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MATHEMATICAL MODEL AND SOLUTION
OF SPATIAL CONTACT PROBLEM FOR PRESTRESSED
CYLINDRICAL PUNCH AND ELASTIC LAYER

Yaretska N. O.

INTRODUCTION

Mathematical modeling and research of problems of contact
interaction of pre-stressed solids is quite relevant in our time.
Confirmation of this, is the speech titled «On the implementation of the
target program of scientific research of the NAS of Ukraine» Reliability
and durability of materials, constructions, equipment and structures»« by
Leonid Lobanov, the Academician of the NAS of Ukraine which took
place on December 09, 2020'. Considering this fact, it is important to solve
the problems of contact interaction of deformed solids dealt with load
transfer in constructions, structures and parts of machines, which related
with the presence of initial stresses in solids according to the law of
division of contact stresses and displacements.

Contact problems are an important part of the mechanics of a
deformable solid and form the theoretical basis for calculations for the
contact strength, stiffness and wear resistance of mobile and fixed joints.

The applied needs of natural science, modern technology and the latest
technologies in recent decades associated with the necessity to predict the
contact behavior of various designs, stimulated the development of various
mathematical models and methods of contact mechanics of bodies with
different properties?.

One of the important factors in the contact interaction of bodies is the
influence of initial (residual) stresses. Despite a significant achievement
in the development of contact problems, nevertheless the issue of taking
into account the initial (residual) stresses in the contact interaction has
remained almost completely undeveloped until recently. There is known,
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that almost all elements of the construction have initial stress. It can be
caused by various reasons, for example, by technological operations
conducted in the manufacture of a variety of materials or by assembly of
a structure. In the case of composite materials, the initial stresses, as a rule,
correspond to stresses along the reinforcing elements. In the earth’s crust,
they are formed due to the action of gravitational forces and technical
processes. They must be taken into account when solving the problems of
deformation of soils (especially frozen ones). In addition, in elastoplastic
bodies, internal residual stresses can also be present after removal of loads.

In the general case, consideration of the initial (residual) stresses
requires the using of the apparatus of the nonlinear theory of elasticity?,
but for the sufficiently large initial (residual) loads, one can confine
ourselves to its linearized version®.

Therefore, this article offers the mathematical model and the solution
of the contact problem about the pressure of the pre-stressed cylindrical
punch to the elastic layer with initial stresses. The study of the problem
carried out within the linearized theory of elasticity® without taking into
account the forces of friction.

1. The problem’s prerequisites emergence
and review of literature sources
Linearized theory of elasticity for the bodies with initial (residual)
stresses as the linearization of the nonlinear theory of elasticity® was first
proposed in monograph’. Also, in his work® the author, using
considerations of a physical nature and not always strictly adhering to the
principle of linearization of the nonlinear theory, developed the theory of
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incremental deformations for the bodies with initial stresses. Nevertheless,
a simplified version of such theory based on a physical nature was
considered by Cauchy (XIX century). Today the results of the works® are
completely based on the linearized theory of elastic bodies with initial
(residual) stresses.

The fundamental results of the linearized theory of elasticity were obtained
by academician Gusem A.N.20, For the first time, he solved a number of
contact problems for compressible and incompressible bodies by one of the
most effective approaches for materials with an arbitrary form of elastic
potential and homogeneous initial (residual) stresses. This approach is based
on the theory of the function of a complex variable for plane problems and
potential theory for spatial problems. Further development of the theory of
contact interaction!! of bodies with initial (residual) stresses was obtained in
the works®. A general analysis of the main methods and the best known
results in all directions of the contact interaction of bodies with initial
(residual) stresses is presented in review articles!®.

Allowance of initial (residual) stresses within the linearized theory of
elasticity leads to a new formulation of the problems of interaction of
deformable solids, which significantly differ from the formulation of the
problems of the classical theory of elasticity. Taken into account the
problems when the initial (residual) stresses of the system of basic
differential equations, the expressions of determining the components of
the tensors of the stress-strain state and the structure of the boundary
conditions differ from the corresponding systems of equations and
expressions of the classical theory of elasticity, nevertheless, in their
structure and nature they are similar to ordinary contact problems. Thus,
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from the above, it follows the possibility of using many fundamental
results and methods of the linear theory of elasticity.

The first equations of the linearized theory of elasticity of deformable
bodies'# were obtained by linearizing the basic relations of the nonlinear
theory, taking into account the physical characteristics of the materials;
these results are obtained for small subcritical deformations in Lagrangian
coordinates, which coincide with the Cartesian coordinates in the
undeformed state. Later the main relations were written in curvilinear
coordinates using the tensor analysis®®; equations in displacements were
also obtained, for which in a homogeneous subcritical state some methods
for their solution are considered.

A modern analysis of the approaches to constructing theories and basic
results that are applied to the three-dimensional linearized theory of
elasticity of deformable bodies and the three-dimensional linearized
theory of the propagation of elastic waves in bodies with initial (residual)
stresses is presented by the generalizing publication, respectively®6. With
the using of approaches of the modern type!’, modern analysis of the
results is performed for a wide range of problems of the linearized
mechanics of deformed bodies, namely:

1) For problems of the contact interaction of elastic bodies with initial
(residual) stresses?®;

2) For the stability theory of the local equilibrium state of black rocks?®;

14 Guz A. N., Guz I.A The stability of the interface between two bodies compressed
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roots. Int. Appl. Mech. 2000. Vol. 36. Ne6. P. 759 - 768.
https://doi.org/10.1007/BF02681983.
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17 Tysp AH., Babuu C.IO., Tmyxo IO.Il. Cratnka ¥ AMHAMHKA YIPYTHX
OCHOBaHHI ¢ HaYaJIbHBIMH (OCTATOYHBIMH) HaNpsOKeHUsSMH: MoHOTpadus.
Kpemenuyk: «Press — Linex», 2007. 795 c.

18 Guz A.N., Babich S.Y., Rudnitskii V.B. Contact problems for elastic bodies with
initial stresses: Focus on Ukrainian research. Int. Appl. Mech. Rew. 1998. Vol. 51.
Ne 5. P. 343-371. https://doi.org/10.1115/1.3099009
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roots. Int. Appl. Mech. 2000. Vol. 36. N 6. P. 759-768.
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3) For exact solutions of plane mixed problems of linearized mechanics
of deformable bodies?;

4) For non-destructive ultrasonic methods for determining stresses in
solids?!.

There are also a number of other generalizing publications about
linearized mechanics. Moreover, the works mentioned above are only
fully or partially related to the subject matter of this article. More widely
the history of development and the range of problems of the linearized
theory of elasticity are presented in?.

Thus, the development of effective methods for calculating the stress-
strain state with allowance for the initial (residual) deformations within
the framework of the linearized theory of elasticity is an actual and
important scientific and technical problem.

Today, in accordance to the problems related to contact problems for
elastic bodies, results have been obtained on a wide range of issues. They
are represented by works®. There are also a number of general
publications?, which are fully or partially related to the subject of this
study. Despite significant achievements, the number of studies on the
contact interaction of prestressed bodies is relatively small.

A rather detailed review of the work of rigid stamps (including ring
ones) associated with contact pressure in the case of absence of initial
stresses is given in the monograph?.
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The contact interaction of rigid and elastic stamps with prestressed
bodies is presented in%. Moreover, either the elastic potentials of a
particular structure are considered, but also the problem is considered in a
general form for compressible (incompressible) bodies with the potential
of an arbitrary structure on the basis of the linearized theory of elasticity.

The influence of initial stresses on the contact interaction of a rigid ring
stamp on an elastic half-space with initial (residual) stresses is presented in?’.

In this paper, the investigation is carried out in a general form for
compressible and incompressible bodies for the theory of large initial
deformations and for two versions of the theory of small initial
deformations for an arbitrary structure of the elastic potential.

2. Statement of the problem,
basic relationships and border conditions

In the study of the contact interaction of solids with initial stresses, we
will distinguish the following states of the body: 1) non-deformable
(natural) — there are no deformations and stresses; 2) deformable (initial,
main) — there are initial (residual) deformations and stresses; 3) state of
perturbation. All values that will relate to the deformation state as in 28,
will be marked with the upper index "0", and the values of the perturbed
state as in 2° — stroke. The second and third states are the equilibrium states
of the solid or its movement. They can be described using the nonlinear
theory of elasticity of finite, first, and second variants of small initial
deformations. Moreover, for the first variant of the nonlinear theory of
small initial deformations, assumed that the relations between the
elongations and shifts can be neglected because they are smaller than one.
For the second variant of the nonlinear theory of small initial
deformations, except the assumptions of the first variant, is added the
assumption that the deformable state of the solid can be determined by the

% Aleksandrov V. M. , Arutyunyan N. Ky. Contact problems for prestressed
deformed bodies. Soviet Applied Mechanics. 1984. Vol. 20. Ne3. P. 209-215.
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geometric linear theory, and in comparison with the one, it is possible to
neglect the components of the vector of displacement of points of the solid
in the initial state, that is, 5, + oU] /ox, ~ 5, , where §, — components of a

metric tensor in a non-deformable state.

