x

y

3

3

1
1

2

2

1

4

0
3

2
2

3

4

=
+ −






=

=
+

=

;

;  

p. M
1

4

3

4
0; ;









 ,

x

y

4

4

1
1

2

2

1

4

0
3

2
2

3

4

=
+ −






=

=
−

= −

;

;

 

p. N
1

4

3

4
0; ;−









 .
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Then, DM
� ����

=












1

4

3

4
2; ; ;  DN

� ���
= −












1

4

3

4
2; ; ;

cos∠ =
⋅

⋅
=

⋅ + ⋅ −








 +

MDN
DM DN

DM DN

� ���� � ���
� ���� � ���

1

4

1

4

3

4

3

4
22 2

1

16

3

16
2

1

16

3

16
2

5

6

⋅

+ + ⋅ + +
= ,

 

where ∠ =MDN arccos .
5

6
The third method.
Consider more general case of constructing a DABC tetrahedron with an 

arbitrary side a  and arbitrary coordinates of its vertices.
Suppose p. А x y z1 1 1; ;( )  according to the coordinates of this point we will 

consistently construct the other three points, indicating their coordinates.
We set Δ ABC in the XOY plane of the rectangular coordinate system. 

So, p. А x y1 1 0; ;( ) , p. В x y2 2 0; ;( ) , p. С x y3 3 0; ;( ) .

 
у 

х 
𝑎𝑎𝑎𝑎 

 

𝑥𝑥𝑥𝑥1 𝑥𝑥𝑥𝑥2 

𝑦𝑦𝑦𝑦1 

𝑦𝑦𝑦𝑦3 

𝑥𝑥𝑥𝑥3 

A B 

C 

Р 

М 

Figure 4. Projection of an arbitrary tetrahedron into the XOY plane 
(side AB parallel to the OX axis)

To simplify the calculations of the given model, let one of the sides 
(for example, the side AB) be parallel to one of the coordinate axes (for 

example, the OX axis) (Figure 4), then 
x x a

y y
2 1

2 1

= +
=





 p. В x a y1 1 0+( ); ; .
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Obviously, the coordinates of p. C Δ ABC will be as follows: 

x
x x

y y hC

3
1 2

3 1

2
=

+

= +







;

;

x
x a

y y
a

3
1

3 1

2

2

3

2

=
+

= +










;

;

 т. С
2

2

3

2
01

1

x a
y

a+
+









; ; .

 Suppose p. P is the point of intersection of the heights ΔАВС, ie  

CM = hC = a 3

2
 on this РМ=

1

3
hC = a 3

6
. Then, p. Р 2

2

3

6
01

1

x a
y

a+
+









; ; .

In turn, the fourth vertex D of the DABC tetrahedron is projected in p.  

P ΔАВС and it will have the following coordinates: p. D 2

2

3

6
1

1

x a
y

a
hD

+
+









; ; ,  

where h DPD = – the height of the tetrahedron DABC, dropped from the 
vertex D to the face Δ ABC.

With Δ DPB, we have: BD BP PD2 2 2= +  or BD BP PD
� ��� � ��� � ���2 2 2

= + , where 
PD hD
� ���

= .

BP
x a a� ���

=
+












2

2

3

6
01 ; ; , BP a a a� ���

= + =
2 2

4 12 3
.

Then, a
a

hD
2

2
2

3
= +  ⇒ =h

a
D

2

3
.

Therefore, т. D
2

2

3

6

2

3
1

1

x a
y

a a+
+









; ; .

Finding successively all four vertices of the tetrahedron DABC, each 
edge of which is equal a, find the coordinates of the points M and N, which 
correspond to the bases of the apophemes DM and DN of the constructed 
tetrahedron:
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x
x x x a

y
y y y a

M
B C

M
B C

=
+

=
+

=
+

=
+

2

4 3

4

2

4 3

4

1

1

;

;  

p. М
4 3

4

4 3

4
01 1x a y a+ +







; ; .

x
x x x a

y
y y

y

N
B A

N
B A

=
+

=
+

=
+

=

2

2

2

2

1

1

;

;  
p. N

2

2
01

1

x a
y

+





; ; .

