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Abstract. The subject of the study is the development of an analytical 
method for solving boundary value problems of a variant of the mathematical 
theory of transversally isotropic plates of arbitrary constant thickness, 
which boil down to the integration of systems of inhomogeneous high-
order differential equations of equilibrium. According to the developed 
version of the theory, all components of the stress-strain state and boundary 
conditions are considered functions of three coordinates. The indicated 
functions of the three variables are expanded into infinite mathematical 
series by Legendre polynomials from the transverse coordinate. The 
boundary conditions on the front faces of the plates are fulfilled exactly. 
The boundary conditions on the lateral surfaces are fulfilled according to 
the appropriate approximation, which is determined by a certain number 
of terms in partial sums of mathematical series. This makes it possible to 
effectively determine all components of the stress-strain state with any 
high accuracy. It is also important to note that the developed version of the 
mathematical theory takes into account vortex and potential edge effects 
with high accuracy. The problem here lies in the high-order systems of 
differential equilibrium equations with partial derivatives. This complicates 
their solution. Moreover, the order of systems increases with an increase in 
the number of members in the partial mathematical sums of the development 
of components of the stress-strain state into infinite mathematical series. 
Therefore, the solution of this problem is connected with the application 
of a new methodology for finding partial and general solutions. The 
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methodology consists in the fact that the initial systems of high-order 
differential equations of equilibrium are reduced by various mathematical 
transformations to convenient homogeneous and heterogeneous systems of 
high-order differential equations. These equations, in turn, are reduced to 
homogeneous and inhomogeneous differential equations of the second order 
by the developed operator method. The general and partial solutions of the 
initial equilibrium systems are expressed through the general and partial 
solutions of the second-order differential equations. The skew-symmetric 
transverse load of the plates relative to the median plane is considered. The 
goal is to obtain analytical solutions of boundary value problems for plates 
of arbitrary constant thickness. General solutions in special functions for 
components of the stress-strain state (SSS) from the annular transverse load 
of circular and annular plates under axisymmetric deformation are obtained. 
Analytical solutions of the boundary value problems for the specified plates 
under the action of axisymmetric loads for various static and kinematic 
boundary conditions on the lateral surfaces were obtained. An analysis of 
the obtained results was carried out.

The proposed methodology, the method of solving systems of high-
order differential equations of equilibrium, the method of obtaining general 
and partial solutions can also be applied in classical and refined theories, 
including theories of the Tymoshenko-Reissner type.

1. Introduction
Plates and shells are used in various objects of energy, mechanical 

engineering, construction and other branches of modern industry. 
Ensuring the reliable operation of such structures requires the use of 
high-precision theories for their calculation and adequate mathematical 
methods for solving the corresponding limit problems, which would 
take into account all components of the SSS state as a function of three 
variables, and edge effects.

Calculations based on classical theories of non-thin plates and shells, 
in cases with non-smooth, local and concentrated loads, in the presence 
of significant anisotropy and in other cases, give results that may differ 
significantly from the exact ones according to the three-dimensional theory 
of elasticity [1, p. 3; 2, p. 51; 3, p. 69; 4, p. 64; 5, p. 99; 6, p. 382; 7, p. 147; 
8, p. 84; 9, p. 569; 10, p. 84; 11, p. 63; 12, p. 67; 13, p.127; 14, p. 54].
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Refined theories, which are based on various hypotheses, as well as 
theories of the Tymoshenko-Reissner type [15, p. 242; 16; 17, p. 486;  
18, p. 239; 19; 20, p. 675; 21, p. 288; 22, p. 423; 23, p. 238; 24, p. 663;  
25, p. 993; 26, p. 195; 27; 28, p. 184; 29, p. 504; 30, p. 744; 31], are 
mainly used today in the works of domestic and especially foreign authors. 
In each case, these theories require a justified use and establishing the 
frameworks of their suitability for solving boundary problems. Finding the 
SSS of plates and shells according to these theories cannot be performed 
with arbitrarily high accuracy, since their accuracy is determined by the 
accepted hypotheses.

Existing variants of mathematical theory (MT) [31; 32, p. 238; 33;  
34, p. 83; 35; 36, p. 77; 37; 38, p. 3; 39, p. 335; 40, p. 21; 41, p. 191;  
42, p. 154; 43, p. 60; 44, p. 21; 45, p. 496; 46, p. 51; 47, p. 741; 48, p. 78;  
49, p. 221; 50, p. 27; 51, p. 49], which are based on the development of the 
SSS components in endless mathematical series, require the possibility 
of analytical solution of the obtained systems of differential equilibrium 
equations and obtaining numerical results. The accuracy of variants 
of MT depends on the methodology of obtaining basic equations and 
the accuracy of satisfaction of marginal conditions. Solving marginal 
problems for plates and shells in a three-dimensional setting [52; 53; 
54, p. 3; 55, p. 49; 56, p. 22] is associated with sufficient mathematical 
difficulties.

The relevance of the problem is to build a variant of MT of plates of 
arbitrary constant thickness, which would describe with high accuracy 
of their SSS with arbitrary static loads, and the development of effective 
analytical methods of integration of the obtained systems of differential 
equations of high orders in boundary problems. The novelty of the work 
is to solve this scientific problem. In the works of the author, the problem 
of constructing a new variant of the MT of transversally isotropic plates of 
arbitrary constant thickness is solved.

This work uses the operator method, according to which the 
inhomogeneous differential equations of high order with partial derivatives 
are reduced to the inhomogeneous differential equations of the second 
order. A new methodology of integration of systems of inhomogeneous 
differential equations of equilibrium of transverse-isotropic plates of high 
orders has been developed.
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The purpose of the work is: obtaining general solutions of systems of 
inhomogeneous differential equations of equilibrium of high orders of the 
MT variant in axisymmetric boundary value problems for circular plates 
of arbitrary constant thickness with jump-like loads; obtaining analytical 
solutions of boundary value problems for ring and circular plates under 
different boundary conditions on the side surface.

2. Statement of the problem
The developed variant of the mathematical theory [9, p. 569; 10, p. 84;  

11, p. 63; 12, p. 67; 13, p. 127; 14, p. 54; 44, p. 21; 45, p. 968] makes it possible 
to efficiently and with high accuracy determine the SSS of transversally 
isotropic plates of arbitrary constant thickness and take into account edge effects. 
According to this variant, boundary value problems for plates can be solved with 
any predefined accuracy. Moreover, unlike the exact solution based on the three-
dimensional equations of the theory of elasticity, the constructed variant of the 
mathematical theory provides a real possibility of analytically solving boundary 
value problems for any boundary conditions on the lateral surface.

In addition, obtaining an analytical solution based on the specified 
variant of MT is easier than from the standpoint of the three-dimensional 
theory of elasticity. But the mathematical complexity is still great. 
Moreover, it increases with an increase in the number of terms in partial 
sums of mathematical series for SSS components. The effectiveness and 
high accuracy of the developed version of the mathematical theory is 
shown, in particular, in the author's works.

Thus, for the built high-precision variant of the MT, a problem arises –  
a mathematical problem, which consists in the need to develop effective 
analytical methods for solving systems of high-order differential equations 
of equilibrium, to which boundary value problems.