In addition, the quantities of the third state will be described as the sum
of the values of the deformable state and their corresponding
perturbations, which will be considered smaller than the values of the
second state.

The ratio for the third state is called the ratio of linearized elasticity
theory for solids with initial (residual) stresses, when their linearization to
subtract quantities that correspond to the deformable state of the solid.
That is, if z=f(x) — some ratio of nonlinear elasticity theory, so the ratio of
linearized theory will look as z ~ x(df /dx) .

X=X

/Rl

For the study, we use the coordinates of the initial deformed state (yi,
Y2, ¥3), which are related to the Lagrange coordinates (X1, X2, X3) (natural
state): yi=AiXi (i =1,3). Here Ai (i =1,3) are the elongation coefficients
that determine the movement of the initial state A, = const (i =1,3). The

y3 axis is directed along the normal to the contact area.

Suppose that the initial states of the contact solids are homogeneous
and equal, and elastic potentials are twice continuously differentiated
functions of algebraic invariants of the Green deformation tensor®..
Materials of solids, that we consider isotropic compressive or
incompressible with an arbitrary structure of elastic potential.

All quantities related to the elastic cylinder are denoted by the
superscript "(1)," the layer —"(2)," and the bases — "(3)."

In the study that we’re considering elastic isotropic solids (compressive
or incompressible) with an arbitrary form of elastic potential. In the case
of orthotropic solids, we assume that elastic-equivalent directions coincide
with the direction of coordinate axes in a deformable state y; (i =1,3). Let
the initial deformable state be homogeneous and the contact area of the
elastic solids be contained in the ys=const plane. Let's assume that the
initial stresses operate along the contact zone.

30 I'y3s A.H., Pyanunxuit B.b. OCHOBBI Teopun KOHTAKTHOTO B3aMMOJAEHCTBUS
YOPYTHX TeJ ¢ Ha4allbHBIMA (OCTaTOYHBIMHU) HATIPSDKEHUSAMHU. XMEITbHHUIIBKUMN: BUL.
[IIT Mensank, 2006. 710 c.

a I'y3p A.H., Pynaunxwii B.b. OcHOBBI TeOopHH KOHTaKTHOTO B3aUMOJAEHCTBUS
YOPYIUX TeNl ¢ Ha4aJdbHBIMHU (OCTATOUYHBIMH) HANPSDKCHUAMH. XMEIbHULBKUNA: BU.
ITIT Menbuuk, 2006. 710 c.
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Since the initial stresses are not taken into account in linear mechanics
of materials, it is possible to apply the general nonlinear theory of
elasticity 3. In this case, it will be quite difficult to get the solution in the
available form. Therefore, with the significant amount of initial stresses,
it is better to use its linearized option.

Thus, suppose that the following provisions®®, will always be met,
which are fundamental to linearized elasticity theory:

1. The contact interaction of an elastic finite cylindrical die with initial
stresses with a pre-stressed elastic layer occurs after the initial stressed state.

2. An additional external load (relative to the initial state) acts on an
elastic cylindrical stamp, causing much less disturbance of the stress-
deforming state in a layer with initial (residual) stresses compared to the
corresponding values of the initial stressed state.

3. The initial stress-strain state of the bodies of contact interaction has
such a structure that in the area of their contact it can be approximately
considered homogeneous.

4. The solution of the linearized problem of elasticity theory on the
contact interaction of a pre-stressed cylindrical die with an elastic layer
with initial stresses is the only one, that is, the condition is met,

The above provisions make it possible to apply linearized elasticity
theory to solve this problem. Note that in particular the second position
may be violated in the vicinity of the points of change of boundary
conditions, in which contact stresses rise to infinity. Detailed discussion
of this phenomenon in the theory of contact problems of linear and
linearized elasticity theory is performed in the works®®, the conclusion of
which is as follows: in solutions of contact problems for elastic and rigid

bodies, peculiarities of power order arise O(p"y), where p — distance
from point to contact boundary, y — the parameter expressed from some

82 Guz A. N. Nonclassical Problems of Fracture/Failure Mechanics: On the
Occasion of the 50th Anniversary of Research (Review). Ill. International Applied
Mechanics. 2019. Vol. 55. Ne 4. Pp. 343-415. https://doi.org/10.1007/s10778-019-
00960-4

3 I'yss A.H., Pyaaunxuit B.b. OCHOBBI Teopun KOHTAKTHOTO B3aMMOJAEHCTBUS
YOPYIHX Tel ¢ Ha4aJdbHBIMU (OCTATOYHBIMHU) HaNpPsDKEHUAMHU. XMETbHUIbKUM: BU.
1T Menbnuk, 2006. 710 c.
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transcendent equation® depends on the elastic constant bodies in contact
and the structure of the elastic potential. At such points, the stress from the
contact interaction of bodies of physical content is not borne, but also the
calculation of the integral characteristics of contact problems has no effect.

So, formulate the problem: Consider the elastic cylindrical stamp
(Figure 1.) of radius R and height H with initial stresses, squeezed into the
elastic layer under the action of force P after the initial deformation state
occurs there.

Fig. 1. Cylindrical stamp, layer and base with initial stresses

The thickness of the layer in the initial deformed state is related to the
thickness in the undiformed state by the ratio h, =2,h,. We will count that
the external load is applied only to the free end of the elastic die, under
which all the points of the stamp move in the direction of the symmetry
axis ys by the same value ¢. We believe that the surfaces outside the
contact area remain free from the influence of external forces, and there is
no friction in the contact area, and the movements and stresses are
continuous.

Suppose the initial state of the bodies is homogeneous, and the ratio®’:

Yo =Xy +U2, US =8 . (L —DAYy; . (i, m =1,2,3)

36 I'y3s A.H., Pyanunxuit B.b. OCHOBBI Teopun KOHTAKTHOTO B3aMMOJAEHCTBUS
YOPYTHX TeJ ¢ HaYalbHBIMA (OCTaTOYHBIMHU) HATIPSDKEHUSIMHA. XMEJIbHULBKAN: BH]I.
[IIT Mensank, 2006. 710 c.

37 I'y3p A.H., Pynaunxwii B.b. OcHOBBI TeopHH KOHTAKTHOTO B3aUMOJAEHCTBUS
YOPYIHX Tel ¢ Ha4aJdbHBIMU (OCTATOYHBIMHU) HaNpPsDKEHUAMHU. XMETbHUIIbKUMI: BU.
[T Menbnauk, 2006. 710 c.
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Then the basic equation in displacements for compressible bodies has

the form:
LhoUq =0, Ling = @jjop © /aylayﬁ (i,m a, B =13 1)

and for incompressible bodies together with the incompressibility
condition:

Lr’notUot +q(,xm ap’/ay(x = Ov Lr,mx = K;maB az/ayiayﬁ , (2)
f auj/ayi =0, gj =A%, (i, j, m, a,B:TS).

Expressions for determining the components of the stress tensor for
compressible and incompressible bodies are written as:

, ouU ou,,
Qij = (’)ljuB ay QIJ uot[} 6 +q|J P,

Ojjap = }le g Oijap s Kijap = mKijaB
where o, —the components of the fourth order tensor of the elastic
moduls,

p=0q)" {[kllll = MGy (hsgs) ™ (Ryys + ‘~<|3|3):| A+ Ry 3 0°/0 y32} *loyi

N_e2_,n B_p _

At homogeneous initial stresses 0 =0 #0i Sp =00 Ay =Ry %
solutions of equations (1), (2) represent through cylindrical coordinates (r,
6, zi) as solutions of the equation:

(A +&7 0 oy5)A +ef 0% [0y5)T =0, ®)
where A, =3%/ar? +rto/er .
Take into account the condition of existence the only solution of

linearized theory of elasticity for compressed and uncompressed solids®8,
there are two variants to represent the general solution (3): the case of

equal radicals (&5 = &%) and the case of different radicals (&7 # £5).
In the case of equal radicals of equations (3):

L=+ v (A +€70/057)7, =0, (8 +€70%/057)7,=0  (4)
In the case of different radicals of equations (3):
X=X+ X2 (Al +&5 82/6 y\’sz)fu =0, (Al +&7 82/8 y32)7~62 =0 (5)

szq[i

38 I'y3p A.H., Pynaunxwii B.5. OcHOBBI TeOopHH KOHTAKTHOTO B3aUMOJACHCTBUS
YOPYIHX Tel ¢ Ha4aJdbHBIMU (OCTATOYHBIMHU) HaNpPsDKEHUAMHU. XMETbHUIBKUM: BU.
[T Menbnauk, 2006. 710 c.
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Harmonic functions %, (i=1,2) present in the form of sum of the two
others harmonic functions:
7~(| =D, + D, (6)
X2 =Dy +Dp, (7)
Which are the solutions of differential equation by Laplace:

o la , & .