Then, DM a a a� ����
= −










4

3

12

2

3
; ;  and DN a a� ���

= − −











0

3

6

2

3
; ; , 

DM DN
a a a� ���� � ���

= = + =
3

36

2

3

3

2

2 2

                                                      ;

DM DN
a a

a
� ���� � ���

⋅ = − + =
2 2

2

24

2

3

15

24
 (scalar product of vectors).

Therefore, cos∠ =
⋅

⋅
=












=MDN
DM DN

DM DN

a

a

� ���� � ���
� ���� � ���

15

24

3

2

5

6

2

2
,,  where ∠ =MDN arccos .

5

6

The value of the trigonometric function of the required angle ∠MDN  
can also be found using the vector product of some vectors. Since, for the 
area ΔDNM of the tetrahedron DABC the following relations are valid: 

SΔDNM=
1

2

1

2
DM DN DM DN DM DN
� ���� � ��� � ���� � ��� � ���� � ���

× = ∠( )sin ; , де DM DN
� ���� � ���

×  – vector 

product of vectors, whence sin ; .∠( ) =
×

DM DN
DM DN

DM DN

� ���� � ���
� ���� � ���

� ���� � ���

Whereas

DM DN

i j k

a a a

a a

a
i
a

j
a

k
� ���� � ���

× = −

− −

= − + −
4

3

12

2

3

0
3

6

2

3

2

4

2

4 3

3

24

2 2 2

== + + =a
a2
21

8

1

24

1

192

11

8
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and DM DN
a� ���� � ���

= =
3

2
, then 

sin ; cos ;∠( ) = = ⇒ ∠( ) = −DM DN

a

a
DM DN

� ���� � ��� � ���� � ���
2

2

11

8
3

4

11

6
1 ssin ; ,2 1

11

36

5

6
∠( ) = − =DM DN
� ���� � ���

∠ =MDN arccos .
5

6
The fourth method.
Consider the correct tetrahedron DABC (Figure 5) and introduce 

the following notation: AC a AB b AD c
� ��� � � ��� ��� ��� �

= = =, , . It is known that 
∠( ) = ∠( ) = ∠( ) =a b a c b c
� � � � � �

�; ; ; 60  and a b c
  

= = =1 .

А 
В 

С 

D 

M 

N 

Figure 5. The given tetrahedron in vectors

By the property of vectors: BC b a
� ��� � �

= − +  та MN BC a b
� ���� � ��� � �

= = −( )1

2

1

2
;

DN
b
c DM

a
c

� ��� � � � ���� � ��
= − + = − +

2 2
; .  Тhen, cos ;∠( ) = ⋅

DM DN
DM DN

DM DN

� ���� � ��� � ���� � ���
� ���� � ��� , where 

DN DM c
b

c
a

c a c
� ��� � ���� � � � � � � �

⋅ = −








 ⋅ −








 = − ⋅ −

2 2

1

2

12

22

1

4
1
1

2
60

1

2
60

1

4
60

b c a b a c

b c a b

� � � � � �

� � � �

�

� �

⋅ + ⋅ = − −

− + =

cos

cos cos 11
1

4

1

4

1

8

5

8
− − + = ;
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 DN c
b

DN DM
� ��� � � � ��� � ����2 2

2

2
1
1

4

3

4

3

2
= − = − = ⇒ = = .

Therefore, cos ; ,∠( ) = ⋅

⋅
= =DM DN

DM DN

DM DN

� ���� � ��� � ���� � ���
� ���� � ���

5

8
3

4

5

6
 where ∠ =MDN arccos .

5

6

Considering the methods of solving this problem, we understand how 
closely intertwined the variety of approaches to elementary and higher 
mathematics. Examples of some interesting methods and ways of solving 
a specific geometric problem that can be used in solving both standard and 
non-standard problems using both geometric and algebraic mathematical 
foundations are given. Such research provides an opportunity to expand 
mathematical knowledge, demonstrate that mathematics is a living and 
interesting science.

