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MATHEMATICAL MODEL OF THE DYNAMICS  

OF THE INTERACTION OF GOODS PRICES  
ON ADJACENT MARKETS: THE PROBLEM OF LIMIT CYCLES  

 
Although the problem of the formation of market prices, the 

determination of equilibrium prices and their stability is well known, and 
many theoretical works and works summarizing the results of observations 
are devoted to its research, it is still relevant. This is especially useful for 
forecasting the dynamics of equilibrium price stability processes relative to 
changes in the parameters characterizing the state of the system, as this 
requires the use of fairly complex mathematical instrumentation, namely 
differential and integral calculus. The purpose of this work is to build a 
mathematical model of economic dynamics, which would allow, in general, 
to carry out a qualitative analysis (according to phase trajectories) of the 
processes that determine the state of equilibrium with respect to prices on 
adjacent commodity markets. We will consider a general example of a 
dynamic system that describes the interaction of commodity prices on two 
markets, and we will show that in such a system there can be six limit cycles 
that determine the possible variants of its stationary state. 

The mathematical model of economic dynamics for the case of two 
commodity markets can be represented as a system of two ordinary 
differential equations: 

′ =
 ′ =
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where 1( )р t  and 2 ( )р t  are changing over time the prices of goods in the 
corresponding markets (hereinafter, differentiation is carried out by time); 
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1 1 2( , )F p p , 2 1 2( , )F p p  are functions of excess demand for a product in 
each of the markets, which are nonlinear of degree no higher than two. 

It should be noted that for a quadratic system of two ordinary differential 
equations, the number of limit cycles at a singular point of the “complex 
focus” type cannot be more than three [1, 2 etc.]. There is a well-known 
example that shows that for a quadratic system in which there are two foci, 
the number of limit cycles can reach six in a ratio of 3:3, i.e., three cycles 
around each focus [3]. 

To analyze system (1), we choose the following type of excess demand 
functions: 

= λ − + + +2 2
1 1 2 1 2 1 1 2 2( , )F p p p p kp mp p np , 

= + +2
2 1 2 1 1 1 2( , )F p p p ap bp p , 

where λ, , , , ,a b k m n  are some constant parameters. 
In this case, the system has the form: 

            
′ = λ − + + +


′ = + +

2 2
1 1 2 1 1 2 2

2
2 1 1 1 2

;

.

p p p kp mp p np

p p ap bp p
                      (2) 

System (2) has two equilibrium positions. These are points 
= =* *

1 20; 0p p  and = =* *
1 20; 1/p p n , which, for certain parameter values, 

are foci.  
Let us transform system (2) by introducing new variables such as  = 11p p

and  = − *
2 22p p p , where the variable *

2р  can take the value either 0 or 1 n . 
Then system (2) takes the form: 



     



   

 = λ + + − + + +

 = + + +
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2
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( ) (2 1) ;
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p mp p np p k p m p p n p

p bp p a p b p p
 (3) 

It is obvious that for values of the parameter λ  close to λ =1 0  or to 
λ = −2 m n  provided that ω = + − >2 * *

2 2(1 )(1 2 ) 0bp np , there are two foci. 
Assuming that = −2b n , then ω = −2 * 2

2(1 2 )np  and for { }∈*
2 0; 1p n we 

obtain ω =2 1 . Thus, oscillations with a frequency of ω =1 . 
If we take  = = λ = λ =1 2 11 2, , 0p x p x  for the equilibrium position 
= =* *

1 20; 0p p  (first focus), then we obtain system (3) in normal form: 

′ = − + + +

′ = + −

2 2
1 2 1 1 2 2
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;

2 .

x x kx mx x nx

x x ax nx x
                         (4) 
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If we accept  = = − λ = λ = −1 2 21 2, ,p x p x m n  for the equilibrium 
position = =* *

1 20; 1/p p n  (second focus), then we obtain system (3) in 
normal form: 