_?4';5 fas (ks.lsl_laz) (8)
Partial solutions (2.38) — (2.39) of differential equations (2.40), take

into account their limitations if r = 0, will find the dividing of variables

(the method of Fure)* present as:

Vo, =0, Vv’

q)g,' = R[jZ/,, (l,.] = ]32) (9)
The solution is @, :
D, = R,(rZ,,(»y), (10)
Substitute (10) in (8) and divide by v’R,,Z,, , find
1
Ry +=R,
r —_Zu _,2
V,-2R11 le Yk 1 (11)

here y2 is the eigenvalue of the problem (constant).
Get the following equations
R+ fan - V?YiRn =0, Z + YiZn =0, (12)
The first equation (12) is the Bessel equation?, the solution of which
will be written as

Ru(r) =Aldo(rowr) + ék Ko (14r) (13)
where [,(y,vr), K,(y,vr)— McDonald's functions are of the second kind,

A, I§k — uncertain coefficients.
The second equation (12) is an ordinary differential equation with
constant coefficients where solution is
Z,(vvz) = G sin(y,v,z)) + D, cos(y,13) (14)
Such as the solution of the first equation (8) has to be limited if r = 0,
so the constant B, it is necessary to compare to 0, because K,(0) = .

% Tuxomos A. H., Camapckuil A. A. YpaBHEHHS MaTeMaTHYECKOH (H3UKM.
Wznanwue 3, ucnp. u non. M.: Hayka, 1966. 724 c.
40 Barcon I'. H. Teopus Geccenesbix pynkuuit. Yacts 1. M., 1949. 798 c.
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In order for the solution (14) to satisfy the specific boundary conditions
of the problems which will be executed below, to solve the Sturm-
Liouville problem*! and find y2 . From here

@, = A, (v vir)S (v,v,2) (15)
where §(y,v.z,) =C, sin(y,v.z;) + D, cos(y,v.z;), (i=12).

The function @,, is the same as (10), only (11) will look like

1
R, +—R, "
RO =
where o? — another value of the problem (constant value).

Omitting calculations (12) — (14), obsessed

D, = Jy(0,r)S, (. 2;) (17
where S,(o,z,) = E sh(o,z;) + Fch(oyz), (i=1,2).

Similarly, we find solutions for the remaining functions (9).

Thus, the general solutions of the equation (3) for the cylindrical solid
depending on the radicals (4 -5) of the defining equation (3) are:

For equal radicals », = n, through ys

i|:A I (yvir)Si (v, y3) + (0, ), [ - J:| (18)

o {B"I(](W")Sl(ws) (@S, (avyﬂ

k=1

Where the general solution (4) will be:

-3 K 442 Bkj (18 (1 py) + Jo(oyr) [Sz (O‘C%J v, (“C%m (19)

k=1 1 1 1 1

And after replacing z, = 2>, (i=12):
vi

i AT, rP)S (azm) + Jo(a ) Sy (042)] (20)
i B, (yonr)S, (1) + o (o) Syl 2,)]

Z[(A +zB I o) (rizn) + Jo(ayr) (S (0,2)) + 2,5, (akzl))] (21)

For the different radicals », = n, of the defining equation (3) through ys

4 Bobuk O. 1., Bobuk 1. O., Jluteun B.B. PiBHsHHA MaTeMaTH4HOi (i3MKH:
HaByanbHUil nociouuk. JIsBiB:»Howuii ciT-2000%», 2010. 256 c.
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0

k=1 ]

0

X2 = Z|in10(’ka2r)Sl (vy3) + (0 r)S; [(>1:J/3]:I (22)
k=1 2
The general solution (5) will be:

©

s {Ak")(”“’)sl (1) + J0<akr>sz<a$y3>} \

k=1 )

(23)
2
And after replacing z, = y,v', (i=12):
X = i[Aklo(YkVW)Sl(YkZW]) + JO(OLkr)SZ((xkzl)] (24)
k=1

% = 2 [ AL ()8, (1,25v,) + o (0, ) S5 (o, 2,)]
k=1

©

5( = Z{[Aklo('}’kvlr)sl(’}’kzlvl) + BkIO(kazr)S|(YkZ2V2)] + (25)

+Jo (o, 7) [Sz(akzl) + Ss(akzz)]}
where S, =C, sin(y,v,z) + D, cos(y,vz)), S, = Esh(o,z)) + Feh(oyz,),
S, = Nysh(oyz) + M ch(0,z,), Ak, Bk, Ck, D, Ex, Fk, Nk, Mk—some constant
coefficients.

In a system of circular cylindrical coordinates (r, 6, z;), where
z=v'y, v,={n, (=12, nm=g,m=¢g2 such statement
corresponds to the boundary conditions:

1) Atthe end of the cylinder z, = v, ne v, = Ji,, (i =1, 2):

U =— OV =0, O<r<R) (26)

2) On the edge of the elastic layer in the contactarea z, =0, (i =1, 2):

w =u?, O =08, O =05 =0, (0<r<R) (27)

3) On the edge of the elastic layer outside the contact area z, =0,

(i=12):

12 =0, 057 =0, (R<r<wx) (28)
4) On the side surface of the elastic die r=R:
QM =0, Q=0 (0<z <HV" (29)

5) On the lower surface of the layer, z, = Ay =—Hv!, (i=1, 2):
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w? =0, u®=0, (0<r<ow); (30)
Equilibrium condition

P=—27R*[ pQ¥ (0, p)d p, (31)

which establishes the connection between the settling of the end and the
equivalent load P.

Adding elementary solutions (which also satisfy the harmonic equation
(8)) to the results (18) — (21). The solution of the problem (26) — (31) will
be searched as:

For equal radicals », =n, :

o

X = A4z + B, +Cg 3r’ - 2212) + Z[Aklo(“/kvlr)sl (vezv) + Jo(akr)Sz(akzl)] (32)

0

% = Az + By + Cz,(3r* = 220) + D [ By (y i) S (vizvy) + J o (o) S5 (o, 2))]

k=1

General solution ¥ =%, +vz;%, looks like:
%=1+ v,z,)[Aozl + B, +Cyz, (3r7 - 22; )J + (33)

+Z [(Ak + V% Bk) L,ynin)Si (g + J ooy r) (S2(O('kzl) + vlzlS3(akzl)):|
=

For the different radicals », = n,

L= AG -22) + Cr,G3r' = 22) + Y [AL, (v (1,29 + (@S, (,2)] (34)

%o = A =227) + Cz,(3r* = 223) + D [A o (v, vor)S (1, 259,) + o (0, 1) S5 (01, 2,) ]
k=1

General solution ¥ =%, + x, will be:
%=1 (24, +3Cy(z, + 2,)) = 24)(2] + 23) - 2C (3] + 7)) +
+Z {[Aklo(YkVIr)Sl (izv) + BkIO(kazr)S1(VkZ2V2)] +Jo (o) [SZ(akzl) + S}(akzz)]}
k=1
where A, Bo, Co — some constant coefficients according to the boundary
conditions (26) — (30).

3. Analytical method of solution
Satisfying the boundary conditions (26) — (30), to determine the stress
and strain state in the elastic cylinder, where n, =n, will get the general
solution of the defining equation (3):
>z=o,5s{6;1(r2—zf—zi)—xo[rz(eg1+(2Hee)’1<zl+zz))—egl(zf+z§)—(2Hee)’1(zf+z§)]}— (35)
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—i b{ SOMIO(kalr)Sin(ykzlvl)+IO(kazr)Sin(ykZZVZ) _Jo(akr)[gz(“kzo+S~3(°‘kzz)] Xk
k=L 1, (7 R)
And for the case of equal radicals M =", , the general solution (4) of
the defining equation (3) is:
7= g<v1z1(1+ 2)[ (m, ~1)* + o ((1-my) ™ ~2E@HO,) (3r2 ~220)) |+ (36)
< 1 (k) so(1 = 1,(vy,R))

+szz; o I:R(2Yk) h [H[l ’ (VﬁkR]l)(VlYkR) ]+ ZIJ

Lo sin(rz) + Jy(ois! (o) + 28y, 2)) |
where Jy(x), Iv(x) — are the Bessel functions of the real and imaginary
argument,
_1+m,
T 1+m

GG Vo & -G 3 -1
b =48R2~]o(uk)l: - :|(V1Hyk|1(YkV2R) [VW (2) ~visW, D))
7 +(1R)? ViSo pf + (1 VR)?