3. Calculation of work in one applied technical problem with different 
geometry of arrangement and comparison of the received results
There is a cylindrical tank with the appropriate geometric parameters: 

R-the radius of the circle of the base of this three-dimensional figure,  
H-its height. This container is filled with some liquid density ρ. The main 
task of these studies is comparative numerical characteristics of the pumping 
(raising to the surface of the tank) of the volume of this liquid in two cases: 
in the first – if the geometric structure has a horizontal arrangement of its 
bases (Figure 6), in the second – when such bases of the cylindrical structure 
will have a vertical position (Figure 7).

Research results. In determining the magnitude of such work in each of 
these cases the well-known physical law [4-6] should be used, according to 
which in the first case (Figure 6) to raise elementary mass of liquid mass to 
the surface of such a reservoir ∆m R dy1

2≈ πρ , located at an arbitrary height 
y, the magnitude of the elementary work ∅А1  is roughly defined as the 
product of the elementary force of gravity ∆ ∆F g m≈  to the appropriate 
lifting height equal to H y−( ) , herewith y H∈[ ]0; , thus 

∆А1
2≈ −( )πρgR Н y  ∆y.

As can be seen from the last formula, the value of the elementary work 
on raising the elementary volume of the liquid allotted at arbitrarily taken y 
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at the appropriate height for raising to the surface of the tank is the value of 
differentiated (variable) depending on the same ordinate.

If in this equation provided that ∆y goes to zero, ∅А1  will also go 
to zero, therefore, the corresponding increments of the argument and its 
dependent function can be replaced by differentials of these infinitesimal 
quantities, and the approximate equal sign can be replaced by an exact one, 
ie dА1

2= −( )πρgR Н y d y.

Whereas А А
H

1

0

1= ( )∫d y , 

then, having integrated the right-hand side of the last equality on the 
variable y within the possible change of this argument, replacing the 
approximate sign of equality with the exact one, we have the final result of 
the desired work А1:

А
H H

1

0

2

0

2 2 2

0

1

2

1

2

1

2
= −( ) = − −( ) = − −( ) =∫ ∫πρ πρ πρ πρgR Н y dy gR d H y gR H y H ggR H2 2 .

Similarly, set the amount of work А2 � required to raise the entire volume 
of liquid to the surface of the tank, when the bases of such a cylindrical 
structure will be located vertically (Figure 7). The equation of the arc of the 
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Н

0
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y

Figure 6. Cylindrical tank filled 
with liquid and horizontally 

arranged bases

Figure 7. Cylindrical tank 
filled with liquid and vertically 

arranged bases
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base circle in the selected coordinate system is defined as x y R R2 2 2+ −( ) = ,  
where x R y R y R= ± − −( ) ∈[ ]2 2

0 2, ;� . At an arbitrary height y, the 
elementary mass of the fluid layer at such an arrangement of a given 
cylindrical structure will be determined as follows:

∆ ∆m x H y2 2≈ ρ , based on the appropriate formula for determining the 
volume of an elementary parallelepiped of height ∆y. Then the elementary 
force required to raise to the surface of such a structure all the particles of 
the liquid from the specified height of the location of such particles in and 
taking into account the given value of x  will be defined as

∆ ∆F gH R y R y y R2
2 2

2 0 2≈ − −( ) ∈[ ]ρ , ; .

So, this elemental force is equal to the force of gravity emitted at the 
height of the elementary volume for a given fluid. Further, given the fact 
that the particles of this elementary volume of liquid must be raised to the 
height of rise 2R y−( ) , the element of work ∆А2 will be defined as

 ∆ ∆А gH R y R R y y y R2
2 2

2 2 0 2≈ − −( ) −( ) ∈[ ]ρ , ; .

