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Abstract. The attention mechanism is a powerful and effective method 
utilized in natural language processing. This mechanism allows the model 
to focus on important parts of the input sequence. Transformer model 
utilizes attention mechanisms to replace recurrent and convolutional neural 
networks, which eliminates the need for increasingly complex operations 
as the distance between words in a sequence increases. However, this 
method is notably insensitive to positional information. Positional encoding 
is crucial for Transformer-like models that heavily rely on the attention 
mechanism. To make the models position-aware, the position information 
of the input words is typically incorporated to the input token embeddings 
as an additional embedding. The purpose of the paper is to conduct a 
systematic study to understand different position encoding methods. We 
briefly describe the components of the attention mechanism, its role in the 
Transformer model, and the encoder-decoder architecture of the Transformer. 
We also study how sharing position encodings across various heads and 
layers of a Transformer affects the model performance. Methodology of 
the study is based on general research methods of analysis and synthesis, 
experimental testing, and quantitative analysis to comprehensively examine 
and compare the efficacy and performance of different positional encoding 
techniques utilized in Transformer models. The obtained results show 
that using absolute and relative encodings results in similar performance 
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for the model, while relative encodings worked much better with longer 
sentences. We found the original encoder-decoder form worked best for the 
tasks of machine translation and question answering. Despite using twice 
as many parameters as "encoder-only" or "decoder-only" architectures, an 
encoder-decoder model has a similar computational cost. Besides that, the 
number of learnable parameters can often be reduced without performance 
loss. Practical implications. Positional encoding is essential for enabling 
Transformer models to effectively process data by preserving sequence 
order, handling variable-length sequences, and improving generalization. 
Its inclusion significantly contributes to the success of Transformer-
based architectures in various natural language processing tasks. Value/ 
originality. Positional encoding is such a critical issue for Transformer-
like models. However, it has not been explored how positional encoding 
establishes positional dependencies within a sequence. We chose to analyze 
several approaches to position encoding in the context of question answering 
and machine translation tasks because the influence of positional encoding 
on NLP models in terms of word order remains ambiguous and requires 
further exploration.

1. Introduction
The Transformer architecture has been essential for some of the biggest 

breakthroughs in deep learning in recent years. Especially in the field of 
Natural Language Processing (NLP), pre-trained autoencoding models (like 
BERT) and autoregressive models (like GPT-3) have continuously managed to 
outperform the state-of-the-art and reach human-like levels of text generation. 
One significant advancement introduced by the Transformer model is the use 
of attention layers as its main way for directing information flow.

Transformers have two major components: self-attention and a position-
wise feed forward layer. The attention mechanism is a powerful and effective 
method utilized in NLP. However, it has been observed that this method 
suffers from a notable disadvantage, i.e. its permutation invariance, which 
makes the attention mechanism insensitive to positional information. While 
numerous studies have sought to enhance positional encoding and explore 
the effects of changing the word order, it remains unclear how positional 
encoding impacts NLP models in terms of word order. Notably, the word 
order is particularly relevant for natural language generating tasks, such as 
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machine translation. This significance is imposed by metrics used to evaluate 
generated results, such as BLEU, which are sensitive to word order.

Typically, the models are made position-aware by integrating the position 
information of the input words as an additional embedding to the input token 
embeddings. These position embeddings only depend on the location the 
word appears. There have been multiple works exploring different ways to 
include position information in Transformers, such as learnable fixed-length 
positional encoding, sinusoidal positional encoding and relative positional 
encoding. Typically, these methods assign positional encodings to words at 
different positions through vector addition in multiple indexing mechanisms.

