
Fergana, the Republic of Uzbekistan November 28, 2022

281

Література:

1. Про судову експертизу: Закон України від 25 лютого 1994 року
№ 4038-XII. URL: https://zakon.rada.gov.ua/laws/show/4038-12#Text

(дата звернення: 20.06.2022).

2. Судові експертизи в процесуальному праві України : навч. посіб.
/ за заг. ред. О. Г. Рувіна. Київ : Видавництво Ліра-К, 2019. 424 с.

DOI https://doi.org/10.30525/978-9934-26-277-7-160

JETPACK COMPOSE: NEW APPROACHES

TO ANDROID UI DEVELOPMENT

Marchenko S.
Lecturer at the Department of Computer Engineering

and Information Technologies

Cherkasy State Business College

Cherkasy, Ukraine

Android API is all about constant changes and adoption of the cutting-

edge technologies. Till the recent times its native UI development part was

quite established with traditional imperative approach based on XML

markup with UI logic in Java/Kotlin. But with growing popularity of cross-

platform mobile solutions like React Native or Flutter the time has come

also to rethink the process of UI development in whole.

Declarative UI building brings a new perspective to the development

process. At its core it states that rebuilding of parts of your UI from scratch

is more preferable than modifying them. Declarative UI-frameworks

propose the idea that changes in state may trigger a rebuild of the UI. Such

approach removes a whole bunch of state-related bugs.

The trend of declarative UI for mobile projects began in 2013 with

React Native by Facebook. Now it is a strong controversy regarding

its adoption due to many “in-house” frameworks, possible problems

in scheduling of development process for the external developers,

emergence of UI-frameworks made by platform vendors, including SwiftUI

and Jetpack Compose [1]. Recently the latter UI-framework have reached

stable version. Overall comparison of traditional XML-based and Compose

UI development is shown in Table 1 [2; 3].

International scientific conference

282

Basic building blocks of Jetpack Compose are Composable functions.

By annotating functions as @Composable we are essentially telling the

compiler that the function intents to convert data into a UI node to register

(return of the function) in the composable UI “tree”. Such action is called

“emitting”. Also such annotating changes the type of the function or

expression that it is applied to, imposes some constraints or properties over

it. The Compose runtime expects composable functions to comply to the

mentioned properties, so it can assume certain behaviors and therefore

exploit different runtime optimizations.

Table 1

XML-based vs Compose UI development

Criteria XML-based Jetpack Compose

Approach Imperative Declarative

UI representation
View hierarchy as a tree

of UI widgets

Regeneration the entire

screen from scratch,

applying only the

necessary changes

Layout design
XML + UI logic in

Java/Kotlin
Fully in Kotlin

Separation of

concerns

Tightly coupled layout

and ViewModel, often

implicitly

Follow cohesion

principle due to the same

language for UI design

and logic

Reaction to app

state changes

UI hierarchy needs to be

updated to display the

current data

Intelligently chooses

which parts of the UI to

need to be redrawn at

any given time.

UI update process

Traverse the tree, change

nodes. Correspondent

methods change the

internal state of the

widget.

Reduces the overhead of

navigating the UI tree.

Composables can hold a

state and re-run on state

changes. This is called

recomposition.

View

configuration and

customization

By XML attributes By Compose modifiers

Fergana, the Republic of Uzbekistan November 28, 2022

283

Any function that is annotated as @Composable gets translated

by the Jetpack Compose compiler to a function that implicitly gets

an instance of a Composer context passed as a parameter, and that also

forwards that instance to its Composable children. The compiler will add an

implicit Composable parameter to each Composable call on the tree, also

with some markers to the start and end of each composable [4, р. 3–6].

A composable function can only be called within another composable.

With smaller composables we get a more flexible component structure.

Particularly, such approach makes UI design of lists and grids much

simpler. Instead of layouting a list, single item of this list and special

adapter for data population, Jetpack Compose proposes only LazyColumn

for showing list items in screen. We can describe item design in item/items

scope [5].

Jetpack Compose introduced many performance improvements.

As an example, we can refer to [6] and acknowledge substantial decreasing

of frozen frames and reduction in median page load duration. In addition,

Compose improves your build time and APK size. At this point major

performance issues are caused by composables that can be skipped or not

during recomposition [7].

Jetpack Compose brings to Android developer community the latest

approaches to UI building. Due to similarity between ordinary Kotlin

functions and composables, new layouting tools fit neatly into the set

of Android developer skills. Also Jetpack Compose has much smoother

learning curve, though current versions of this UI framework and Android

Studio IDE still have some bugs and instability.

References:

1. Steinberger P. The new shiny. On the shift from imperative to

declarative UI, and what it might mean for the apps we build today and

tomorrow // Increment. 2021. Vol. 18. P. 61–64. URL: https://increment.com/

mobile/the-shift-to-declarative-ui/ (дата звернення: 19.11.2022).

2. Making the shift to Jetpack Compose. URL: https://medium.com/

androiddevelopers/jetpack-compose-before-and-after-8b43ba0b7d4f (дата

звернення: 19.11.2022).

3. Understanding Jetpack Compose – part 1 of 2. URL: https://medium.com/

androiddevelopers/understanding-jetpack-compose-part-1-of-2-

ca316fe39050 (дата звернення: 19.11.2022).

4. Castillo J., Shikov A. Jetpack Compose Internals. Lean Publishing,

2022. 114p.

International scientific conference

284

5. Say Hello to Jetpack Compose and Compare with XML. URL:

https://blog.kotlin-academy.com/say-hello-to-jetpack-compose-and-

compare-with-xml-6bc6053aec13 (дата звернення: 19.11.2022).

6. Comparing Jetpack Compose performance with XML. URL:

https://medium.com/okcredit/comparing-jetpack-compose-performance-

with-xml-9462a1282c6b (дата звернення: 19.11.2022).

7. Jetpack Compose Stability Explained. URL: https://medium.com/

androiddevelopers/jetpack-compose-stability-explained-79c10db270c8

(дата звернення: 19.11.2022).

DOI https://doi.org/10.30525/978-9934-26-277-7-161

LOW-COMPLEXITY LIDAR POINT CLOUD FILTERING

METHOD FOR SELF-DRIVING VEHICLES

Matvienko V. T.
Candidate of Physico-Mathematical Sciences,

Associate Professor at the Department of Complex Systems Modelling

Taras Shevchenko National University of Kyiv

Kyiv, Ukraine

Mushta I. A.
Graduate student at the Department

of Electronic Computational Equipment Design

National Technical University of Ukraine

“Igor Sikorsky Kyiv Polytechnic Institute”

Kyiv, Ukraine

Measurements obtained from LiDAR sensor always contain noise

detections. The origin of this noise is different. Most LiDAR systems suffer

degradation from adverse environment conditions. The photodetector of the

lidar system detects transient light from the sun and the surroundings, and

this light produces noise that hinders the system's effectiveness. Also

adverse weather conditions, such as snow, dust, heavy rain or fog, distort

the point cloud image obtained by LiDAR sensors. So to obtain high quality

LiDAR point cloud filtering methods are used. Traditional filtering

algorithms are often limited to isolated outliers, cannot identify outlier

groupings or, otherwise, remove a lot of useful environmental features.

What`s more, some of them are too complex to have ideal real-time