As in the first case, replacing the increments of the function and its 
argument by the corresponding differentials of these infinitesimal quantities, 
we have a definite expression in the form of a definite integral for the final 
establishment of the value of the total sum А2 as follows:

A
R

2

0

2
2 2

2 2= −( ) − −( ) =
− =
= −

∈ −[ ]

















∫ ρgН R y R y R dy

R y t

dy dt

t R R;

==

= −( ) − −( ) =
−

∫2 2 2ρgН R t R t d t
R

R

= − − − = − =
− − −
∫ ∫ ∫2 2 22 2 2 2 2 2ρ ρ ρgНR R t dt gН R t dt gНR R t dt

R

R

R

R

R

R

t

= − =
−

+ =∫4 4
2

4
20

2 2
2 2

0

2

0
3ρ ρ ρ πρgНR R t dt gНR

R t
gНR

R
arcsin

t

R
gR H

R
R Rt

.
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Here t R t R
2 2

02
0

−
= , also arcsin1

2
=
π , 

−
∫ − =
R

R

t R t dt2 2 0  as an integral 

of the odd function under the sign of the integral symmetric with respect to 
the point 0 of the integration interval.

Thus:

А1
2 21

2
= πρgR H

,

А2
3= πρgR H .

Based on the latest results, these values can be compared and their 
corresponding ratio is taken:

А

А R
1

2 2
=

H
, або А

R
А1 22

=
H

.

The following features are obtained:
H

R
2

1 2 1 2R
Н А А> ⇔ > ⇔ > ,

H
R

2
1 2 1 2R

Н А А< ⇔ < ⇔ < ,

H
R

2
1 2 1 2R

Н А А= ⇔ = ⇔ = .

Thus, the values of the required works in both cases will be equal when 
the height (generative) H of such a cylindrical structure coincides with its 
diameter 2R, which is the logical result of such studies.

It should also be noted that if the position of the cylindrical structure 
is horizontal at its base, the magnitude of the corresponding work will 
be proportional to both the square of the radius and the square of the 
height of such structure (Figure 6), and if such capacity is horizontal 
with vertical both bases (Figure 7), the magnitude of the desired work 
will already be proportional to both the cube of the radius of the base 
circle and the height (creative) of such a structure of the corresponding 
geometry.
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4. Setting the maximum number of filling of some geometric structure 
with many other geometric figures of circular (spherical) shape
Questions about the optimal location of certain geometric objects 

(structures) are among the problems of optimal geometric design. Such 
studies are relevant and their results are constantly growing both from a 
purely theoretical and practical point of view [7–12]. In the studies, the 
so-called coefficient of useful filling of one geometric structure with many 
other objects plays a very important role. As a rule, the main task of such 
researches is to increase the numerical value of the coefficient and its direct 
estimation in one or another mathematical model that is being studied  
[11–12]. The results of them have a wide range of possible applications: the 
problem of maximum filling of tanks of different geometric shapes in the 
agricultural sector of the economy, mechanical engineering, medicine, in 
particular, pharmacology, light, furniture, etc. The basis of such problems 
and their solution is to determine the optimal location of a finite set of certain 
geometric objects within certain geometric structures. We aim to calculate 
the possibilities of maximum filling of a given geometric figure (both flat 
and three-dimensional) by a set of circles (respectively, balls) of the same 
radius r, namely, the quantitative component of such optimal filling, and 
formulate some criteria for estimating such maximum filling. Obviously, 
such a criterion can be chosen as the ratio of the total usable area (volume) 
of the filling of a given geometric structure to the area (volume) of this 
given geometric structure.

The purpose of the researches is to establish the optimal filling of a 
certain external geometric structure with a finite set of objects of one or 
another geometric shape, to establish the quantitative characteristics of such 
filling, to introduce and calculate the coefficient of useful maximum filling 
of such structure.

In order for the external geometric structure to reach its maximum 
content, we will require that the linear dimensions of a given geometric 
structure be multiples of the numerical value d=2r (d-diameter). Under 
this necessary condition, the area (volume) of unproductive voids of the 
external geometric structure is minimized and, accordingly, the filling of 
such a structure will reach the highest values.