2.1. The essence of the variant of the mathematical theory. 
Methodology for building the MT variant. The essence of the variant 
of MT plates of arbitrary constant thickness and the methodology of its 
construction is described in [49, p. 221], and therefore we will not dwell on 
it in detail. However, we will give some important relations and equations 
later in paragraphs 2.2, 2.3, some of which are missing in [49, p. 223].

2.2. Reissner's variational equation and boundary conditions  
on front faces. The three-dimensional problem of the theory of elasticity for 
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plates can be reduced to a two-dimensional one using the method of expanding 
the SSS into infinite mathematical series along the transverse coordinate 
using various variational principles. As obtained in [2, p. 51], Reissner's 
variational principle [57, p. 90] has certain advantages in determining the SSS 
of plates. This is the basis for the choice of Reissner's variational principle 
for the construction of a new variant of MT plates. According to Reissner's 
variational principle, the corresponding Reissner equation for elastic bodies 
(disregarding volume forces) has the following form:

(
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� � �� ��� Z W d A
A

� � 0,

 (2.1)

where A is the area of the face planes and the side surface of the plate; 
X Y Zν ν ν, ,  – intensity of component surface forces in projections on the 
coordinate axis; expressions with the sign δ  mean the corresponding 
variations; � � � �x y z x y z,..., ,...,,  – stress and strain components that depend on 
displacement components (3.9); integration in the triple integral is performed 
over the entire volume, and in the double integral over the entire A  surface. 
The rectangular Cartesian coordinate system O x y z  is introduced as follows: 
O x O y,  axes are directed in the middle plane (in the plane of isotropy); the 
O z  axis is directed perpendicular to the median plane upwards.

On the upper and lower front faces of the plate, a static transverse load 
q x y1( , )  and q x y2 ( , ) , respectively, directed downwards acts. The boundary 
conditions on the front faces have the following form

� � �z x z y zz
h

q x y p x y z
h

z
h

( ) ( ( , ) ( , ) ); ( ) ( )� � � � � � � � � �
2

1

2 2 2
0 , (2.2)

where p x y( , ) / 2  and q x y( , ) / 2  are symmetric and obliquely symmetric 
relative to the median plane transverse loads acting on the front faces of the plate:

p x y q x y q x y( , ) ( , ) ( , )� �1 2 , q x y q x y q x y( , ) ( , ) ( , )� �1 2 .
2.3. Components of SSS. Let us present the SSS components, 

considering them as functions of three variables, which are developed into 
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infinite mathematical series by Legendre polynomials from the transverse 
coordinate z .

2.3.1. Components of displacements. We develop the components of 
displacements U x y z V x y z( , , ) , ( , , )  (tangential movements) and W x y z( , , )  
(transverse movements) into infinite mathematical series by Legendre 
polynomials from the transverse coordinate. We take the partial sums of 
these series – approximation K0-N (N is an odd natural number). In the 
K0-N approximation, components (multipliers for Legendre polynomials) 
with indices 0,1, N: u v u v w u v wN N N0 0 1 1 1, , , , ,..., , ,  are taken into account in 
the mathematical series for tangential movements in partial sums. Partial 
sums have the form:

U x y z P z h u x y U u V vk k
k

N

( , , ) ( / ) ( , ), ( , , );� �
�
� 2
0

               (2.3)

W x y z P z h w x yk k
k

N

( , , ) ( / ) ( , ),� �
�
� 1
1

2

where P z hk ( / )2  are the Legendre polynomials of the transverse 
coordinate z .

2.3.2. Image of stresses in the plate. Stress components are also obtained 
in the form of infinite mathematical series by Legendre polynomials. They 
have the following form, taking into account (2.1)–(2.3):

� �x z n x n
n

N

y z n y nx y z P z h t x y x y z P z h t( , , ) ( / ) ( , ); ( , , ) ( / ) (� �
�

�

� 2 2
0

1

xx y
n

N

, )
�

�

�
0

1

; (2.4)
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n

N
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�

� 2
0

2

;

�x n x n
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N
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� 2
0

2

, ( x y, );  
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n

N
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�
� 2
0

,

where
t x y h w l u n Nxn ni i x

i

N

ni i( , ) ( ), ( , ,..., ) ;,
,

� � � �
�
� 0
1 3

0 0 2 1             (2.5)
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i

N

ni i( , ) ( ), ( , ,..., );,
,
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�

�

� 0
2 4

1

0 1 3
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� �
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3 5 1 3

1 3 2� ;;

s x y d u v d s n Nxn n x n y zn( , ) ( ) , ( , ,..., ), ,� � � �0 10 0 1� ;

s x y d s n N Nxn z n( , ) , ( , )� � � �10 1 2 , ( , ; , );x y u vk k

( )( )� � � � �2
1

2
2 1 0m m F П ; �i i x i yu v� �, , , 

h , l , p , g  with indices are mechanical and geometrical parameters 
(MGP); d d G0 10, ,  – mechanical constants of the plate material.

It is important to note that the transverse stresses exactly satisfy the 
boundary conditions (2.2). This significantly increases the accuracy of this 
variant of MT and distinguishes it from many other variants.

The equilibrium equation and the boundary conditions on the circuit 
follow from Reissner's variational equation (2.1).

The system of differential equations for skew-symmetric and symmetric 
deformations in the K0-N approximation are given in [49, p. 229], and the 
boundary conditions are in [49, p. 230].

For the constructed variant of the MT of plates, with the increase in the number 
of terms in the partial sums of the development of the SSS components into 
mathematical series, the order of systems of differential equations of equilibrium 
and the mathematical complexity of their solution also increases. Therefore, there 
is a problem in solving such systems. This work is devoted to the solution of this 
problem, which is ideologically a continuation of [49, p. 223] work.

3. Solving the integration problem systems  
of high-order equilibrium equations

3.1. Methodology of integration of initial systems of equilibrium 
equations. Let us consider skew-symmetric deformation here and in the 
future. The methodology is given in [49, p. 221].

In Sections 3.2, 3.3, we present some systems of equations with  
[49, p. 221] for a better understanding of the further solution of boundary 
value problems.
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Consider the system of differential equations (2.7) [49, p. 229] in the 
K13...N approximation, which describes skew-symmetric deformation.  
We will refer in paragraphs 3.2 – 3.4 to the relevant equations of the work 
[49, pp. 235, 236, 237].

3.2. Transformed systems of differential equations. These are 
systems of differential equations (4.1a), (4.1.b) [49, p. 235] for the vortex 
edge effect, and (4.2), (4.3) [49, p. 236] for the internal SSS with a 
potential edge effect.

3.3. Deterministic systems of differential equations. This is the 
differential equation (4.5) for the vortex edge effect [49, p. 236] and the 
system of equations (4.9) [49, p. 237] for the internal SSS with the potential 
edge effect.

3.4. General solutions of transformed and deterministic systems  
of differential equations. These are solutions (4.4) and (4.6) [49, p. 236] 
for the vortex edge effect and (4.8), (4.10a), (4.10b) [49, p. 237] for the 
internal SSS with a potential edge effect.

In the future, we will consider circular (circular and annular) transversally 
isotropic plates of arbitrary constant thickness in the K13 approximation 
(skew-symmetric deformation).