] ] 3 3
Bg =mn " +myn,7, O =my T +myVv,7

0

(€ —Cj)lo(viVjR) N 1-¢,
1.(viVjR) 7ViR

W(j)= v 0, = E(8m(l+ H)m' —4HW' + (1-m)R°H '),

&= {031111(’311%2; e = {ksﬂ)i133mi0311%2ni1; (i=12)
U = ’ ’ =1 . i ’ ’ r—. —1. o

Mt (Ag0s3) 1(‘<1133 + K1313)K11%21 (1433 — K3113)'%1%2 N; Y

Y = o () vidoo (1ash (o Hv Yeh(oy, Hv') +

ity [ (L + my)sh? (o V) [ 1p8h(on HV]') + 1y ]+

+1, [(1 + m)sh* (o Hv; ) | tpsh(ay HV') + 1, |+ ch(oy Hy;') x
1 -1 -1
sch(au VY t,ch(a, Hv; )[cosh(onkHvl )+ ¢ (1= ch(o, Hv, ))] +
+c,(1 + my)sh(a, Hv, " )(1 -

1\ bty Sh* (o Hv ') +
o) [ [
+ (L + m)sh(ou Hv;") (1,,ch(o, Hv; ') + €5, + znsh(akHv;l))}} +
+¢, (ch(oy Hvy') = 1) [ fch(a, Hv ') +
+(L+ my)sh(a, Hv') | + sh(o, Hv') [ eytoch(ou Hyp ') tz4sh(ckav,’1)J> ,
S,(a,2) = Rsyui'ch(u, z,R™") + EXsh(u,z,R™),
Sy(a,2,) = —sh(u,z, R = M©ch(n,z,R"), M*® =M _N;', E® =_EN;".
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Then the expressions for the components of the displacement vector
and the stress tensor for the cylindrical punch will be sought as:
For n =n,:

Ur® =0,r(2H86) M0+, {Vib:«(xk) [50 1 (V2R (1o R)) Vil (Vg 1) €08(vy v;) =V |y (Vi ) €05y szz)] +
k=1
2 g -1, & —1
4oy (o) (e ) + s (22 )

| 1 <
us® :*8{“ %o {Te [7”‘121 L2 j’l}}’z‘,{‘lﬁlﬁk{ LnR )’”Uo(Yler)Sm(YkZlVl) m, o(Yszr)S'”(Ykzzvz)}
6 k=1

L} n, 1 (1 viR)
S S
+0L§J0(0ckr)[ml 2 (o) + my 3(°‘kzz)]}xk
M ny

0 _ _& |1, s

33 *C44(1+ml)|1< HO, X{v1+vj (37)
_i le3b3(k) { 71(”\/22)) My Lo (yiVar) €0S(vi 23Vh) — SNa Lo (v VaF) €0S(v szz)} +oigdy (Olk")[is4 (\(ijl) + Ssloy) (:kzz )]} Xk >

1 2

1D = Cpy (14 my) Y {soyﬁba(k) [vz 11 (rvar)sin(rczaV;) ~Va by (rev2R)( (iR (rioa) sin(rzavy) | +
k=1

+ oy (o) [nflgz (onzs) +on "S5 (enc 22 )J} Ak
For n=n,:

4 F) 1-1 R
U:m= € . X ZX b EARACERY! 1+ w + vz, fcos(y,vz,) +
Ho, vI vy, RI(vy,R)

+w -J(a kr){ (S (OLkZ|) + VIZIS5 (akzl )) - S3 (akzl ):|}> (38)

Yk
Ui g<(m,2 ~ 1y [ 1= 2E(HO,) (2 =227 + 4myz, (v +2,)) [0 +
i 0, 5R*6Fy, Iy (y,vr)
2% . .
=™ |:(H(1 +8(1 = L, vy, R) vy, RI (v, R)) 1) + vlzl)ml sin(y, vz, +
H(1 = my) cos(y, v,z )YZ]:| = Jo(o )’
|:’nlak (Sz (o) + AN (ouzy )) +(m, = w8 s (g )}
W= C,e <—8Evl(H92R2)—1XO [(1 +m) b (v +z)+(1+ mQ)lzz,J +

+i % {0’ Sszl(k)yknllo(ka]r) |:(1 +m, ) Ly, ]
= (H (1+ 5,1 = L0y, Ry, RE vy, R ') + v,2, ) cos(y,mz,) +
+(1+ m,) 1, sin(y,v,z)] - aJ,(a,r)
[(1 + ml)lﬂkvfl (SA (002,) + Vlzlgs (akzl)) +(1+ mz)lzjx (akzl)]}>
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(1+m)y,
4Er(1+m) 2 R

0)'=Cpe| ———= 1y vb () s,(1- I,(vy,R
3 4 Hez Z 2 k k H l+w *V\Z\ Sin(ykvlzl)7
vy, R[L(vy R)

- (1 + mZ)COS(kalzl):| + &‘Il((’"kr)
v,

1
I:ak (l + ml ) (SZ (O(‘kzl) + VIZISB (ukzl )) + (1 + mz) SS (O(‘kzl ):|
where 6, =v;* +v;',
S, (o z) = RPem? [ ch(en zy) —cth(u v )sh(oyz,) |, S, (o 2) = stuf [ shez,) —cthu v eh(oz) |,

R? _
Mo eth(ua s )sh(on ) —ch(@2,) ]| Sloz,) =25 [cth(uklvz Jeh(ot,2,) = sh(oyz,) |
S AT

HieSo

The stress and strain state in the elastic layer with initial (residual)
stresses is determined from*? through the harmonic functions in the form
of Hankel integrals. Satisfying the third condition (27), the second — (28)
and the condition (30), after the number of transformations will have

for the different radicals m, =#n,
uf® =-T2(Q5 S KestD), w® =-my T (Q% 71 KD3 551511 (39)

i) = Cay @+ mOURTT (L 83K 57570)

(%) = Cyp (@ my)s5 (WR) T3(Q% S1KbLLY)
n=n,.

Sy(oy2,) =

For the equal radicals
u® = e(m0,) " T(QL; 85 No: K1)
u? = me(n0,) " T(Q ;S NG KLss,) (40)
12 = (1+ my)el,Cyy (0, R) ' TH(Q; 875 N KL 5)
D — (1 + m,)eC,, (n0,Rv,) ' T'(Q; S1; N} Kl s,)
m - mv Vi I,
:77 S, =—=—, S§;,=S§,—, S=S,—=
where s, m 2=y, BT, o),

. _— 1& - 1& -
T3(QQ;SSH;K;Z:Bl:Bz;ll):;ZC,- [Ilﬂil(SJ-”WI;1;0;Bl:Bz:O)TZaiQ?(S,-"W:h;O;Bl;Bz;ki)}
j:O i=1

_(Xo 1){1Qn1(3n 10; Blaﬁzvo)"'zagnl(sn ;h;0; B1 BZ’kI):|

i=1

42 Slpenpka H.O. Po3B’s30k KOHTakTHOI 3a/adi Ui TONEPETHBO HANPYKEHHX
OWIIHAPHYHOTO HITAMIIa Ta HIapy, IO JISKUTH 0e3 TepTs Ha OCHOBI 0e3 MOYaTKOBUX
HampyXeHb. Bicnux 3anopizvkoco  nayionanvhozo  yisepcumemy.  Dizuxo-
Mmamemamuuni Hayku. 3amopiioks: BumaBuuuwmit mim «[embBeruka». 2021. Ne 1
C. 90-100. https://doi.org/10.26661/2413-6549-2021-1-11
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SGGAZXJLQHI(K 1“JB1B270)+ Zain(K h;Hj;Bl;BZ;ki):|
3 j-1 i=1

Q2(("t, 1 k,2,0) = k[l:”m [%p,—t%+6ji o [B,u,i+i+6]+ [ [E,M,—i—lwﬂ—

t'"tR Ry t'" R Ry
r z [P 2 hy fn [ P z, h
S I AT S ) L AT SPRLL ST Y L S +0
{m(t MR "M R tRV, "ePTR tRV,
LLeou =0t
T QLS N K ksa) = (1+ a,) (1= %) - QL (87305 230) —