In this work we undertake a systematic study to understand different 
position encoding methods. We briefly describe the components of the 
attention mechanism, its role in the Transformer model, and the encoder-
decoder architecture of the Transformer. We also compare different 
position encodings and examine the effect of sharing position encodings 
across different heads and layers within a Transformer. Positional encoding 
is essential for enabling Transformer models to effectively process data 
by preserving sequence order, handling variable-length sequences, and 
improving generalization. Its inclusion significantly contributes to the 
success of Transformer-based architectures in various natural language 
processing tasks. However, it has not been explored how positional encoding 
establishes positional dependencies within a sequence. We chose to analyze 
several approaches to position encoding in the context of question answering 
and machine translation tasks because it remains unclear how positional 
encoding impacts NLP models from the perspective of word order. 

Methodology of the study is based on general research methods of 
analysis and synthesis, experimental testing, and quantitative analysis to 
comprehensively examine and compare the efficacy and performance of 
different positional encoding techniques utilized in Transformer models.

2. Attention mechanism
The attention mechanism was first introduced within the encoder-

decoder framework [1]. Attention mechanism allows the model to focus on 
important parts of the input sequence. The mechanism itself was introduced 
to solve the bottleneck problem that occurs when a fixed-length encoding 
vector is used, so the decoder would have limited access to the input 
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information. This limitation is particularly concerning for long or complex 
sequences, as it forces the dimensionality of their representation to be the 
same as for shorter or simpler sequences.

Essentially, when the generalized attention mechanism is given a 
sequence of words, it takes the query vector associated with a particular 
word in the sequence and compares it with each key in the database. In 
doing so, it discerns the relationship between the word being examined and 
others in the sequence. Then it adjusts the values based on the attention 
weights (computed from the scores) to concentrate on those words relevant 
to the query. This results in the generation of an attention output for the 
word in question.

The general attention mechanism makes use of three main components, 
namely the queries, Q, the keys, K, and the values, V. The query is analogous 
to the previous decoder output, st−1 , while the values are analogous to the 
encoded inputs, hi  [1]. 

The general attention mechanism computes the following:
1. Each query vector, q st� �1 , is compared to a database of keys to 

calculate a score value. The comparison is based on calculation of the dot 
product of the specific query with each key vector, ki :

e q kq k ii, � �                                           (1)

2. A softmax operation is applied to the scores to generate the weights:

�q k q ki i
softmax e, ,� � �                                  (2)

3. The generalized attention is subsequently calculated by taking a 
weighted sum of the value vectors, vki , where each value vector is associated 
with a corresponding key:

attention q K V v
i

q k ki i
, , ,� � � ��                          (3)

In the context of machine translation, each word of an input sequence is 
assigned its own query, key, and value vectors. These vectors are derived by 
multiplying the encoder’s representation of the word under consideration 
with three different weight matrices generated during training. 

The Transformer attention uses the following main components:
– q and k represent vectors of dimension, dk , containing the queries and 

keys, respectively;
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– v represents a vector of dimension, dv , containing the values;
– Q, K, and V represent matrices packing together sets of queries, keys, 

and values, respectively;
– WQ , W K  and WV  represent projection matrices that are used in 

generating different subspace representations of the query, key, and value 
matrices;

– WO  represents a projection matrix for the multi-head output.
Essentially, the attention function serves as a mapping of a query and a 

set of key-value pairs to produce an output.
The Transformer implements a scaled dot-product attention, following 

the procedure of the general attention mechanism. As the name implies, the 
scaled dot-product attention first computes a dot product for each query, 
q, with all of the keys, k. Then it divides each result by dk  and applies a 
softmax function. This process yields the weights that are used to scale the 
values, v.

In practice, the scaled dot-product attention can be calculated 
simultaneously for the entire set of queries. The matrices Q, K, and V are 
used as inputs for the attention function, according to the following:

attention Q K V softmax
QK

d
V

T

k

, ,� � �
�

�
��

�

�
��                     (4)

The introduction of a scaling factor 1/ dk  aims to counteract the effect 
of having the dot products grow large in magnitude for large values of dk ,  
where the application of the softmax function would then yield extremely 
small gradients that would lead to the vanishing gradients problem. By 
reducing the dot product results, the scaling factor can prevent this 
problem.