4. Axisymmetric bending of circular transtropical plates under 
skew-symmetric deformation

4.1. Main dependencies. Axisymmetric deformation in the K13 
approximation of a circular transtropical plate (circular with radius a  or 
ring with radii b a b a, ; 〈 ) of thickness h  is considered. A cylindrical 
coordinate system ( , , )r zθ  is introduced. Tangential coordinates in the 
middle plane, axis z  is perpendicular to the middle plane, directed upwards. 
Boundary conditions on the front planes:

�z z h q r( / ) ( ) / ;� � �2 2  �r z z h( / )� � �2 0 ; �� z z h( / )� � �2 0 , (4.1)
where q r( ) / 2  is a transverse axisymmetric load.
Dependencies for axisymmetric deformation:
� � � ��r r zv E v E� � � � �( ) / / ,  ( r,θ ); � � � ��z z rv E� � � � �( ( ) ) / ;  

� �r z r z G� �/ ;

�r U r� � �/ ;  �� �U r/ ;  �z W z� � �/ ;  �r z W r U z� � � � � �/ / ,  
� �� �r z� � 0,
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where U W, ,  � � � ��r z r z, , , , � � � ��r z r z, , ,  are functions from r , z . 
The constants included in these dependencies are generally accepted.

SSS components based on (2.4) and (2.5) are represented in the form of 
the following partial sums of series:

U r z P z h u rk k
k

( , ) ( / ) ( );
, ,...

�
�
� 2
1 3

3

 V = 0; W r z P z h w rk k
k

( , ) ( / ) ( );
, ,...

� �
�
� 1
1 3

3

2  (4.2) 
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k
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�
�
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k
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�
�
� 2
1 3

5

�r z k r k
k

r z P z h t r( , ) ( / ) ( ) ,
, ,...

�
�
� 2
0 2

4

 � �� �r z� � 0,

where, taking into account the components u u w w1 3 1 3, , ,  ( k =1 3; ), we have:

s qz1 33 5 3 70� � �/ / ;�  s qz3 310 15� �/ / ;�  sz5 3 42� �� / ;  (4.3)

s r d u d vu r d sr z1 0 1 0 1 10 1( ) / ;� � � �  s r d u d vu r d sr z3 0 3 0 3 10 3( ) / ;� � � �  
s r d sr z5 10 5( ) ;=  

s r d vu d u r d sz�1 0 1 0 1 10 1( ) / ;� � � �  s r d vu d u r d sz�3 0 3 0 3 10 3( ) / ;� � � �  
s r d sz�5 10 5( ) ;�  

t Q hr r0 1= / ;  t Q h Q hr r r2 1 33 7� � �/ / ( );  t Q hr r4 33 7� � / ( );

Q r h w h w l u l uk r k k k k( ) � � � � � �1 1 3 3 1 1 3 3 , ( , )k =1 3 ;

� � �3 33 3 31 1 33 3 3( )r q w e e e qq� � � � ; �k k kr u u r( ) /� � � .

In relations (4.3):

l G l G l G l G11 11 31 3328 15 6 5 14 5 84 5� � � � � � � �/ ; / ; / ; / ;
h h q ek k q1 3 33 3, , , ..., ;                                   (4.4)

h G h h G h l G l G

h G h
11 13 11 13

22

14 15 15 28 15 6 5

7 6

� � � � � � � � �

� �
/ ; / ; / ; / ;

/ ; ll G h h G h l G l G22 31 33 31 337 7 5 14 5 84 5� � � � � � � � �; / ; / ; / ;

q hd e d e d e q hdp22 20 20 30 22 30 2 33 2014 7 2 7 2 66� � � � � � � � �/ ( ); ; ; / ; / ( );

ee d e d e d d E d dq31 30 33 30 3 20 10 30 111 22 3 22 3 1 2� � � � � � � � � �; / ; / ; ( ) / ;� 00 20/ .d

G E v d E v� � � �/ ( ( ) ); / ( ),2 1 10
2  d E v E v10 1� � � �/ ( ( ) ) .

Boundary conditions (4.1) are fulfilled exactly.
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4.2. A system of differential equations of equilibrium. The system of 
differential equations of equilibrium of the internal SSS with a potential 
marginal effect in polar coordinates has the form:

� � � � � � � � �1 3 1 33 3 1 1 1 31 3 51 1 61 3k k k k k k u ku u w w q� � � � � � � � � � � ,  ( k =1 3, ); (4.5)

� � � � � � �151 1 351 3 551
2

1 561
2

3 1� � � � � �w w qw ;

� � � � � � � �161 1 361 3 561
2

1 661
2

662 3 3� � � � � � �w w qw( ) ,  

(� � �2 2 2d d r d dr r/ / / ),
where q q r= ( ) , ∇2  is the Laplace operator; β  with indices – MGP:

�111 0 10 313

3

70
� �
h
d d e( );  �112 3

�
hG
;  �113 11

2
� �

h
l ;              (4.6)
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3

70
� � �
h
d v G d e( ); �131 10 3370

� �
h
d e ;  �133 13

2
� �

h
l ;  

�141 10 3370
� �

h
d e ;  �151 11

2
� �

h
h ;  �161 13

10 332

70
� � �( );

h
h

hd q
 �u hd1 10

2

21
� ;

�221 3
�
hG
;  � �222 111� ;  � �223 113� ; � �231 131� ;  � � �242 141 131� � ;

� �243 133� ;  � �251 151� ;  �331 0 10 337

1

15
� �
h
d d e( );  �332 7

�
hG
;

�333 33

6

7
� �

h
l ;  �341 0 10 337

1

15
� � �
h
d v G d e( );  �351 31

6

7
� �

h
h ;

�361 10 33 33

1

105

6

7
� �hd q

h
h ;  �u hd3 10

1

18
� ;  � �441 332� ;  � �442 331� ;

 � �443 333� ;  � �451 351� ;  � �461 361� ;  �551 11� �h ;  �561 13� �h ;

�w1 1� � ;  �661 13 33

1

35
7 3� �( );h h  �662 333

35
� �

q
; �w3

3

7
� � .

Functions φ j r( )  and u rj ( )  are from the system (4.5):
 � � � � �j j j j jr w w w q( ) ;� � � � � �1

2
1 2 3 3

2
3 4                    (4.7)

u r w w q jj j j j w j w j q( ) , ( , ),� � � � � � � � � � �� � � � � � �� �1 1 3 3 1 1 3 3 1 3

where constants λ  with subscripts are mechanical and geometrical parameters:
� � � � �11 351 561 361 551� �( ) / � ; � � �12 351 662� / ;�  

� � � � �13 351 661 361 561� �( ) / � ;                              (4.8)
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� � � � �14 361 1 351 3� �( ) / ;w w �  � � � � �31 161 551 151 561� �( ) / � ; 

� � �32 151 662� � / ;�

� � � � �33 161 561 151 661� �( ) / � ; � � � � �34 151 3 161 1� �( ) / ;w w �  

� � �� � � �151 361 161 351.