~A Sl (sy, 0k a50) -

€ g J+m
o 2

kaku’ (K s ksa;0) — MXOQL(NZQ;O;k;a;OM
=1 2

s

2 o ©
o, DR 20 e (K iy Rk, a;0)> 2 a (1= 1) (8730 ks a3 vye) -
=1

=1

2Am, -HR "0k o
e S /+m90kavl) %TXOQL(NmZ’O,k,a;Vﬂ)'F

21)R kzl: e ( K s iy, v R ks a; vlr)>

2
_% i Cal(sy
+e4; 1 (Ko s ksaswe)+ (m,
Qi(i"m, uk,0) = (4" - so)f"m (P 5 R - 0)+
+(4” - 2k)f"m (P2 (Rv)) " + Z,R™ - 0) +
+(4” - 2k)f’:m (p, w2h(Rv) " + R - 0)+
+(A” + 5, - 2k) L, (p.w, -5 R - 0) = 2R f"ml (P, -z R - 0) %
+(A4” - 2k)§" (p, w2k (Rv)" -z, R - 0) +
H(A” + 27, R )Lml (P, 2m(Rv) ™ - R - 0),

L0 (6,0,u) = L, (6. u), AP =s5(50—5,)(Sp +51) ", AP =250(sp —5)(Sp +25,)(Sp +5,) 7,
AP = h(sR) AP, ST (p32 j n'?sinne ", (mp)dn,

K (piws ) = fn”wo(n, w e, (mpdn,
0
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N, (p;z) = jn”w,(n, 0)e*"J,,(np)dn, C;" - coefficients of the division in
0

aline F(n), X*3 _some constants (i=0,1,2,...).

. n. m |
A value of coefficients "’ ir Caas

radicals:

i Das in the case of equal

/ / / / -1. /
_ (01117 = @513) (033 + @]313) 75 D. - ®y1225
- B e K

Mg (hags) s
I, = {‘”;3}13(03;331 + (0313 = ©)53) (@) 35 + (’3’1313)((’3’1111”14+ @)
K313 a3 Aags (K 1313— 133 ) (hay + Xagi) )5
_ {(@;133 — 033)(@] 153 + ©}33) 7
1,
I - {(03/3333(’”1 + 1y = 1) = @ 35m) (@l 5 (1 -+ my)) 7,
(3333 11+ O Mg = 206 1= 1 ) = 300G Ry 1) 2 13) 7

’ U U U ’ U U
Ot — D353 . Oiz31  Disis ~ Dizyi Ouizs + Dizs
’ ’ ’ ’ ' ’ ’ ’ ’
m = O35 T Op3p3 [ = ®y313 Op313 Oty + 033 C. = {‘91313’
e LI ' ' 4 =3
Mgy K, K3~ Koz Aygs K 1313 -
ny; I ; 5
A3, K 313 K 1313 Asgs + Mg
1
And in the case of different radicals:
! 1
Q) w
AR _ 13130 -1
D44—{, C44—{ ' m=(m +m,—m
K- K313
, ' , , ' , ,
Oy~ O3 © O 337 O 331 ® 33t O 4353
) ) s ) ) ) ) s
m = O 41331+ O 313 / O 1313 ® 1313 O 1+ O3
;= Py ' '
M4 n: K 1331 i K513~ K 1331 Asq;
(& ] f} [l
Ayqs K313 K 313 Mgy + Mgy,
for compressive solids:
’ U
’ ”? 0)31130)3333 " ’ ’ ’ ’ ’ 2 ’ 2
n,=c=* [c"— oo > 2c Oy O35 = Oy Dyg53 F O35, 0y;45 — ((Dlm + mms) ’

1331771111

for uncompressible solids:

2.0 2.2
A, -Gk Aq 20, - q
o 2 3 373113 P 313 . 3 3 4 4
nI,Z =c* ¢ - 7\,2 2 ’ ZC K]33[ - K3333 + 7\/2 2 KIll] }\, (K]I33 + KI313)'
lql K]331 lql lql

Using the solutions for cylinder (35) — (38) and satisfying third
condition (27) and second condition (29), find the eigenvalues of the
problem (26) — (31)
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for the case of uneven roots n, #n,:

K= 7'C(2||f|+1) y Oy ZHT; , A€ J1(P-k) =0. (41)
For the case of equal roots n,=n,:
o, :%, y, =2nkH™', (k=0,1,2,..) (42)

With the help of the first conditions (27) and (28) it is possible to define
the unknown function F¢n) of equal integral equations for different
radicals

[FeIM 3 tp)in= 1(), (o<1, [F(MImp)in=0, (0>1. (43
0 0
for the case of different radicals n, =n,
6) = (10-1-0, 3 o) + 2 | L G ()3, (np) ),
3 k=1 €o M
0 :Vl(mz _l)_mlso 93 :ﬁ(sl _SO)'
) n Y Vi
For the equal radicals n,=n,:
RZ
flp)= _8951 (] %o — 2(m, — ])?Xop +

2

+0, > 1o (1ep) + +0,5(m, — l)RZZ bl(")xklo(yklep)j
k=1

k=1

' oG, (mpxn

where 0, = m (s, — s,)v;" .

Moreover, for the case of equal radicals, the type of function G(n) and
quantity of k are determined from boundary conditions (26) — (31) and
tasks:

Task 1. For the layer with initial stresses lying frictionless on the non-
deformable base:

G(t)=(t —e' + )(sht)' P(t), P(1)=rx-shi(t+x-sht)', w=s,—s, t=2mv'. (44)
So, for the (44), itis possible to approximate the function by expression
So, for the (44) and n, = n, , it is possible to approximate the function

P(x) by expression
P(x) = 1-(8, + D' x(shx)™" —0,14x(5,(8, + 1)chx)™!,

where §, = s —s,.

Task 2. For the layer with initial stresses that is rigidly connected to the
non-deformable base:
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G(t) = (11 +0,5c’cht + (1 - 5,)sht) P(t), = (s, —5)(1 - 5) = (1= 5)(s, - 5), (45)
P(t) =1+ 0,5 + (1 — 5,)(s, — S)cht, {=hmv'.

Task 3. For the layer with initial stresses lying frictionless on the elastic
base with initial stress:

t+ (Bk(s, —sy) — ok (s —5,) +
¢ = +Bkt)sh’t + 0,5 (([3k(s1 —5)(s —5,)" — k) + (s —s,)) +

PGS = 9,)(5 = 5,)" +] tchzt} P(), (46)
+(ok, —Bk)(s —5,)7't
P(t) = (2(s — sy)ak, + Bk(s, — s,)t)sh’t — 0, 5(Bk(s, — s,) +
+(BA(s, — 5,)(s — 5,)" — k)t +
. (ak, —Bh)(s — 5,)7' 17)sh2t — (Bk(s, — $,)(s — 5,)" +
+(ak, —Bk)(s — s,) " Dicht,
And for the different radicals:
Task 1. For the layer with initial stresses lying frictionless on the non-
deformable base:
G(nh) = (sh(nh®,) + (s, — )k "sh(nh0_) + ch(nho ) —
—sh(nh,))(sh(nho.))™ P(nh),
P(mh) =1+ (s + 86 (sh(nho,)) 'sh(nho_ 1), «w=1+s,.
Moreover, for (47), in ni#n can be used even an approximate
expression for P(x)

P(x)=1-&(&67/0" + 1) sh(x07)(sh(x0))™" -
—0,28%%(1 + &2 07/0%) " sh(x07)(sh(x6*)) ",
where 0° =v,' v,

Task 2. For the layer with initial stresses that is rigidly connected to the
non-deformable base:

+(ak, — Bk)(s — SO)_IIZ) sht — (

k=1, t=hmy'".

(47)

(s, —5)(s, - 1) (s, +5)(s, +1)
G(nh) = 1432 2 - 2 ch(nho,) - =3 —"2 - - 2 ch(nho_) + P(nh).
+(s, — )sh(nho,) — (s, + 1)sh(nho_)
L+ (s, - $)(s, - D 'ch(mho,) )
P(nh) = =2 - 8,).
) [—(s3 — $)(s, + D \ch(nh6.) J L KA v es). (48)

Task 3. For the layer with initial stresses lying without friction on the
elastic base with initial stresses:
G(h) = (((s, = 53)(s — 53)Bk — sak,)sh(nho,) +
+((8, — $3)(S + 83)Bk + sak,)sh(nho_) +
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H((s = 53)" + 5;)0k; —Bk(s, — 5,))ch(nho,) —
—(((s* = 57) = 8;)k; = Bk(s, = 53))ch(nho_) +
+25 - s;0k)P(nh), «=1, (49)
Pmh) =2s - s;ak, + Bk((s, — 83)(s — 8;)sh(nhd,) +
+(8, = 83)(s + 8;)sh(nh6_)) —
—ak,((s = 5,)’ch(nhB.) + (s* = 53)ch(nh6.)).
In cases of tasks 2, 3 functions (45), (46), (48), (49) are quite huge,
which greatly complicates the calculation, so it will be difficult to calculate
the displacements and stresses in the future numerically.