Although, the inclusion of the scaling factor doesn't affect the 
computational complexity, as that is dominated by the softmax calculation. 
This formula has an issue: multiplying Q and K leads to an n n*  matrix. 
Taking the row-wise softmax of an n n*  matrix has a complexity of O n2� � ,  
posing challenges in terms of runtime and memory usage as n  can be very 
large. For large sequences, it quickly becomes impractical to compute self-
attention over the full input, which means it is necessary to truncate or 
chunk the inputs.
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3. Encoder and decoder
The Transformer model does not employ recurrent neural networks 

(RNNs), long short-term memory (LSTM) units, or convolutional neural 
networks (CNNs). Instead, it utilizes attention mechanisms to replace 
recurrence, which eliminates the need for increasingly complex operations 
as the distance between words in a sequence increases. The attention 
mechanism operates on a "word-to-word" basis, determining how each 
word relates to every other word in the sequence, including the word being 
analyzed itself.

Transformer relies solely on the use of self-attention, where the 
representation of a sequence (or sentence) is generated by relating different 
words in the same sequence. Self-attention is a specific type of attention. 
Compared to regular attention, self-attention focuses on a single sequence 
instead of relating an input to an output sequence. This way the model lets 
a sequence learn information about itself.

The original Transformer architecture consists of a stack of 6 layers. 
Each layer's output serves as the input to the subsequent layer until the final 
prediction is produced. The architecture includes a 6-layer encoder stack on 
the left and a corresponding 6-layer decoder stack on the right [15, p. 29].

On the left (see Figure 1), inputs are fed into the encoder of the 
Transformer through an attention sub-layer and a FeedForward Network 
(FFN) sub-layer. On the right, target outputs are processed through two 
attention sub-layers and an FFN sub-layer within the decoder.

All layers of the Transformer model retain the same structure as the 
original encoder layer. Each layer contains a sub-layer of multi-head attention 
mechanism and a sub-layer of a fully connected position-wise FFN. Each 
main sub-layer in the model is surrounded by a residual connection that 
transports the unprocessed input x of each sublayer to a layer normalization 
function. This way, key information such as positional encoding is not lost 
on the way.

Despite the identical structure of each layer in the encoder, the content 
of each layer differs from the previous layer. For instance, the embedding 
sub-layer is only present at the bottom level of the stack, and the subsequent 
layers do not contain an embedding layer. This ensures that the encoded 
input is stable through all the layers. Similarly, the multi-head attention 
mechanisms perform the same functions in all layers, yet they do not 
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perform the same tasks. Each layer learns from the previous one, exploring 
different ways of associating the tokens within the sequence.

Comprising eight heads, the multi-head attention sub-layer is followed by 
postlayer normalization, which adds residual connections to the sublayer's 
output and normalizes it. The input of the multi-attention sub-layer of the 
first layer of the encoder stack is a vector that contains the embedding and 
the positional encoding of each word.

Inside each head hn  of the attention mechanism, each word vector has 
three representations:

– A query vector that has a dimension of dq = 64 , which is activated and 
trained when a word vector xn  seeks all of the key-value pairs of the other 
word vectors, including itself in self-attention.

 

Figure 1. The Transformer architecture
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– A key vector that has a dimension of dk = 64 , which will be trained to 
provide an attention value.

– A value vector that has a dimension of dv = 64 , which will be trained 
to provide another attention value.

Each attention sub-layer and each feedforward sub-layer of the 
Transformer is followed by post-layer normalization (Add & Norm), 
which includes an add function and a normalization process itself. The add 
function handles the residual connections that originate from the sublayer's 
input. The goal of these connections is to ensure that the critical information 
is not lost during processing.

The input of the FFN is the dmodel = 512  output of the Add & Norm of 
the previous sublayer. The FFN comprises two layers and applies a ReLU 
activation function. The output of the FFN is fed to the Add & Norm. Then 
the output is sent to the next layer within the encoder stack and the multi-
head attention layer within the decoder stack.