1. If in the plane case (ie in two-dimensional space) as an external 
geometric structure is chosen a rectangle with the dimensions of the 
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sides, respectively, a and b, whose numerical values are multiples of 2r, 
ie a

r
m
b

r
n

2 2
= =, , where m n, − integers, then the quantitative value of 

the optimal (maximum) filling of such a flat geometric structure is easily 
established and is equal to:

N mn= . 
                                                           

Figure 8. Rectangular structure, where m = 4, n = 3

As an example of such a simpler structure, Figure 8 shows a structure in 
the form of a rectangle with values of m n= =4 3, � . Then N =12 . Now in 
this example the degree (coefficient) of efficiency of such filling of the set 
structure as the relation of the total area of all 12 circles to the area of the 
set external rectangular structure will be established. Here:

ξ
π π π

= = = =
mn r

ab

mn r

mnr

2 2

2
100

4
100

4
100 78 5% % % , %.

An analogue of the above structure, but with the transition to three-
dimensional space is a straight parallelepiped, which is filled as much as 
possible by a set of balls of fixed radius, while the linear dimensions of the 
independent sides of the parallelepiped meet the conditions:

a

m

b

n

c

k
r= = = 2 , where m n k, , −  integers, 2r −  diameter of each sphere. 

In this case, the maximum possible number of such balls inside the specified 
parallelepiped will be equal to:

N mnk= , the coefficient of useful effective filling of such a structure of 
three-dimensional space will be determined as the ratio of the total useful 
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volume to the volume of the outer parallelepiped. Summarizing the example 
shown in Figure 8 on three-dimensional space and assuming, for example,  
k = 3, the value of this coefficient will be as follows:

ξ
π π π

= = = =

4

3 100

4

3
8

100
6
100 52 3

3 3

3

r mkn

abс

r mkn

mnkr
% % % , %.

From the results of finding the coefficients of optimal filling of similar 
flat and three-dimensional models, we can conclude that the optimum 
maximum filling for a flat model is 1.5 times higher than in a similar three-
dimensional model. The next conclusion is that the numerical values of the 
corresponding coefficients of useful filling of flat and three-dimensional 
structures do not depend on the linear dimensions of the outermost 
geometric structure.

О А

Figure 9. The example of a flat outer circular structure of radius �R , 
maximally filled with a set of circles of fixed radius ��r R r, >  in the case 
when R

r
−  is an odd number ( R

r
= 5 ).

2. As another external geometric structure in two-dimensional space, we 
introduce a circle of radius R R r, ( )> , here r – values of the fixed radius 
of the maximum possible number of inner circles, which fill the area of the 

outer structure of a large circle. We assume that R
r

l= , де l −  is an integer.
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According to the research, this point can be further divided into two 
sub-items depending on the parity – the oddness of the numerical value of l.

A) Suppose l k k= − −2 1, �  integer. The case of the so-called paired 
model. An example of such a specific structure k l= =( )3 5  is shown in 
Figure 9.

The dependence of the maximum possible number of small circles 
inside the outer circular structure has been established and this dependence 
is determined by the formula of the following form:

N R k r k k i k
i

k

= −( )( ) = − + − −( ) = …
=

−

∑2 1 2 1 2 2 1 2 3 4
1

1

, , ,�  

This formula at large values of k is not particularly convenient, so we 
offer a condensed version, which is more appropriate, it has the following 
form:

N R k r k k k= −( )( ) = − + = …2 1 3 3 1 2 3 42 , , ,�  
According to the latter result, the value of the number N increases in 

quadratic with respect to k dependence.

Table 1
Dependence of the maximum possible number of small circles  

on the value of the integer k, which are located inside the large circle
k 2 3 4 5 6

The number of circles N of radius r 
depending on the value k (R= (2k-1)r) 7 19 37 61 91

Using the above result, we can easily set the maximum possible number 
of small circles to fill a large circle in Figure 9: N R r=( ) = − + =5 27 9 1 19 .

The established dependence of the number N on the value of k can also 
be set using table 1.

B) Suppose l k k= −2 , � integer. This is the case with the so-called paired 
model. An example of such a specific structure k l= =( )3 6  is shown in 
Figure 10.