Applying the reference formula to (39) leads to Fredholm's integral
equation of the second kind with relatively to the function F(n)

In the case of the different radicals n =N, :

F 2 © 0 © F

% = 7Tei[(m ~Dy(m.0)-0, ékao(n,ukag%G(uh)w (WU)dU} (50)
For the equal radicals n, =n, :
F 2 R -
% = —ﬁ[ (1= %) wo(n, 0) = 2(m, — D= xow (. 0) + 0,2 %W 1) +

+0, 5(m, — 1)Rzi P RTAC iykle)j + 2n"]u"F(u)G(uh)\u0(n, wdu (51)

1
where v, (x,y) = [t" cosxtcos ytdt ,
0

Satisfying the second boundary condition (27), the solution (50) — (51)
will researched by the method of consecutive approximations, taking the
function for a zero approximation

FO m)/n=2e(n05) " p(m),
where for the case of the different radicals n #n,:

p(M) = (10 —1)w0(n,0)—e4kikao(ukn).
=1

for the case of equal radicals n,=n,:

() = s((l o)W (1.0) — 20m, — DR, oy, (1,0) + 6,3 o (nu ) +

k=1

+0,5(m, = DR*Y_ b xw,(n, iwlR))
k=1
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The following approximations are determined by the formula
F(”(n) _g]f F(j—l)(u)
n T 0 u
The solution will be written (37) as

G(uh)Jy(mu)du

F= S FO(m). 52)

Note, that the process of consecutive approximations (52) converges if
h>1and %, >1,, , taking into account the studies conducted*?.

Satisfying the first of two boundary conditions (27) taking into account
the orthogonality of the Besselian functions J,(u,p), to determine the

constants x, (i =0,1,2,..) will be gotten the infinite quasiregular system
of algebraic equations

Stk + 2 Sakn =@ (k=012.) (53)
n=0
The coefficients of the system can be represented as:
where for the case of the different radicals n, =n,:

8o =1y —{1 *Zlf%(hu)\vj (U O)du} Son = { 04w (0, 1n) +— ZI%(hU)% 4, Hn)du:l
i=10

0:0,RE
sko—[ 04w (0, 1) += lel(w,_l(u )G (U,0)dU): 800 ==2=1 (54)

O3h 36 () [ LoV oo (1l W 2 2%
9, = 3k0NKI 2272 | Bk | _th 7k : _Z 0, < (U )G (hu u,0)du |:
k 2kRy; v, v, v, Wy - Wol Hk)+njz:IWJ—1( )G (hu) g (u, 0)

2 2035 Rt &
9kn :Tc|:e4\vo(ukvun) %Z Tontm T~ ZJ(WO(U HH)G(hu)\VJ 1(U “k)du)j|

-1 Tj=10
where for the case of equal radicals n,=n:

9, = { (”12 l)R2 ZJ.( 0(u,0)+2(mze_l)Rz‘Vl(”aO)]G(h“)‘Vf l(u,O)du:|;

0, T j=1y

Tt 26.xR

@, = l[l _ Eijﬂ(u,O)G(hu)\uH(u, O)du} 9, = IEACN) [ ® _ sM‘“} (55)
T

1 , 2
Son = n|:94\VO(OJ H,) + (m, ~DR 3 DR by, (0, iy,W R) + ZI[ Vot 1) +
=10

43 I'y3p A.H., Pynaunxwii B.b. OcHOBBI TeopHH KOHTAKTHOTO B3aUMOJAEHCTBUS
YOPYIHX Tel ¢ Ha4aJdbHBIMU (OCTATOYHBIMHU) HaNpPsDKEHUAMHU. XMETbHUIIbKUMI: BU.
[T Menbnauk, 2006. 710 c.
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(mz)

5 by (u, iy, v, R)] G(hu)y ;_(u, un)du} ;

2FE 2 2 &
m , Oy = ; |:\V0(0, Hk) + ; Z E'). \Uo(u 19 (hu)\ujfl(u, O)du:| ;

Jj=1

2 2 —DR? sin 2 °° <
o =— |:‘V0(Os ) + (m, ~1) uk J.( WWoll, 1) +
n 0, M 75863 =10

Sy =

e me)]G(hu)w, @, O)du}
2 DHR? . T
9 =—n{e4wo<uk,u">+(”‘l = D5 s i1 R+ nsG;,Z"([[ Woltt ) +

mu 2) B9, mv.R)jG(hu)w, (1, )l +
o LS R H GRG0 R) + 0= Ly (1,nR)) |
2x0; i up + v iR

where
05 = (V, +Vy8)nn, (M3 +mpv2)E) 7,

\V] 1( “n)

vi(nu,) :—njcosntdtj G(uh) cosutdu.

Calculating functions (52) and coeff|C|ents (54) — (55), where the most
of integrals are not finitely calculated, according to the complexity of G;
(i=1,4) . functions. So, starting the second approximation, subintegral

functions decompose into lines by degrees h', (i=1,..,7) which will allow
to calculate the coefficients of the system (53) approximated, then the
coefficients of the system (53) can be represented as:

for the case of equal radicals:

9, =" {(1 +0,'(m, — DR )(1+ 2Dy (nh) ") + 2nh’) " (4m, - DR D} (n0,) " = D, /3 + 200w ) +
2’y ((1+(m, —)R0' ) 4D}x = 2D, D,(37) " — 5(m, ~)R*D,(126,) ") - 2D, D,(3x°h*) ' (x +
+Tn(m, — 1)R20;' + 4D,) + 2(3nh®) " (480, + 23(m, — 1)R*)(1200,) ™" D, — D, Din (20, + 9(m, —