The decoder layer maintains the same structure as the encoder for all 
the layers of the Transformer model. Each layer consists of the three sub-
layers: a multi-head masked attention mechanism, a multi-head attention 
mechanism, and a fully connected position-wise feedforward network. The 
structure of each sub-layer and function of the decoder is similar to the 
encoder.

The decoder has a third main sub-layer, which is the masked multi-head 
attention mechanism. In this sub-layer output certain words are masked at a 
given position. Masking ensures that the Transformer bases its predictions 
solely on its inferences without accessing the rest of the sequence. That way, 
in this model, the Transformer cannot see future segments of the sequence. 

The output of every sub-layer of the model has a constant dimension, 
dmodel , including the embedding layer and the residual connections. This 
dimension can be set to another value. For the original Transformer 
architecture, dmodel  is set to 512.

In the original Transformer model, the input embedding sub-layer 
transforms the input tokens into vectors using learned embeddings. The 
Transformer's subsequent layers have learned word embeddings that 
already provide information on how the words can be associated. However, 
a lot of information is missing because no additional vector or information 
indicates a word's position in a sequence.
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Generating independent positional vectors would significantly impede 
the training speed of the Transformer and make attention sub-layers very 
complex to work with. The concept entails incorporating a positional 
encoding value into the input embedding to describe the position of a token 
in a sequence, instead of having additional vectors. 

4. Positional encoding
Positional representation is utilized as an inductive bias of positional 

relevance information by positional encoding function in the Transformer 
model. There have been many attempts to incorporate position information 
into the Transformer model. 

Typically, embedding-level positional encodings build positional 
dependencies via adding positional encodings to embedding results  
[5; 7; 18]. In addition, attention-level positional encodings usually capture 
positional information based on an analysis of attention mechanisms and 
leverage delicate indexing manners, such as the relative distance to the 
querying word [8; 14; 17; 21]. However, it is unknown why the attention 
mechanism of the Transformer is position agnostic and what is the working 
principle behind these positional encodings.

Positional encodings are typically added to the embeddings of a sequence 
right after the embedding layers. They are usually a set of predefined or 
trainable vectors, indexed with absolute position numbers. After that, the 
contextual representation oi  can be presented as following:

o x b X B X B Wi i i V� � �� � �� �� , ,                           (5)
where b Ri

d∈  denotes the positional embedding for the i-th word, 
B RL d� �  represents the packed positional embeddings for the whole 
sequence [22].

Positional encodings at the attention level are based on a key insight into 
the attention mechanism. Since they are employed in attention layers, they 
can access both the query and the key. This way positional information can be 
encoded in a more complex manner, such as using the relative distance between 
the query and the key for indexing. Considering a relative positional encoding 
as an example, the contextual representation oi can be calculated as [17]:

o v ri
j

L

ij j ij
v� �� �

�
�

1

�                                       (6)
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� �ij i j ij
kq k r� �� �, ,                                      (7)

where r r Rij
k

ij
v dk, ∈  are trainable positional encodings for the j-th key and 

j-th value respectively. These encodings are indexed based on the distance 
between xi  and x j  [22].

Sine and cosine functions are used to generate different frequencies for 
the positional encoding (PE) for each position and each dimension i of the 
dmodel = 512  of the word embedding vector [18; 19]:

PE sin
pos

pos i i

dmodel

� 2 2

10000
� � �                                (8)

PE cos
pos

pos i i

dmodel

� 2 1 2

10000
�� � �                               (9)

Figure 2 shows the heatmap of sinusoidal positional encoding method.
The fixed position embeddings are subsequently combined with the word 

embeddings of the input sequence accordingly. Although the sinusoidal 
version with predefined wavelength has unique extrapolability which 
allows it to encode longer sequential positions than pre-training samples, 
it does not always perform well on downstream tasks, due to the lack of 
learnability and flexibility [17]. 