� � � � ��1 1 133 131 333 111� �( ) / �u ; � � � � ��1 3 133 331 333 131� �( ) / �u ; 

� � ��1 1 333 112� � / �u ;

� � ��1 3 133 332� / �u ; � � � � �1 1 133 351 333 151w u� �( ) / � ; 

� � � � �1 3 133 361 333 161w u� �( ) / � ;

� � � � �1 333 1 133 3q u u u� �( ) / � ; � � � � ��3 1 133 111 113 131� �( ) / �u

� � � � ��3 3 133 131 113 331� �( ) / �u ; � � ��3 1 133 112� / �u ; � � ��3 3 113 332� � / �u ;

� � � � �3 1 133 151 113 351w u� �( ) / � ; � � � � �3 3 133 161 113 361w u� �( ) / � ;

� � � � �3 113 3 133 1q u u u� �( ) / � ; �u � �� � �113 333 133
2 .

4.3. Transformed system of differential equations. The system of 
equations (4.5) is reduced to a system of two equations with respect to 
w r1( )  and w r3 ( ) :

П w r П q rj i i
i

j q
�
� �
1 3

3

,

( ) ( )  ( , )j =1 3 ,                        (4.9)

where П ji  are fourth-order differential operators. П jq – second-order 
differential operators. In the approximation K13 (N = 3), the differential 
operators of equations (4.9) П i jj i ( , , )=1 3  and П jq  have the following form:

П11�11 114
4

112
2� � � �� � ; П13 �13 134

4
32

2
130� � � � �� � � ;      (4.10)

П31 �31 314
4

312
2� � � �� � ; П33 �33 334

4
332

2
330� � � � �� � � ;

П q1 12
2

10� � �� � ; П q3 32
2

30� � �� � ,
where µ µ µ114 112 30, ,...,  – MGP:

� � � � �114 111 11 131 31� � ;  � � � � �134 111 13 131 33� � ;             (4.11)

� � � � � � � � � �132 113 13 111 12 133 33 131 32 161� � � � � ;

� � � � � �12 1 111 14 131 34� � �u ( );  � � � � �10 113 14 133 34� � ;
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� � � � �314 131 11 331 31� � ;  � � � � � �312 133 11 333 31 351� � � ;

� � � � �334 131 13 331 33� � ;  � � � � � � � � � �332 133 13 131 12 333 33 331 32 361� � � � � ;

� � � � �330 133 12 333 32� � ;  � � � � � �32 3 131 14 331 34� � �u ( );

� � � � �30 133 14 333 34� � .

4.4. Deterministic system of differential equations. The deterministic 
system of differential equations, which describes the internal SSS with a 
potential marginal effect, is obtained on the basis of (4.9), (4.10) and has 
the form:

D D D D Ф r a D q rk k k0 0 1 2 0 0� �( ) ( ) , k =1 3, ,                (4.12) 
where

D D s D si i k k0
2 2

0
2

0� � � � � � � �; ; ; i N� �1 2 1, ,..., ;

s s ai k k, ,0 0 – МGP; si – the roots of the corresponding characteristic 
equation (for transversely isotropic plates with small shear stiffness si 〉 0 ); 
of functions Ф x yk ( , )  are sought.

4.5. Solutions of the transformed system of differential equations 
(4.9). Forms of general solutions of system (4.9) are obtained by the 
operator method and have the form:

w r П Ф r i Ni k i k
k

( ) ( ), ( , ; ),
,

� � �
�
� 0

1 3

3

1 3 3                     (4.13)

where Пk i
0  are the appendages of the determinant of the П0 system 

(4.9), Ф x yk ( , )  are the new sought functions that are determined  
from (4.12).

4.6. Axisymmetric load on the ring. Partial and general solutions of 
system (4.12). Let's consider the load of the plate on the annular area. 
Consider a plate under the action of a uniformly distributed load q0  along a 
circular ring with radii r1  and r2  ( )r r1 2〈 :

q r

r r

q r r r

r r

( )

, ( );

, ( );

, ( ).

�
�
� �
�

�

�

�
�
�

0

0

1

0 1 2

2

                                     (4.14)

4.6.1. Partial solutions of the system (4.12). Partial solutions Ф rk r ( )  
of the defining differential equations (4.12) p according to (7.2)–(7.4)  
[49, p. 245] have this form:
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Ф r
a q

s s

s

s s s
s s I r s r K r s r Kk r

k
k( ) ( ( ) ( )( ( )� � � �0 0

1 2

2

1 12 1

1 0 0 1 1 1 1 1 2 1(( ))r s2 1 �

� � � � �
s

s s s
s s I r s r K r s r K r s r rk

1

2 21 2

2 0 0 2 1 1 1 2 2 1 2 2 2
2

1

1

4
( ) ( )( ( ) ( )) ( 22 ) �

� � � � � �
1

2 4
1

16
0
2

0 12
0

2
2

2 1
2

1
0

2
4

2 1
4( )( ln ln ) ( ln ln

s r
s s r r r r

s
r r rk

k
k rr1 �

� � � � � � � �4
1

4
1 312

0
2
2

1
2

2
4

1
4 2

2
2

1
2

1s r r r r r r r r r k( ) ( ) ( ))), ( , , );

Ф r
a q

s s

s

s s s
s s K r s r I r s r Ik r

k
k( ) ( ( ) ( )( ( )� � � �0 0

1 2

2

1 12 1

1 0 0 1 2 1 2 1 1 1(( ))r s1 1 �

� � � �
s

s s s
s s K r s r I r s r I r sk

1

2 21 2

2 0 0 2 2 1 2 2 1 1 1 2( ) ( )( ( ) ( ))

� � � � � � � �
1

2
1

16
20 12

0
2
2

1
2 0 2

2
2

1
2

2
4( ln ln )( ) ( ( ) ln (r s s r r r

s
r r r r rk

k rr r1
4 1)( ln ))),�

( , , );r r k� �2 1 3                                   (4.16)

Ф r
a q

s s
A r B rk r

k

k r k r( ) ( ( ) ( ))� � �0 0

1 2

; (4.17)

A r
s

s s s
s s I r s r K r s r K r sk r k( ) ( ) ( )( ( ) ( ))� � � �2

1 12 1

1 0 0 1 1 1 2 1 2 1

� � � �
s

s s s
s s I r s r K r s r K r sk

1

2 21 2

2 0 0 2 1 2 2 1 2 2( ) ( )( ( ) ( ))

� � � � � � �
1

4
1

1

2 4
12

2 2
0 12
0 0

2

0 12
0

2
2

2
2( )( ) ( )( ln ln )r r s s

s r
s s r r r rk

k
k ;;

B r
s

r r r r r r r r rk r
k( ) ( ln ln ( ) ( ))� � � � � � �0

2
4

2
4

2
4 4 2

2
2 2

16

1

4

� � � �
s

s s s
s s K r s r I r s r I r sk

2

1 12 1

1 0 0 1 1 1 1 1 1 1( ) ( )( ( ) ( ))

� � � �
s

s s s
s s K r s r I r s r I r sk

1

2 21 2

2 0 0 2 1 2 1 1 1 2( ) ( )( ( ) ( ))

� � � � � � � �
1

2
1

16
20 12

0 2
1
2 0 2 2

1
2 4

1
4( ln ln )( ) ( ( ) ln (r s s r r r

s
r r r r r rk

k ))( ln ))1� r ,

( )r r r1 2〈 〈 ,

(4.15)
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where I1 , K1 is a modified first-order Bessel and Macdonald functions.
The conjugation conditions for r r= 1  and r r= 2  are satisfied.
4.6.2. General solutions of system (4.12). The general solutions of the 

defining differential equations (4.12) have the following form:
Ф r A B r C r D r r A I r s B K r s1 0 0

2
0 0

2
1 0 1 1 0 1( ) ln ln ( ) ( )� � � � � � �  (4.18)

� � � �A I r s B K r s Ф r Ф r Ф rr r2 0 2 2 0 2 1 3 3( ) ( ) ( ); ( ) ( ).