—DR)6;' + DX(3m)™") + 2(3nh’®)™

((sse2 +26(m, — 1)R*)(50,)"' D, D, +(5(m, - 1) R0, + 4D0n")D22) +

+3nh’) " (16(m, — )R> D D,(57°0,) ™" + 4(m, — 1) R* D} Dy(7*0,)™" — D,D,(30m)™" —
~(1920, +299(m, — 1)R*) D,(100806,) ")}
9 = 5 (0 )Q0kR) ! [, (Ry) " EX —sM® ], 9y, = 2E (x0,0,/R)";
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@ = {1=22" [ D' = (D,/3- 2D )(h ™ + 2D, (xh*) ") - D, D,(3reh*Y (1 + 4Dy ) + 231°) '
(D, /5+ DX(6n)" — D,Din?) +
+D,(18 %) (11D, + 4D7) — (45" (D /7 + D,Dyr/4 + DD} [2) |}
90, = 7 {0,000, 1,) + 0, 5(m, — Ry (0, v, v, R) +
w ! [ (DY () + 4DRGRIY 2, )0+ Dy k) )) (20,7 o) + (m, — DR B (i, ) +
#D,H) (20,5 K (1, 1,) + (my — DR BOR i, R)) +
+2D, D, (w*h*) " (1, ) (60,1, 5 (1, )75 (1) + (my = DR*BRP (., iy, W R)) +
+rh) ™ (160,07 Dy ()™ 1 (1, )5 (1) + 0, D, (6183) ™ (1,7 (1, )r () + 37 (w,)) +
Hmy = DR (Dyrs (s, 1, R)/24 + 2D, D11 (0, )5 (b, iy 0 RO )) +
WK (20018, 05° (Do D122, ), )L+ 2,) + 972 (1, ) + 20305 72 (w,)) +
+(my = DYRB" [6( Dy Dyri(u, )5 (1 1,9, R + 6 D31, (10, )" (1, 7,9, B)) ) +
S’ (20,41, (D360 (1575001, ) 18,) — o, ), ) +
+ Dy () (3D (), + Dy D 31+ 1, )i, ) + 3 (1)) ) ) +
+(m, = DRB" (D} D, (67 ) (1w, ) (1, iy, R) + D3 Dy ()™ i, s (0, ) (3 (1, iy, R) +
1,9, R0) = Dy 120 51, R))) ]
w, =2 {\Vo((l we) + 27 [ Dy 'ru,) + 407 (k) ' r(w,) + B2 (AD3m R () + Dy(6p) " Briu,)
—wri () + A7, (D, (12002) ™ (5ri () = 10u2r5 () + 1 () + 2D, D0m ' (15 (1,) — () ) +
HO0mSA®)" (3D, Dy(5r (1) — 10127 (1,) + 2037 (1,)) — 10 DE2Gr(w,) — 12k, ) +
+B0w ) ( Dy (Dy Dy G5y, + 101275 (1) + 31373 () = 10w DE 2rs(1,) — (1, ) +
+ Dy (1682) ™ 21 (w,) = 7 (w,) = 35007 (1,) — wir(w,) ) +
+2D,D,3muyh*) ' Bry(w,) — 2037 (1) + . H
840 =27 [0,y + 20m, — Dysin p, R(O,) ™" +20,(ne0,) ™ { D 'r(n,) + 403 () rw, ) +
+h7 (4D (w,) + Dy (615) ' Bry(w,) — 13 (w,)) ) + 2D, D, G i) Bri,) — 237 (1)) +
+HPw) " (D,(1201) " (5re(u,) — 10755 () + Wi (,)) + 2D, Dy (ry(w,) — () ) +
HO0mSH®) " (30, Dy(5r, (1) — 10k2r (1) + 2037 (11,)) — 10 DZ2Gr(w,) — 12w, ) +
+B0w ) ( Dy (Dy Dy 5y, + 101275 (1) + 31373 () = 10w D3 2r5 (1,) — (1, ) +
+ Dy (168u7) ' (21wyrs(w,) = 755 (w,) — 3507 (w,) — uzrl(un)))} +
+my, = )R (ne0;) " 5" { Dyh 1y iy, v, R) +
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+4D}(rh"Y iy, v, R) + 7 (4D]7n iy, v, R) + Dy(612)" (Briiv,v,R) — i (iv, v, R)) + (56)
+2D, D, 3mu k) Gry(iv, v R) = (v R)) + ()™ (D, (1200) 7 (Srgu,) — 10775 () +
+Hun () + 2D, D5 (5 () — s () + (90mu ) (3D, D, (5ry(w,) — 10p3r5(u,) +
+21r (1)) = 10D Bry(u,) — 1 (,)) + B0y ) ! (Dym (D, D, (5ri(w,) + 10ur5(u,) +
+3105(w,)) = 1002 D (2r5(1,) — 1373 (1)) + D(16807) ™ 1z () = 7r () —
=35 (,) - W)} |,
8, =-2n [eA\uU(uk,u") FI2K0,) SV VA (B (1, RE (0 R) + 5,01 = 1,1,y DG + 7 ViR +
+0,5(m, = DR*b 'y (. iv, 4 R) +20,(me0;) ™ { Dy r(w )ri(w,) + 405 (k) 1 ()i () +
+h7 (4077 (1, ) () + 0, 5D, (o w,))) + 2D, Dy(mh ) ()R (g, ) +
+h7 (D, /241 () + 2D, D3 R ()R (g 1)) +
H6mh®) " (D) Dy ()R (e 1) + 6 D3 (R (1, 1,) ) +
+h7 (203 Dy i n (w)rs ()R () + +
Dy D, (6m15) ™ 1 (e ) () = Dy /720 1 (g 1, )} +
+(my = DR?B (ne0) { Dok ri(w, ) Gy v, R) + 407 () ri(iy, R (1) +
+h7 (400 R Gy v R () + 0,505 (i, 1 R, 1) ) + 2D, D (mh*) ' 1y ()52 iy, 1 R, ) +
+h7 (D, /241, Gy v Ry ,) + 2D, Dy (w, )r ¥ Gy v Ro ) ) +
H6mh®) " ( Dy Dy ()i Gyvi Ry ) + 6 D3 r ()R Gy vy Ry w,) ) + b7 (205 Dy () ()
<t iy Ry, () + Dy Dy (67713 ) 1 Gy, v Ry, )1 () = D /720 g iy v Ry, )} |
for the case of the different radicals:
Ly 2 {Doh-' -h?(D,/3-2D}n")(h+2Dyr)
—D,D,(3m’h*) (n + 4D,) + 2G3k°) (D, /5 +

D,(187h®) (11D, + 4D2x™") — (15K7)! .
(Dy/21+ D,D,(120)" 19D, D (67°) ') + .| |

9, =w, = 21"

+DX(6n)" — D,Din) +

Dh'r +4DX(nh?)'r? +
=200+ 21| [ ) )
+h7 (405 (1) = Dy (3y) ' () +

D4H;2"3(Hn) + ] +
+2D, Dy ' (1) 3rs () — (1))
+23muyh®) " (Dy Dy 81, ) (1673, ) + 37 () — D3, ry () (1)) +

G ) (Do r ) (4D, /311, ) Bri, ) + 7 (1,)) + Do r(u, ) Briu,) = 4r3(m,)) -

~ D(1681) " Qliir(u,) = Tr(w,) = 35037 (w,) — W) + - | (57)

+2D, D, B ") 1 (1, ) 31 (1)) = 2r3(w,)) + By [
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8¢ = 04, S5 () kR [ Ly () eth(u, ;') = cth(udv ) |5 84y = 0,0, RE(kl)™;
Dy 'k () + 4D (k) (w, ) +
+h7 (40577 () - Dy(3u) () +
+2D,D,(3my; ) 1 () Brs(y) = 2n(wy)) + BR) !
(Daprs(ue) + 2D, D57 7 ()3 () = 15(1,)) +
+2G3mph) ™ (DD, /8 1w (A6 (1) + 3r () = D' () (y)) + BGuih’) ™

Do () 4D, D, /37 () (3rs () + (1)) +
oL L D2 ) Gray) — 4r3(,)

W, = 21 l:‘l’(l 0,,) + 2! {

] = D5 () + -}

D r(w) + 4D (rA) R () +
+h7 (A0 (1) - Dy(Bud) " 1)) +
+2D, D, Br) i) () Bri i) = 27, )) + (BA°y})
(D) + 2D, D5 1 () Brsiy) = 1(1))) +
+2D, D, Bl h*) " 1 ) Bri(iny) — 25, ) +
+BIW) ! (D) + 2D, D R ) Bry) — 1)) +
+2G3muihY " (D, Dy /81 ) (167311, + 31 (11,)) — D3 rs (o )rs(uy)) + Guih) ™

( D (41) 0Dy /313 )G + 7)) +
A )
Dy rs(p ) GBrs () = 4, (1))

G = 21" |:e4\V0(O= ) + 27! {

] = D5 () + -}

9y =21 |:_94‘U0(H,.9Hk) =205V, R(k) ™ D Tl +
m=1

20 D R (R (,) + 4D5 Y 1, ) ) + B (4D ()R () + 0,50 () ) +
+2D, Dy (xh*) ()R (o) + 17 (D, /241wy, 1,) + 2D, D5 i () (kg ) +
HOh) ! (D Dyri ()R (s 1,) + 6D s ()R (s 1)) +
+h7 (2D Dy(w ) F () (R (o) +
+ DID,6w° ) 1Y (e ) () = D720 gy m,)) + -} .
where
Rl = sinps n() =3, cosp, + Qup —3)sinpg; () = 0,4u) sinpy + g cospy — 1(1,);
7(1e) = 2/313(0, 4y, sin py + cos ) — Sp (g —3)cospy — Quy — 10y +15)sin,;
() = 2= pp)sinp, —2u, cospy; r(ke) = (ug — 125 + Dsinpy + (4p; — Dy cospy;
() = (W8 —30u; +360u2 — 720)sin w, + 6y, (1f —20u2 +120) cosy, .

. 6 3
) = Wj(ukin(un) . rs(un)?(uk); () = ACHIACHIN ’s(unj)rg(m) . Wﬁ(ukzr.(u,,);
Ky K, T Ho Ky K,

503

Fio(es 1) = H)r (), = 157 () (wOr w = 157 () r (w1 + 5 ()s ()R -
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D, = Tr”G(t)a’t. (58)

Find (58), which are the coefficients of the deviding (56). Thus (58)
can not be expressed by the elementary functions, then missing some
layouts, will be achieved

=3 % rm+1). 59
D, g(ki)’“‘ [(n+1) (59)
where k;,a, = const, i=0,1,2,...
4. Numerical analysis and numerical results
Determining unknown constants x; (i =0,1,2,..) from the system

(53), it is possible to calculate the stress and strain state in both the elastic
punch and the layer by formulas (35) — (40).