Absolute position encoding includes computing a positional encoding 
for each token and adding it to the input content embedding to incorporate 
positional information into the original sequence. This method was 
introduced in [18] for Transformers and it has been commonly utilized 
in the follow-up works. There are two variations of the absolute position 
encodings: fixed and learned. 

Given an input sentence: X x x x Rn
n d� �� �� �

1 2, , , , where n is the 
number of words and d is the dimension of word embeddings, the attention 
computes the output of the i-th token as:

�ij
i i

Q
j j

K
T

x p W x p W

d
�

� �� �� �( )
                      (10)

Here, p Ri
d∈  is a position embedding for the i-th token, obtained by 

fixed or learned encodings. 
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Many successful variants of pre-trained Transformer models, such as 
BERT [5] and RoBERTa [12], incorporate the entire embedding matrix as 
trainable parameters [7]. To ensure a fixed number of training parameters, 
the maximum length of a sequence, denoted as Lmax , must be predefined 
before training. Despite lacking the inductive property, this data-driven 
approach has proven effective for various NLP tasks. Unlike the fixed 
sinusoidal position encoding, a learnable position embedding matrix is not 
injected at each block for Transformer due to a large number of additional 
parameters.

Figure 3 shows the heatmap of learnable absolute positional encoding 
method.

Unit order across different languages is quite different. English uses a 
subject-verb-object ordering, that is rather fixed, but all possible orderings 
have been argued to occur in other languages. So, the question is whether 
it is useful to share position information across languages. Multiple studies 
observe mixed results with language specific position embeddings in the 
context of transferring monolingual models to multiple languages: for most 
languages it helps, but for some it seems harmful. In multilingual models 
position embeddings are shared by default [5]. 

However, one limitation of absolute position encoding is that it requires 
a fixed length of input sequence and does not directly account for the relative 

 
Figure 2. Sinusoidal positional encoding with the maximum sequence 

length of 256. Each position row represents the embedding vector  
as positional representation
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positions between words [2]. Several approaches were proposed to enhance 
positional representation by adding relative position information into the 
attention score computation stage to improve performance of Transformer 
based models [4; 6; 8; 17].

Due to the fixed context length, the model is unable to capture any longer-
term dependency longer than the predefined context length. Furthermore, 
the fixed-length segments are formed by selecting a consecutive sequence of 
symbols without considering the sentence or any other semantic boundary. 
Hence, the model lacks necessary contextual information needed to well 
predict the first few symbols, leading to inefficient optimization and inferior 
performance.

 Figure 3. Learnable absolute positional encoding  
with the maximum sequence length of 256

 

Figure 4. Similarity of sinusoidal and learnable positional encodings
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The authors of [17] suggested using relative position encoding in lieu of 
absolute position encoding, and incorporating position embeddings to the 
key and optionally value projections, rather than the input. Their findings 
indicate that this alternative method of encoding position information 
improves performance on machine translation tasks. The authors of [23] 
further simplified this approach by removing the position embeddings in 
value projections, resulting in enhanced performance in language modeling 
tasks. Both approaches use a vector representation to encode positional 
information.

Relative positional encoding produces a vector ri j,  or a scalar value βi j,  
that depends on the relative distance of tokens. These methods specifically 
apply such a vector or bias to the attention head, enabling the adjustment 
of the corresponding attentional weight according to the relative distance 
between two tokens:

�ij
i

Q
j

K
i j
K T

xW x W r

d
�

�� �,                                 (11)

�
�

ij

i
Q

j
K T

i jxW x W

d
�

� � �( ) ,                              (12)

Here, the first mode uses a vector ri j,  while the second uses a scalar 
value βi j, , for infusing relative distance into attentional weight. Relative 
position representation reduces the number of parameters to 2 1K d�� �  by 
dropping the interactions between tokens with a distance greater than K.