Without stopping at cumbersome calculations, we will give general 
solutions for the SSS components from the uniform loading of the plate 
over the annular region.

5. General solutions for SSS components
The general solutions for the SSS components for circular and annular 

plates from skew-symmetric loading on the annular region (4.14) are 
determined taking into account (4.2)–(4.4), (4.6)–(4.8), (4.11), (4.13)–(4.18).

5.1. General solutions for displacements. Transverse displacements:

W r z P z h w rk k
k

( , ) ( / ) ( )
,

�
�
� 2
1 3

3

.                            (5.1)

The components of displacements are determined from the following 
dependencies:

for r r〈 1 w r

A B D B r D C r D

1

0 330 332 0 0 0 330
2

0 332 0 3304 4

( )

( ( ) ( ) ln

�

� � � � � � �� � � � � 00 330
2� r rln �

� � � � �� �101 11 1 102 22 2 0 1 1 0 1 1 2 0 2 1A r s A r s q k I r s k I r s kr r r( ) ( )) ( ( ) ( ) 33
2

1 0r k r� );

w r B D D r A r s A r s3 312 0 0 0 312 301 11 1 302 22 24 4( ) ( ( ) ln ( ) ( ))� � � � � �� � � � ��

+ + +q k I r s k I r s kr r r0 3 1 0 1 3 2 0 2 3 0( ( ) ( ) ),                    (5.2)
where

� � � � � � �10 334
2

332 330 30 314 312i i i i i is s s s� � � � � �, ( );               (5.3)

k c a a s s a a s sr i i i i i i i i1 1 1 1 1 334
2

332 330 3 1 3 134 132� � � � �( ( ) ( )� � � � � ));

k c s a a s a a s ir i i i i i i i3 1 3 1 3 114 1 1 1 314 312 1 2� � � �( ( )) , ( , );� � �

k a a b a b a b a b ar1 0 1 332 131 11 330 141 12 151 13 161 14 3 1324 4� � � � �( ( )� � � aa b133 11 ;

c r K r s r K r s i a
a

s s
a

s s s
i i i

k

k1 1 1 1 2 1 2 1

0

1 2
11

2 11 2� � � � � �
�

( ) ( ) , ( , ); ;
( kk

s s s

0

1 12 1

)
;
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a
s s s

s s s
a

s
a s s ak

k

k

k

k k k12

1 2 0

2 21 2

13

0

14 0 12
0

158

1

2
1�

�
� � � � �

( )
; ; ( );

ss
a s s

k

k k

0

16 0 12
0

16
1; ;� �

b r r r r r r b r r r r11 2
2

2 1
2

1 2
2

1
2

12 2
2

2 1
2

12� � � � � �ln ln ( ) / , ln ln ;

b r r r r r r b r r13 2
4

2 1
4

1 2
4

1
4

14 2
2

1
24 4� � � � � �ln ln ( ) / , ( ) / ;

A r s A I r s B K r s A r s A I r s B K r s11 1 1 0 1 1 0 1 22 2 2 0 2 2 0 2( ) ( ) ( ), ( ) ( ) ( );� � � �

for r r〉 2

w r A B D B r D C r1 0 330 332 0 0 0 330
2

0 332 0 3304 4( ) ( ( ) ( ) ln� � � � � � �� � � � �  (5.4)

� � � �D r r A r s A r s0 330
2

101 11 1 102 22 2� � �ln ( ) ( ))

+ + + + +q m K r s m K r s m r m r r mr r r r r0 1 1 0 1 1 2 0 2 1 1 3
2

1 0( ( ) ( ) ln ln );

w r B D D r A r s A r s3 312 0 0 0 312 301 11 1 302 22 24 4( ) ( ( ) ln ( ) ( ))� � � � � �� � � � ��

� � � �q m K r s m K r s m r mr r r r0 3 1 0 1 3 2 0 2 3 3 0( ( ) ( ) ln ),

where
m c a a s s a a s sr i i i i i i i i1 2 1 1 1 334

2
332 330 3 1 3 134 132� � � � �( ( ) ( )� � � � � ));

m c s a a s a a s ir i i i i i i i3 2 3 1 3 114 1 1 1 314 312 1 2� � � �( ( )) , ( , );� � �

m a c c a cr1 0 1 332 221 330 231 3 132 2234 4� � �( ) ;� � �
m a c m a cr r3 0 1 312 221 1 3 1 330 2214� � �� �, ;

m a c c a c m a cr r1 1 332 221 330 211 3 132 223 3 1 312 2214 4 4� � � � �( ) , ;� � � �

for r r r1 2〈 〈

w r A B D B r D C r1 0 330 332 0 0 0 330
2

0 332 0 3304 4( ) ( ( ) ( ) ln� � � � � � �� � � � �  (5.5)

� � � �D r r A r s A r s0 330
2

101 11 1 102 22 2� � �ln ( ) ( ))

+ + +( ( ( ( ) ( ) ( ) ( ))q n r K r s I r s r I r s K r s0 101 2 1 2 1 0 1 1 1 1 1 0 1

+ + +n r K r s I r s r I r s K r s102 2 1 2 2 0 2 1 1 1 2 0 2( ( ) ( ) ( ) ( ))

� � � � � � �a a a n r n r r n r n rs r s r r r r1 330 111 1 121 2 1 1 1
2

1 2
2

103
4� � �( ) ln ln nn r1 0 ));

w r B D D r A r s A r s3 312 0 0 0 312 301 11 1 302 22 24 4( ) ( ( ) ln ( ) ( ))� � � � � �� � � � ��

+ + +q n r K r s I r s r I r s K r s0 301 2 1 2 1 0 1 1 1 1 1 0 1( ( ( ) ( ) ( ) ( ))
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+ + + + +n r K r s I r s r I r s K r s n r n r nr302 2 1 2 2 0 2 1 1 1 2 0 2 3 303
2( ( ) ( ) ( ) ( )) ln 33 0r ) ,

where
n s a a s a a si i i i i i10 3 1 3 134 132 1 1 1 334 332� � � �( ( ) ( ));� � � �

n s a a s a a s ii i i i i i30 1 1 1 314 312 3 1 3 114 1 2� � � �( ( ) ), ( , );� � �

n a c c a c n a cr r1 1 332 311 330 321 3 132 313 3 1 312 3114 4 4� � � � �( ) , ;� � � �

n a a c c c a ar1 0 1 334 311 332 311 331 330 341 3 134 364 4 4 16� � � � �( ( ) ) (� � � � 113 132 313 333� �� ( );c c

n a c n a a c a ar r1 1 1 330 311 1 2 1 332 311 330 331 3 132 31316 16� � � �� � � �, ( ) , nn a c103 1 330 311� � ;
n a a n a a a ar303 1 312 311 3 0 3 114 313 1 314 311 31216 4 16 16� � � � �� � � �, ( ( (cc c311 331� ))).