As a result, the solution is represented as rows through the infinite
system of constants defined from the system of quasiregular linear

9

algebraic equations. Moreover, in the system (53), the coefficients “k and

% depend on the structure of the elastic potential, the height of the elastic
punch H, and the thickness of the previously stressed layer, and the free

members depend on the radicals M,Ny

Take into account the asymptotic representations for Bessel functions,
W quantities, y and integral limitations y(uk, M), the system (53) is
quasiregular if A1>A«,, if the condition is realized

Caaly L+ my)(s—5p)(my (59 —5,)) ™ < {

Numerically, the quasi-regularity of the system (53) confirms Table. 1,
formed for the first eight values of the coefficients of the system, written
in the form

0, 36E(1—V2)71, JUIS CTUCIIMBUX TLIT;

0,48E, 11 HECTHCIIMBHX TiJ,

T == %/ Ao+ /% (k=012.)
n=0

The research concludes the numerical solution of the system (53) for
Treloar potentials (Neoguki solid) and harmonic potentials if the following
parameter values: k=n=32; v=v,=0,5; [=10; A =0,7; 0,8; 0,9; 1; 1,1;
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1,2; E=3,92. The algorithm is based on the reduction method and
implemented as a program in the Maple package**.

Table 1
Coefficients of quasiregular system of linear algebraic equations
o —94,/9

if— 1 2 3 4 — 5 6 7 8 o/
1| 067817 | 067816 | o 49'398 0 49'397 0.36871 | 0.36870 0.27'927 027'926 3.62:10°
2| 067814 | 067813 | 49'393 0. 49'392 0.36865 | 0.36864 | 0.27922 | 0.27921 | -3.39-10°
3| 067813 | 067812 | o 49'392 0 49'391 0.36864 | 0.36863 0_27'920 0.27'919 -1.26:10°
4| 067810 | 067809 | o 45389 0 49'388 0.36861 | 0.36860 0_27'918 027'916 -1.09-10°
5 | 067808 | 067808 | 4538 4o 49'383 0.36854 | 0.36853 0_27'911 0.27'910 6.72:107
6 | 067808 | 067807 | o 49'383 0 49'382 0.36854 | 0.36853 0'27'910 0.27'909 7.58:10°®
7| 067807 | 067806 | o 49'382 0 49'381 0.36852 | 0.36851 0'27'908 0.27'907 2.43-10°®
8 | 067789 | 067788 | o 49'352 0 49'351 0.36819 | 0.36818 0'27'875 027'87 . | 897100

The influence of initial stresses to the law of dividing contact stresses
and displacements for the problem of the elastic cylindrical punch pressure
on the layer with initial (residual) stresses in the case of harmonic potential
is depicted in Fig. 3, 5, and in the case of Treloar potential in Fig. 2, 4 and
6. Moreover, Fig. 5 presents tangential stresses that are most concentrated
near the contact zone.

The research concludes the convergence of numerical rows from the
(26) — (31). So, for the most rows found majors. Convergence of some
rows were quite difficult to prove analytically, but from the numerical
results it turned out that it is ensured by a monotonous decline of constant
X, (i=0,1,2,..)and |J,(u,p) |- But some rows are the part of the stresses
of the cylindrical punch expressions (37) — (38) in the points of change
boundary conditions change were found divergent, (because
Y- Xe - Jo(p) — o if k — o) but it is coordinates with the research®.

4 Speupka H. O. A. c. KNDS_CS_PZN. Komn'torepHa nporpama «Po3paxyHok
KOMIIOHEHTIB HampyXeHO-Ie()OPMOBAHOTO CTaHy [UISI OCECHMETPUYHOI CTaTHYHOL
3aj1a4i PO TUCK MPY>KHOTO LIMIIHAPHYHOTO [ITAMIIa Ha IPY)KHHUH IIap 3 TOYaTKOBHMH
(3anmmkoBrMH) HanpyskeHHIMI» Ne 54576; 3asBi. 05.05.2014; omy6mn. 01.09.2014,
Bron. Ne 34, 10 c.

45 I'y3p A.H., Pynaunxwii B.b. OcHOBBI TeopHH KOHTAKTHOTO B3aUMOJAEHCTBUS
YIOPYTUX TeJl C HaYaJbHBIMU (OCTATOYHBIMH) HANPSDKCHHSIMH. XMEJbHUIBKU: BUI.
ITIT Menbuuk, 2006. 710 c.
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Comparing the components of the stress and strain state of the solids
with the initial stresses with the corresponding expressions for an isotropic
solid without initial stresses, if zi= 0 was gotten the equation:

Uy(r,0) = k- U;(r,0), Qy(r,0) = k, - O4(r,0), (60)
where U,(r,0), QO,;(r,0) — displacement and tension under the punch,
squeezed into the layer with initial stresses; UL(r,0), Q%(r,0)

displacement and tension under the punch, squeezed into the layer without
initial tension; k, ks — coefficients that reflect the effect of initial stresses
on the contact stresses and displacement of the elastic cylinder and layer.

The dependence of change coefficients k, ks of equations (60) is
presented in Table 2. What shows that when the elongation coefficient
approaches to the surface instability values of the material, the movement
increases indefinitely, and the stresses go to zero.

Table 2
Variation dependence of k, ks coefficients

A, Bartene\lj;)-t}irr]:;laaz“anovych The potential of Treloar Harmonic potential

k Ks k Ks K Ks

0,5951 — — — - 0 0
0,6661 — — 0 0 1,7391 0,2332
0,6934 0 0 4,1602 0,2090 1,5396 0,3128
0,7 19,7913 44,3841 3,4487 2,9543 1,5061 4,7907
08 1,7088 2,6107 1,3285 1,2423 1,2446 2,3223
09 1,1653 1,3597 1,0774 1,0376 1,1166 1,4539
11 0,9328 0,8847 0,9583 1,0218 0,8533 0,7142
1,2 0,9048 0,8778 0,9176 1,0699 0,6306 0,5132
1,3 0,8961 0,9327 0,8687 1,1269 0,2329 0,3609

Checking the results on the reference tasks are represented numerically
in Table. 3, comparing the numerical values of force P, acting on the upper
end of the punch, if the given values of initial stresses and thickness of the
layer h with the case without initial stresses (allocated in bold).

Table 3
Numerical values of force P/eR
The M 0,7 0,8 0,9 1 1,1 1,2
potential of h
Treloar 16 | 1,4082 | 1,2487 | 1,2974 | 1,2315 | 1,2978 | 1,2043
4 1,4025 | 1,2456 | 1,2945 | 1,2296 | 1,2653 | 1,2022
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Minimum values of layer thickness h are presented in Table. 4, in the
case of harmonic potential

Table 4
Minimum layer thickness values h
A 0,7 0,8 0,9 1 11 1,2 1,3
h 1,54 1,25 1,02 0,83 0,67 0,54 0,42
t 1,49 1,27 1,08 0,83 0,65 0,51 0,41

For comparison, the values of layer thickness t are given when the
cylinder does not have the initial stresses. From Table. 4 it is visible that
the initial stresses affect the method of consecutive approximations.

CONCLUSIONS

Thus, take into account the given results of mathematical modeling and
the conducted research for potentials corresponding to the equal and
different radicals of the defining equation (3), the effect of initial stresses
on the stress-deformed state of the elastic cylinder squeezed into the elastic
layer and the base is that:

1. Initial stresses during compression lead to the decrease in the stress
force in the cylindrical punch and the layer, and during the stretching — to
increase them, in the case of displacement, everything happens vice versa.
That is, the presence of the pre-stressed state during the contact interaction
of elastic solids allows to adjust contact stresses and displacements
calculating the strength of parts of machines and structures. Moreover, for
the contact stresses, the initial stresses are dangerous in the case of
stretching, and for moving — in the case of compression.

2. The greatest impact of initial stresses is noted on the side surface of
the punch.

3. The thickness of the layer does not affect the nature of the initial
stresses, but only affects their values.

4. More significantly, quantitatively, the initial stresses act in high-
elastic materials compared to more rigid, but qualitatively their impact is
preserved.

5. The dangerous situation is if the initial stresses approach the values
of surface instability, as contact stresses and movements dramatically
change their values.

The influence of initial (residual) stresses found in the study is essential
for compressive and incompressible solids and should be taken into
account if calculating the reliability and strength of materials,
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constructions, structures and equipment. This is confirmed by the obtained
analytical, graphical and numerical results, which makes it possible to use
them in engineering calculations.

SUMMARY

The article deals with the coaxial mixed type task of measuring
pressure of an elastic cylinder die upon a layer with initial stresses within
the framework of linearized theory of elasticity. In general, the research
was carried out for the theory of large (finite) initial deformations and two
variants of the theory of small initial deformations with the elastic
potential having arbitrary form. Investigated the question about the
influence of initial stresses on the distribution of the contact forces in
elastic layer and punch.
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