Let’s consider the runtime storage complexity of embedding methods 
for a transformer model with m layers, h attention heads per layer, and 
maximum sequence length of n. For each position in the sequence, a 
positional encoding vector is required. Therefore, the storage complexity of 
positional encoding is O nd� � . Each token in the sequence is embedded into 
a vector. If the vocabulary size is V and the embedding dimension is d, then 
the storage complexity of token embeddings is O Vd� � .

Absolute positional encoding introduces embedding parameters with 
size of nd, relative positional encoding − with size of mh n d2 1�� � . All 
position embedding methods introduce a small number of additional 
parameters to a model. Therefore, relative positional encoding introduces 
mh n d K2 1 12 12 2 512 1 147�� � � � � �� � �, �  parameters at maximum. Comparing 
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this to the number of parameters in large models like BERT (e.g., 108M 
parameters), it's indeed negligible. This illustrates that the overhead 
introduced by relative positional encoding is relatively small compared to 
the overall size of the model.

The cross correlation between position and token embeddings can 
result in weaker performance of additive absolute position embeddings, 
so instead it was proposed to add both absolute and relative positional 
information-based attention directly in each head [9]. So, the Transformer 
only uses the word embedding as input. In the self-attention module, 
different types of correlations are separately computed to reflect different 
aspects of information, including word contextual correlation and absolute 
(and relative) positional correlation. Each kind of correlation has its own 
parameters and is added together to generate the attention distribution. 
This design successfully eliminates the randomness in word-to-position 
or position-to-word correlations and provides greater expressiveness in 
characterizing the relationship between a pair of words or positions.

The relative positional encoding denotes the position of a word 
within a sentence, either through a vector representation [4; 17] or a 
scalar representation [14]. In the scalar approach, the embedding vectors 
of relative positions and the word embedding have the same dimension. 
Scalars are used to encode relative position between query and key indices 
by directly incorporating them into the attention scores matrix. These 
position embeddings are streamlined, with each "embedding" essentially 
being a scalar added to the corresponding logit for computing attention 
weights. For efficiency, they also share the position embedding parameters 
across all layers in our model, though within a given layer each attention 
head uses a different learned position embedding. Typically, only a fixed 
number of embeddings is learned, with each corresponding to a range of 
possible offsets between keys and queries. 

The approach used in the T5 Transformer consists of bucketing function 
and bucket embedding [14]. The bucketing function categorizes the 
relative positions into different buckets using a fixed heuristic algorithm, 
and the bucket embedding component maps each bucket to a learnable 
scalar value. This "scalar embedding" is then added to the corresponding 
context score to derive the final attention score, determining the self-
attention weights. In contrast, Adaptive-T5 adopts a learnable bucketing 
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function that automatically adapts to the dependency range specific to the 
learning task [21].

In addition to just the input layer, some authors suggest that the injection 
of position information to every layer leads to even better performance for the 
Transformer. Since it is nontrivial to modify or replace backbone of model 
structure during the fine-tuning stage, some research works propose auxiliary 
tasks or data augmentation approaches to leverage absolute or relative position 
information without modifying model structure [11; 13; 20].

An ideal position encoding approach should satisfy the following three 
properties [11]:

1. Inductive. It should have the capability to handle sequences longer 
than any encountered during training.

2. Data-driven. The position encoding should be trainable from the data, 
allowing it to adapt to different tasks and datasets.

3. Parameter efficient. The number of trainable parameters introduced 
by the encoding should be limited to prevent excessive model size, which 
could hinder generalization.

Table 1
Comparing position representation methods

Methods Inductive Data-driven Parameter 
efficient

Sinusoidal PE [18] + - +
Absolute PE [5] - + -
Relative PE [17] - + +
Combined absolute and relative PE [9] - + +
Relative scalar approach [14] + + -
Adaptive-T5 [21] + + -

Transformer language models (LMs) with sinusoidal position 
embeddings exhibit very weak extrapolation capabilities. The position 
embedding method causes this failure to extrapolate. Recent alternatives 
to the original sinusoidal position method have improved extrapolation. 
However, the better of these, relative scalar approach and Adaptive-T5, are 
considerably slower than the sinusoidal approach and use extra memory 
and parameters.
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Although some approaches lack the inductive property, many of them 
are still effective for many NLP tasks, due to the fact that the large sequence 
length can be enforced at inference.