′ = − + − +

′ = − −

2 2
1 2 1 1 2 2

2
2 1 1 1 2

;

2 .

x x kx mx x nx

x x ax nx x
                            (5) 

Obviously, systems (4) and (5) can be written in the general form, using 
the notation = ± = ±0 0, ,a a m m  where the “+” sign corresponds to system 
(4), and the “–” sign corresponds to system (5): 

′ = − + + +

′ = + −

2 2
1 2 1 0 1 2 2

2
2 1 0 1 1 2

;

2 .

x x kx m x x nx

x x a x nx x
                           (6) 

It is convenient to move from the system of two differential equations (6) 
to one complex-valued differential equation by making a change of variables 
= + ⋅1 2z x i x  and = − ⋅1 2z x i x , where =2 1i . We get: 

′ = ⋅ + + ⋅ +2 2
20 11 020,5 0,5z i z g z g z z g z ,                       (7) 

where the parameters of the equation are ( )= − + −20 0 00,5 3 ( )g k n i a m , 

= + + ⋅11 00,5( )g k n i a , ( )= + + +02 0 00,5 ( )g k n i a m . 
To study the multiplicity of limit cycles, it is necessary to calculate the 

values of the first three Lyapunov quantities. If they are all equal to zero,  
then system (6) will be conservative with an infinite number of  
periodic trajectories. Formulas for calculating Lyapunov quantities were 
proposed in [4]: 

( )

( )

( ) ( )

= −

= = − − +

= = = − − ⋅ +
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2 2 2
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Im ;

2
1

0, Im ( 4 )( ) ;
12

5
0, 4 Im ( ) .

64

l g g

l l g g g g g g

l l l g g g g g g

  (8) 

From relations (8) it follows that the cyclicity of each focus can be 
determined using the following expression:  

= ⋅20 11g r g .                                          (9) 
Let’s analyze the possible states of the system using the relation (9). 
When = −1r  there is a conservative case with an infinite set of periodic 

regimes. 
If r  is a complex number, then there is a unique limit cycle. 
If r  is a real number and ≠ −1r  or ≠ 4r , then there are two limit 

cycles. 
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If = 4r , then there are three limit cycles. 
Calculate the values of the first three Lyapunov quantities based on 

relationships (8). Equalities = =1 2 0l l  take place if the following relations 
are satisfied: 

+ =3 7 0k n                                        (10) 
− =0 05 0m a                                (11) 

Note that from (11) it follows that for each equilibrium positions it is true 
that = 5m a . 

Let’s assume that = −
7

3
k n  and = 5m a . Then system (6) has the form: 

 ′ = − − + +

 ′ = + −

2 2
1 2 1 0 1 2 2

2
2 1 0 1 1 2

7
5 ;

3

2 .

x x nx a x x nx

x x a x nx x

                  (12) 

For these parameter values, the third Lyapunov quantity is determined by 
the relation: 

= − −2 2 2 20
3 0 0

25
( 6 )(16 51 )

1728

na
l n a n a .                   (13) 

Obviously, if the parameters and are rational numbers and are not equal to 
zero, then, in accordance with relation (13), the third Lyapunov quantity is 
nonzero: ≠3 0l . This means that for the same values of the parameters of the 
nonlinear part of systems of equations (4) and (5), there are three limit cycles 
around each equilibrium position. Thus, there are simultaneously six limit 
cycles in this system in a ratio of 3:3. 

Therefore, the analytical model of economic dynamics which we present 
in this paper allows to study the dynamics of prices in adjacent markets 
depending on the value of the model parameters and, accordingly, can be the 
basis for simulation modeling. When applied to the model of two markets, 
this study demonstrates the possibilities of qualitative forecasting (namely, 
according to phase trajectories) of periodic regimes of market conditions. 
Application of the system of differential equations in this mathematical 
model of economic dynamics allows considering processes that are 
continuous in time. 
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