In this case, the dependence of the maximum possible number of small 
circles inside the outer circular structure is determined by the formula of 
the form:

N R kr k k i k
i

k

=( ) = + −( ) = …
=

−

∑2 2 2 2 2 3 4
1

1

, , , ,�  
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In this case, the dependence of the maximum possible number of small 
circles inside the outer circular structure is determined by the formula of 
the form:

N R kr k k i k
i

k

=( ) = + −( ) = …
=

−

∑2 2 2 2 2 3 4
1

1

, , , ,�  

Based on this result, we have a similar quadratic relationship between 
the values N and k.

 

О
А

К

Н

Р 

Figure 10. An example of a flat outer circular structure of radius R, 
maximally filled with a set of circles of fixed radius ��r R r, > , in the case 
where R

r
− is an even number (R

r
= 6).

As a remark to sub-item B) it is noted that visually it is possible 
to get an impression of the placement of several additional circles, 
one of which is possible in Figure 10 is dotted. But research has 
shown that such additional placement is impossible because: 
OA r OP OK OH r r r r r= = + = + = +( ) ≈ >6 3 3 3 3 3 1 6 1 6, , . The established 
dependence can be similarly interpreted in the form of table 2. 

Table 2
Dependence of the maximum possible number of small circles  

on the value of the integer k, which are located inside the large circle
 k 2 3 4 5 6

The number of circles N of radius r 
depending on the value of k (R = 2kr) 10 24 44 70 102
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The execution of the last inequality mathematically strictly proves the 
fact that the presence in Figure 10 of the dotted additional possible circle is 
actually impossible.

Let us dwell on the question of establishing the value of the 
coefficient of effective (maximum) filling of such an external circular 
structure. For the odd model we have the following estimate for this  
coefficient: 

ξ ξ
π

π

π

π
неп R k r

N R k r r

R
%

N R k r r

r
= = −( )( ) =

= −( )( )
=

= −( )( )
2 1

2 1
100

2 12

2

2

22 2

2

2
2 1

100
3 3 1

2 1
100 75

k
%

k k

k
% %

−( )
=

− +

−( )
≈ .

It is similarly for the pair model:

ξ ξ
π

π
π

π
п R kr

N R kr r

R
%

N R kr r

r k
%

k
= =( ) =

=( )
=

=( )
( )

=2
2

100
2

2
100

3
2

2

2

2 2

2 −−

−( )
≈

k

k
% %

2 1
100 75

2
.

As we can see, the asymptotic values of the given coefficients coincide 
essentially with one constant value equal to 75%.

Then, based on the principles of calculating the outer circular structure, 
we can further introduce a cylindrical outer geometric structure with the 
parameters R – radius of the base circle and H – height in three-dimensional 
space. In this case, we consider the value of H – to be a multiple of 2r, 
where r – is the fixed radius of each of the balls, which can fill the maximum 

volume of the cylinder. If 
Н

r
p

2
= , where p – is an integer, then in relation to 

the maximum possible number of small balls that can be placed inside the 
cylinder, we obtain:

Q Np= . 
In this case, the coefficient of maximum useful filling of such a three-

dimensional structure is defined as

ξ
π

π
= =

−( )
=

− +

−( )

4

3 100
4

3 2 1 2
100

2

3

3 3 1

2 1
1

3

2

3

2 2

2

2

r

R H
%

r Np

k r pr
%

k k

k

Q
000 50% %≈ .

Thus, we have a similar similarity with respect to the considered external 
circular structure, namely, the coefficient of volumetric maximum filling is 
1.5 times smaller in comparison with the same coefficient of flat filling of 
the corresponding circular structure.
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As follows:
– cases of maximum filling of flat and three-dimensional geometric 

structures with a finite set of geometric objects are considered, the 
quantitative measure of each of the given fillings is established;

– the coefficient of such useful filling of the corresponding geometrical 
structure both in two-dimensional and three-dimensional spaces is entered, 
the estimation of calculation of such coefficient is made;

– a comparative analysis of such coefficients for flat and three-
dimensional cases of solving the problem posed in the research.