To construct position embeddings in a more data-driven way, many 
Transformer variants include these embeddings as learnable model 
parameters in the training stage. This data-driven approach has a drawback 
of imposing a fixed maximum length of input sequences, along with the 
computational and memory overhead of additional parameters. A relative 
position representation helps to reduce the number of parameters. Also, in 
addition to just the input layer, the injection of position information to every 
layer leads to even better performance for the Transformer [3].

5. Experiments
In this section, we present our experimental results comparing different 

position encoding approaches. We consider training Transformer models 
from scratch for question answering and machine translation. We compare 
the following positional encoding approaches:

– w/o PE: without any positional encoding, to provide another reference 
of positional encoding ability;

– SPE: sinusoidal positional encoding [18];
– LAPE: learnable absolute positional embedding, to evaluate the effect 

of trainable positional encoding [5];
– RPE: relative positional embedding [17];
– CARPE: combined absolute and relative positional encoding [9];
– RSA: relative scalar approach [14];
– AT5: adaptive version of T5’s relative positional encoding [21]. 
For the question answering task, we pre-train the model on Ukrainian 

Web Corpus (ukTenTen22). The Ukrainian Web Corpus is a Ukrainian 
corpus made up of texts collected from the Internet. The corpus belongs 
to the TenTen corpus family which is a set of web corpora built using the 
same method with a target size 10+ billion words. Data for the Ukrainian 
Web 2022 corpus consists of texts from May 2014, July–August 2020, and 
October–December 2023. The Wikipedia part is from December 2020 and 
2022. The final size of the corpus contains 9.5+ billion words.

We set a sequence length of 758, a batch size of 128 sequences.  
We use language-independent tokenizer, Sentence Piece model [10],  
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with 45,000 token vocabulary to encode input text. Performance of the 
model is measured by F1 score.

The F1 score is not as strict as the Exact Match score (EM), and more 
closely resembles human judgment as far as the similarity of two answer 
strings. It measures the word overlap between the labeled and the predicted 
answer. It thus symmetrically represents both precision and recall in one 
metric. While EM is calculated on the character level, F1 is calculated on 
individual word level. We find the performance of the EM and F1 scores to 
be highly correlated so we report the F1 score alone.

For the machine translation task we pre-train the model on Multi30K-uk 
dataset using English-to-Ukrainian language pairs. Multi30K is a 
modification of the Flickr30K dataset with German translations of 
English annotations. Multi30K-uk is a variation of this dataset manually 
translated for Ukrainian language by [16]. The dataset consists of 31K 
English-Ukrainian sentence pairs, 357K tokens in English and 276K 
tokens in Ukrainian.

We set a sequence length of 758, a batch size of 128 sequences. We 
use Sentence Piece tokenizer with 72,000 token vocabulary to encode 
input text. We test the corresponding model and report the BLEU score 
output by SacreBLEU with default setting. Following [18] we use a 6-layer 
Transformer with encoder-decoder architecture.

BLEU (Bilingual Evaluation Understudy) is an algorithm designed to 
assess the quality of machine-translated text from one natural language 
to another. Quality is considered to be the correspondence between a 
machine’s output and that of a human: the closer a machine translation 
is to a professional human translation, the better it is. BLEU was among 
the earliest automated metrics to claim a high correlation with human 
evaluation, and remains widely used due to its cost-effectiveness.

BLEU computes scores for individual translated segments by comparing 
them against a set of high-quality reference translations, which are then 
averaged across the entire corpus to gauge the overall translation quality.