The tangential displacements of U r zr ( , )  are as follows:

U r z P z h u rr k k
k

( , ) ( / ) ( )
,

�
�
� 2
1 3

3

.                            (5.6)

where u rk ( ) , φk r( )  are determined according to (4.7), and q r( )  – 
according to (4.14).

φk r( ) functions have the following form:
for r r〈 1

� � � � �k k k r k r k rr r q s k k k I r s( ) ( ) (( ( ) ) ( )� � � � �0 0 1 1 1 1 3 3 1 2 3 1 0 1      (5.7)

� � � � �( ( ) ) ( ) ( )) ,s k k k I r s k kk r k r k r k r k r2 1 1 2 3 3 2 2 3 2 0 2 1 1 3 2 3 04� � � � � (( , );k �1 3

�

� � � � � � � � �
k

k k k k k

r

B D r

0

0 1 330 2 312 0 1 330 2 312 14 4

( )

( ) (( ) ln (

�

� � � � � �� � �330 2 312� �k ))

� � � � �( ( ) ) ( ( ) ( ))s A I r s B K r sk k k1 1 101 3 301 2 301 1 0 1 1 0 1� � � � � �

� � � �( ( ) )( ( ) ( ));s A I r s B K r sk k k2 1 102 3 302 2 302 2 0 2 2 0 2� � � � � �

for r r〉 2

� � � � �k k k r k r k rr r q s m m m K r s( ) ( ) (( ( ) ) ( )� � � � �0 0 1 1 1 1 3 3 1 2 3 1 0 1  (5.8)
� � � �( ( ) ) ( )s m m m K r sk r k r k r2 1 1 2 3 3 2 2 3 2 0 2� � �

� � � � �( ) ( ) ln )), ( , );4 4 1 31 1 3 2 3 0 1 1 3 2 3� � � �k r k r k r k rm m m m r k

for r r r1 2〈 〈

� � �k kr r q a r K r s I r s r I r s K r s( ) ( ) ( ( ( ) ( ) ( ) ( ))� � � �0 0 1 2 1 2 1 0 1 1 1 1 1 0 1  (5.9)

� � � � �a r K r s I r s r I r s K r s c c r ar r� � � �2 2 1 2 2 0 2 1 1 1 2 0 2 0 1 0( ( ) ( ) ( ) ( )) ln rr 2 ) ,
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where
a n n a s n a a nk k k k� �� � � � �0 1 103 2 303 1 1 1 101 1 111 330 3 30116� � � � �); ( ( ) )) ;� �k n2 301

a s n a a n nk k k� � � � �2 2 1 102 1 121 330 3 302 2 302� � � �( ( ) ) ;

q r r r0 1 2, ( , )∈

Components u rk ( )  of radial displacements are determined as follows:

for r r〈 1

u r u r q r I r s r I r s k rk k k k r( ) ( ) ( ( ) ( ) ) ,� � � �0 0 11 1 1 12 1 2 1 32      (5.10)
where

u r C D rk k k k k0 0 330 11 0 330 12 332 11 312 31
14( ) ( ( ))� � � � ��� � � � � � � �

� � �� �330 11 0 02k B D r( ) 2 0 330 11 11 1 1 1 1 1 1D r r t A I r s B K r sk k� � ln ( ( ) ( ))� � �

� �t A I r s B K r sk12 2 1 2 2 1 2( ( ) ( ));

t s s si k i i k i k i k i k1 10 12 11 30 32 31� � � �( ( ) ( ));� � � � � �

r s k s k s i ki k i ri k i k ri k i k1 1 12 11 3 32 31 1 2 1 3� � � � � �( ( ) ( )) , ( , ; , )� � � � ;;

for r r〉 2

u r u r q r K r s r K r s r r r r r rk k k k k k( ) ( ) ( ( ) ( ) ln� � � � � ��
0 0 21 1 1 22 1 2 23

1
24 225k r) , (5.11)

where
r s m s m s i ki k i r i k i k r i k i k2 1 12 11 3 32 31 1 2 1 3� � � � � � �( ( ) ( )) , ( , ; ,� � � � )) ;

r m m m r m r mk k r k r k r k k r k k23 12 1 3 11 1 1 31 3 24 11 1 3 25 11 14 2� � � � �� � � � �; ; rr 3 ;

for r r r1 2〈 〈

u r u r q s r K r s I r s r I r s K r sk k k( ) ( ) ( ( ( ) ( ) ( ) ( ))� � � �0 0 31 2 1 2 1 1 1 1 1 1 1 1 1  (5.12)

� � �s r K r s I r s r I r s K r sk32 2 1 2 2 1 2 1 1 1 2 1 2( ( ) ( ) ( ) ( ))

� � � ��r r r r r r r r rk k k k31
1

32 33 34
3ln ) ,

where
t s si k i i k i k i k i k i3 12 10 32 30 11 10 31 30� � � �( ( ) );� � � � � � � �

s s n a s n si k i i i k i k i k i k3 10 1 1 1 330 12 11 30 32 31� � � � �(( )( ) ( ));� � � � � �

r n n nk k r k r k r31 12 1 1 11 1 31 34� � �� � � ;
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r n n n nk k k r r k32 12 103 11 1 1 1 2 31 30332 2 2� � � �� � �( ) ;
r n r nk k r k k33 11 1 1 34 11 1032 4� �� �; .

The displacements of U r zr ( , )  are determined according to (5.6) taking 
into account (4.14), (5.7)–(5.12).

5.2. General solutions for stresses in plates. Stresses σr r z( , )  are 
determined according to (4.2), (4.3) as follows:

�r i
i

r ir z P z h s r( , ) ( / ) ( )
,

�
�
�
1 3

5

2 ,                          (5.13)
where

s r a u a u a w a q ir i i u r i u r i w i q( ) , ( , , ), ,� � � � �1 1 3 3 3 3 1 3 5 ;         (5.14)
a d e d a e d

a q d a

u u

w q

1 1 0 31 10 1 3 33 10

1 3 33 10 1

3 70 3 70

3 70

� � � �

� � � �

/ ; / ;

/ ; 33 1 14 510 3d e q( / ) / ;�

a e d a d e d

a q d a

u u

w q

3 1 31 10 3 3 0 33 10

3 3 33 10 3

15 15

15 1 10

� � �

� � �

/ ; / ;

/ ; ( / ee dq3 1015/ ) ;

a e d a e d a q d a e du u w q q5 1 31 10 5 3 33 10 5 3 33 10 5 3 142 42 42� � � � � � � �/ ; / ; / ; 00 42/ .

In (5.13), (5.14) the constants d e q, ,  with subscripts are determined 
directly through the constants of the transversally isotropic material, q r( )  
corresponds to (4.14), the displacement components w rk ( )  and u rk ( )  are 
determined by the previous formulas.