5. Conclusions
The main results of the research of this work can be considered the 

following:
– in the first part of this work, on the example of solving one geometric 

problem, mathematical versatility of different approaches and methods of 
solving this particular problem and many other mathematical problems is 
established, therefore, the question in such cases is not just to find the right 
solution to the problem to be solved, but also to choose the solution that 
would be the most acceptable and optimal; 

– the second part investigates on the basis of known classical results 
of one of the physical laws comparative analysis of one of the numerical 
characteristics, namely, work in this case using the mathematical apparatus 
of integral calculus, established the relationship of relevant models the body 
to which the essence of this task is attached;

– in the third part the problem of maximum filling of certain external 
spatial geometric figures with a set of homogeneous circular or spherical 
objects is solved, the so-called coefficient of such useful filling is offered 
and tested.

References:
1. Samovol P. I. (1995). Metodychna systema roboty iz zdibnymy ta 

obdarovanymy z matematyky uchniamy v serednii shkoli [Geometrical design 
of placing of non-orientable objects from piece by eye-nonlinear borders 
in multicoherent areas]. Kyiv: National Pedagogical University named of  
M.P. Drahomanov. (in Ukrainian)

2. Liba I. (2001). Aktyvizatsiia piznavalnoi diialnosti uchniv [Activation 
of students’ cognitive activity]. Mathematics at school, vol. 2, pp. 44–46.  
(in Ukrainian)



562

Viktor Dubchak, Elvira Manzhos

3. Vygodsky M. Ya. (2019). Metodychna systema roboty iz zdibnymy ta 
obdarovanymy z matematyky uchniamy v serednii shkoli [Handbook of elementary 
mathematics]. Kyiv. (in Ukrainian)

4. Balash V. A. (1974). Zadachi po fizike i metody` ikh resheniya [Problems 
in physics and methods of their solution]. Moscow: Enlightenment. (in Russian)

5. Vinnytsia National Agrarian University (2010). Zbirnyk naukovykh prats. 
Seriia: Ekonomichni nauky [Collection of scientific works. Series: Economic 
Sciences]. Vinnytsia: VNAU.

6. Ovchinnikov P. F., Yaremchuk F. P., Mikhailenko V. M. (2007). Vyshcha 
matematyka [Higher mathematics]. Kyiv: Machinery. (in Ukrainian)

7. Bezugla Yu.S. (2016). Heometrychne modelyuvannya rozmishchennya 
neoriyentovanykh obyektiv z kusochno-neliniynymy hranytsyamy u bagato-
zvyaznykhoblastyakh [Geometrical design of placing of non-orientable objects 
from кус by eye-nonlinear borders in multicoherent areas]. Kharkiv: Natsionalnyy 
universytet tsyvilnogo zakhystu Ukrayiny. (in Ukrainian)

8. Ploskiy V. O. (2011). Systemna klasyfikatsiya MMR: ponyattya pro aktyvne 
vykorystannya [System classification of MMP: the concept of active use]. Prykladna 
heometriya ta inzhenerna hrafika [Applied geometry and engineering graphics], 
vol. 87, рр. 182–188. (in Ukrainian)

9. Vanin V. V. (2014). Kompyuterne heometrychne modelyuvannya yak 
isnuyucha osnova avtomatyzovanoho proekuvannya ob’yektiv mashynobuduvannya 
[Computer geometric modeling as an existing basis for automated design of 
mechanical engineering objects]. Suchasni problem modelyuvannya, vol. 2,  
рр. 22–25. (in Ukrainian)

10. Pilipaka S. F. (2013). Konstruyvannya sferchykh kryvykh u funktsiyj 
naturalnoho parametra [Construction of spherical curves as a function of a natural 
parameter]. Bioresursy ta pryrodovykorystannya, vol. 5, no. 3–4, рр. 57–62.  
(in Ukrainian)

11. Korchynsky V. M. (2011). Klasyfikatsiya heometrychnykh form ob’yektiv 
na bagatospektrovykh rastrovykh zobrazhennyakh [Classification of geometric 
shapes of objects on multispectral raster images]. Prykladna heometriya ta 
inzhenerna hrafika, vol. 88, рр. 116–120. (in Ukrainian)

12. Lodi A. (2002). Two-dimensional packing problems: a survey. European 
Journal of Operational Research, vol. 141, рр. 241–252.