However, comparing BLEU scores can be difficult because every 
decoder has its own implementation. Tokenization can also be handled in 
different ways. SacreBLEU aims to solve these problems by wrapping the 
original reference implementation together with other useful features, such 
as: automatic download of common WMT test sets, and support of different 
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tokenizers for BLEU. SacreBLEU provides a computation of shareable, 
comparable, and reproducible BLEU scores. 

We present our results on the question answering and machine translation 
tasks for different position encoding methods in Table 2. 

We conduct experiments on the Transformer model without positional 
encodings (w/o PE) to assess the importance of positional information. The 
outcomes reveal a notable decrease in performance, indicating the critical 
role of positional information in Transformer, which relies solely on the 
position insensitive attention mechanism.

Table 2
Comparing different position encoding methods

Model QA (F1) MT (SacreBLEU)
w/o PE 51.4 18.59

SPE 57.9 20.55
LAPE 59.0 28.74
RPE 64.8 29.3

CARPE 63.9 29.17
RSA 63.8 36.3
AT5 77.2 40.6

We included two experimental setups: one where the position encoder 
was present in all blocks, and another where it was only present at the 
input block. Our experiments show that incorporating absolute position 
encodings into attention matrices with different parameters for each head 
yields significant improvement compared to adding them directly to the 
input. This underscores the significance of where position information 
is integrated in the Transformer, providing an explanation for the gap in 
performance between absolute and relative position encodings.

Adding position encoders at all blocks yields better performance than 
only at the input block, except for the fixed-length position embedding 
approach. Possibly, this is due to over-fitting caused by learnable parameters 
introduced by this approach. 

We found the original encoder-decoder architecture worked best 
for our models. Though an encoder-decoder model uses twice as many 
parameters as "encoder-only" or "decoder-only" architectures, it has a 
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similar computational cost. Furthermore, we observed that sharing the 
parameters in the encoder and decoder did not lead to a significant decrease 
in performance, despite reducing the total parameter count by half.

6. Conclusion
Non-recurrent Transformer models are not sensitive to position. 

The primary reason is that there is no inherent encoding of positional 
information for input units, making the models permutation equivalent. This 
problem explains why existing models are accompanied by a sinusoidal 
encoding or embedding layer at the input. Nonetheless, this approach 
has obvious limitations: the sinusoidal encoding lacks flexibility as it is 
manually designed and does not contain any trainable parameters, whereas 
the position embedding restricts the maximum length of input sequences. 
Besides that, it has not been explored how positional encoding builds 
positional dependencies for a sequence.

There is a range of work comparing and analyzing position information 
approaches, because positional encoding is such a critical issue for 
Transformer-like models. We chose to analyze several of these approaches 
in the context of question answering and machine translation tasks using 
Ukrainian corpora. We observed similar performance for absolute and relative 
encodings, although relative encodings are superior for longer sentences. 
Absolute position embeddings yield worse results mainly because they 
are added at the input. The superior performance of some relative position 
encoding methods can be attributed to their per-head addition to attention 
matrix rather than the position information being relative or absolute. 
Therefore, encoding position to attention matrix per-head results in superior 
performance for both absolute and relative information. A simple per-head 
position attention method achieves the state-of-the-art performance on NLP 
tasks and is more computationally efficient than existing approaches.

The original encoder-decoder architecture for the Transformer model 
proved to be the most suitable for the chosen NLP tasks. Though an encoder-
decoder uses twice as many parameters as "encoder-only" or "decoder-only" 
architectures, it has a similar computational cost. Besides that, the number 
of learnable parameters can often be reduced without performance loss.

We would also like to stress how important it is to collect high-quality 
datasets for low-resource languages such as Ukrainian. Such datasets on 
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their own lead to a significant improvement of results accuracy for machine 
translation and other NLP tasks.

In the future, we aim to explore alternative operations that use word 
order to implicitly encode positional information, thus shedding light on 
how it impacts the performance of NLP models.
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