Transverse tangential stresses σr z r z( , )  according to (4.2) are as follows:

�r z i
i

r ir z P z h t r( , ) ( / ) ( )
,

�
�
�
0 2

4

2 ,                        (5.15)

where the components of t rr i ( )  are determined by formulas (4.3):
t r h w h w l u l u ir i i r i r i i( ) , ( , , ),, ,� � � � �0 1 1 0 3 3 0 1 1 0 3 3 0 2 4        (5.16)

h h h h h h h h h h h h h001 11 003 13 021 31 11 023 33 133 7 3 7� � � � � �/ ; / ; ( / ) / ; ( / )) / ;h

h h h h l l h l l h041 31 043 33 001 11 003 133 7 3 7� � � � � �/ ; / ; / ; / ;

l l l h l l l h l l l021 31 11 023 33 13 041 31 0433 7 3 7 3 7� � � � � � �( / ) / ; ( / ) / ; / ; ��3 733l / ;

constants h l,  with double subscripts are determined directly through 
mechanical steels of transversely isotropic material.
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Taking into account the expressions for the component movements of 
w rk ( )  and u rk ( ) , we obtain the dependences for t rr i ( )  (5.16) and further 
for σr z r z( , )  according to (5.15).

Stresses σz r z( , ) are determined according to (4.2) as follows:

�z i
i

z ir z P z h s r( , ) ( / ) ( )
,

�
�
�
1 3

5

2 .                        (5.17)

The components of s rz i ( )  are according to (4.3):
s r p w g g g q iz i i i i i q( ) , ( , , ),� � � � �3 3 1 1 3 3 1 3 5� �           (5.18)

where
p q g e g e g eq q13 33 11 31 13 33 1 33 70 3 70 3 70 3 1 3 14 5� � � � � � � � �/ ; / ; / ; ( / ) / ;;

/ ; / ; / ; ( , / ) / ;p q g e g e g e

p

q q33 33 31 31 33 33 3 3

53

15 15 15 0 5 3 5� � � � �

� �qq g e g e g eq q33 51 31 53 33 5 342 42 42 42/ ; / ; / ; / .� � � � � �

Taking into account the dependencies for w3 , φ1 , φ3 , and q r( )  , the 
components of s rz i ( )  are determined according to (5.18), and the stresses 
of σz r z( , )  are determined by formulas (5.17).

Stresses �� ( , )r z  are determined as follows:

�� �( , ) ( / ) ( )
,

r z P z h s ri
i

i�
�
�
1 3

5

2 ,                        (5.19)

where
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Taking into account the expressions for u r u r w r1 3 3( ), ( ), ( ) , q r( )  
the components s riθ ( )  are obtained according to (5.20), and the stresses 
�� ( , )r z  are determined from (5.19).
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On the basis of the dependencies (5.1)–(5.20) obtained above for the 
displacement and stress components, it is possible to set and solve in a new 
formulation the boundary value problems for circular and annular transtropical 
plates of arbitrary constant thickness under the action of axisymmetric 
loads uniformly distributed skew-symmetrically over the annular region at 
various boundary conditions on the side surface. Solutions of boundary value 
problems under the action of loads applied uniformly along the line of a circle 
and in a circular area are obtained using the boundary transition.

6. Boundary conditions
6.1. Boundary conditions from the Reissner equation. Boundary 

conditions for axisymmetric deformation of round and ring plates in polar 
coordinates in the K0-N approximation are obtained from (2.1) and have 
the form:

{ ( ) ( )
,( ) ,

h

j
s r u

h

j
t z wr j

j

N

s

s j j
j

N

r j s j j2 1 2 10 1 0 1

1

1�
� �

�
�

� �

�

��� �� � }} .d s � 0  (6.1)

In (6.1) r zs j s j,  are the components of the intensity component of the 
external axisymmetric load R z Z zν ν( ), ( ) , which are projections on the axes 
of coordinates Or  and O z  (radial and transverse directions):

R z P z h r Z z P z h z r zj s j j s j
j

N

j

N

s j� �( ) ( / ) , ( ) ( / ) , ( ,
,,

� �
�

�

�
�� 2 2
0 1

1

1 2
ss j const� ).

Components r zs j s j,  are constant coefficients and are determined by the 
intensity of external axisymmetric load R z Z zν ν( ), ( )  as follows:

r
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For symmetric deformation relative to the median plane in (6.1), terms 
with even indices are taken in the variations of component displacements, 
and for obliquely symmetric deformation – with odd ones. In the K13 
approximation (obliquely symmetric deformation) in (6.1), terms from 
δ δ δ δu u w w1 3 1 3, , ,  should be taken.

We will present some boundary conditions later.
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6.2. Some boundary conditions for annular plates.
1) Hard clamping of edges r b r a b r a� � � �, ; :

u r b w r b u r b w r b1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = ;         (6.2)

u r a w r a u r a w r a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = .

2) Hinged fastening of both edges r b r a b r a� � � �, ; :

w b1 0( ) ;=  s br1 0( ) ;=  w b3 0( ) ;=  s br3 0( ) = ;                  (6.3)

w a1 0( ) ;=  s ar1 0( ) ;=  w a3 0( ) ;=  s ar3 0( ) = .
3) Hard clamping of edge r b=  and hinged fastening of edge 

r a b r a� � �; :  

u r b w r b u r b w r b1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = ;         (6.4)

w a1 0( ) ;=  s ar1 0( ) ;=  w a3 0( ) ;=  s ar3 0( ) = .

4) Hard clamping of edge r a=  and hinged fastening of edge 
r b b r a� � �; :  

u r a w r a u r a w r a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = ;       (6.5)

w b1 0( ) ;=  s br1 0( ) ;=  w b3 0( ) ;=  s br3 0( ) = .

5) The outer edge of r a=  is rigidly clamped, and the inner edge of 
r b=  is subject to known transverse tangential stresses σr z  and normal 
stresses σr . Then, taking into account the boundary conditions (6.1), we 
obtain the following boundary conditions in the K13 approximation:

t b z t b z s b r s b rr s r s r s r s0 0 2 2 1 1 3 3( ) ; ( ) ; ( ) ; ( ) ;= = = =            (6.6) 

u r a w r a u r a w r a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = .

6) The outer edge of r a=  is tightly clamped, and the inner edge of 
r b=  is subject to known transverse tangential stresses σr z  and, in addition, 
there are no radial movements of the points of the inner contour of the ring:

t b z t b z u b u br s r s0 0 2 2 1 30 0( ) ; ( ) ; ( ) ; ( ) ;= = = =                 (6.7)

u r a w r a u r a w r a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = .

7) The outer edge of r a=  is tightly clamped, and the inner edge of 
r b=  is free:
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t b t b s b s br r r r0 2 1 30 0 0 0( ) ; ( ) ; ( ) ; ( ) ;= = = =                  (6.8) 

u r a w r a u r a w r a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = = = = = .

8) The inner edge of r b=  is tightly clamped, and the outer edge of 
r a=  is free:

u r b w r b u r b w r b1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( ) ;= = = = = = = =          (6.9)

t a t a s a s ar r r r0 2 1 30 0 0 0( ) ; ( ) ; ( ) ; ( ) .= = = =

9) The inner edge r b=  is rigidly clamped, and the outer edge r a=  is 
subjected to transverse tangential stresses σr z  and normal stresses σr :

u r b w r b u r b w r b1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( ) ;= = = = = = = =         (6.10)

t a z t a z s a r s a rr s r s r s r s0 0 2 2 1 1 3 3( ) ; ( ) ; ( ) ; ( ) .= = = =

10) The inner edge r b=  is tightly clamped, and the outer edge r a=  
is subject to the known transverse tangential stresses σr z  and, in addition, 
there are no radial displacements of the points:

u r b w r b u r b w r b1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( ) ;= = = = = = = =       (6.11)

t a z t a z u a u ar s r s0 0 2 2 1 30 0( ) ; ( ) ; ( ) ; ( ) .= = = =

So, in all cases of boundary conditions (6.2)–(6.11) for the ring plate, 
we have eight linear algebraic equations, from which eight constant 
integrations are determined: A B C D A B A B0 0 0 0 1 1 2 2, , , , , , ,  , which are included 
in the displacement and stress components.

6.3. Some boundary conditions for circular plates. Definition of 
constants integration. From the boundedness of the functions at r → 0 ,  
we obtain from (5.2) for w r3 ( )  that D0 0= . From the expression 
(5.2) for w r1( )  we get C0 0= . It follows from the expressions (5.3) for 
A r s A r s11 1 22 2( ), ( )  that B B1 20 0= =, .

Therefore, from the limitation of the components w r1( )  and w r3 ( )  at 
r → 0 , constants of integration C D B B0 0 1 20 0 0 0= = = =, , ,  were obtained. 
All displacement components and stress components expressed by formulas 
(5.13)–(5.18) will also have finite values at r → 0 .

We note the following. The components s riθ ( )  according to (5.20) in 
the stresses �� ( , )r z  (formula (5.19)) in the first two terms contain r  in the 
denominator. But, taking into account the expressions (5.10) for u r1( )  and 
u r3 ( ) , these terms at r → 0  also take finite values.
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The constants of integration A B A A0 0 1 2, , ,  are determined from the four 
boundary conditions at the edge of plate r a= .

Let's give the boundary conditions for rigid and hinged fixing of the edge.
For the rigidly clamped edge r a=  of a circular plate, the boundary 

conditions have the following form:

W r a z( ; ) ;= = 0  U r a z( ; ) ,= = 0
or:

u a w a u a w a1 1 3 30 0 0 0( ) ; ( ) ; ( ) ; ( )= = = = .                 (6.12)

For hinged fixing of edge r a= :

w r a1 0( ) ;= =  s r a d u a u a ar1 0 1 1 0( ) ( ( ) ( ) / )� � � � �� ;         (6.13)

w r a3 0( ) ;= =  s r a d u a vu a a d ar3 0 3 1 10 3 15 0( ) ( ( ) ( ) / ) ( ) /� � � � � �� .

7. Analytical solution of boundary value problems
We present the analytical solution of some axisymmetric boundary value 

problems for circular and annular transtropical plates of arbitrary constant 
thickness, which are subjected to skew-symmetric loading in the annular 
region. We proceed from the analysis of the formulas of general solutions for 
displacements and stresses (5.1)–(5.19) and boundary conditions (6.2)–(6.13).

1). Boundary problem A. A circular plate of radius a  is under the 
action of a uniform load q0 , which is distributed over the ring area with 
radii r r r r r a1 2 1 2 2, ( ; )� � . Boundary conditions on the side surface can be 
static, kinematic or mixed.

In all problems A, the components of displacements and stresses at r = 0  
must be finite. From here we get:

C D B B0 0 1 20 0 0 0= = = =, , , .                         (7.1)
Task A1. Hinged fastening of edge r a= :

w r aj ( ) ;= = 0  s r a jr j ( ) , ,= = =0 1 3 .                 (7.2)
Task A2. Hard clamping of edge r a= :

w r aj ( ) ;= = 0  u r a jj ( ) , ,= = =0 1 3 .                 (7.3)
Task A3. On the side surface of the plate r a= , the known intensity of 

the external load R Zν ν,  acts in the projections on the axes of coordinates 
Or  and O z  (radial and transverse directions).

Boundary conditions:
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s r a rr j s j( ) ,= = ( , )j =1 3 ; t r a zr j s j( ) ,= =  ( j = 0 2, ),           (7.4)
where
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At the same time, the transverse load on the side surface of the plate 
must balance the external transverse load on the front faces.

Task A4. A known external load of intensity Rν  acts on the side surface 
of plate r a= , which is stationary in the transverse direction.

Boundary conditions:
w r aj ( ) ;= = 0  s r a rr j s j( ) ,= = ( , )j =1 3 .                (7.5)

Task A5. A known external load of intensity Zν  acts on the lateral 
surface of plate r a= , stationary in the radial direction, which balances the 
external transverse load acting on the front faces.

Boundary conditions:
u r a jj ( ) , ( , );= = =0 1 3  t r a zr j s j( ) ,= = ( , )j = 0 2 .         (7.6)

The constants A B A A0 0 1 2, , ,  are found uniquely from the boundary 
conditions (7.2). Analytical solutions of these problems – SSS components 
are expressed by formulas (5.1), (5.6), (5.13), (5.15), (5.17), (5.19) taking 
into account (5.2)–(5.5), (5.7)–(5.12) ), (5.14), (5.16), (5.18), (5.20). In 
the formulas for the displacement and stress components, the constants 
C D B B0 0 1 2, , ,  are equal to zero, and the constants A B A A0 0 1 2, , ,  are 
determined from the boundary conditions (7.2)–(7.6).

2). Boundary problem B. An annular plate with radii b a b a, ( )〈  is 
under the action of a uniform load q0  , which is distributed over the annular 
area. In this case, we will have eight boundary conditions – four boundary 
conditions each (at the inner and outer edges). From them, all eight 
unknown constants will be found. In the future, the analytical solutions for 
the SSS components of the boundary value problems are determined by the 
corresponding formulas of point 5.
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8. Conclusions
A methodology for solving inhomogeneous systems of high-order 

differential equations of equilibrium for plates of arbitrary constant 
thickness has been developed in a general form, which consists in reducing 
them to homogeneous and inhomogeneous differential equations of the 
second order.

The general solutions of the deterministic systems of high-order 
differential equations are obtained, followed by the determination of the 
general solutions of the initial systems of differential equilibrium equations.

Analytically solved axisymmetric boundary value problems for circular 
and annular transtropical plates under the action of distributed transverse 
loads in the annular region: obtained general solutions for displacements 
and stresses; obtained analytical solutions for various boundary conditions.

The resulting solutions can be used to find the SSS of the specified plates 
when they are loaded along the circle line and in the area of the circle.

This method: 1) makes it possible to significantly simplify the finding 
of partial and general solutions of initial systems of differential equilibrium 
equations, especially for loads that are not continuous; 2) significantly 
changes the methodology of applying the methods of mathematical physics, 
in particular, the methods of integral transformations, which can be applied 
not to the initial systems of equations of high orders, but to the obtained 
inhomogeneous differential equations of the second order.

There are no fundamental difficulties in deriving general solutions for 
other approximations of the variant of the mathematical theory.
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