
1

Chapter «Engineering sciences»

1 Doctor of Philosophy,
Senior Lecturer at the Department of Software Engineering,
Petro Mohyla Black Sea National University, Ukraine
2 Candidate of Technical Sciences, Associate Professor,
Associate Professor at the Department of Software Engineering
Petro Mohyla Black Sea National University, Ukraine

© Kateryna Antipova, Hlib Horban

CHAPTER «ENGINEERING SCIENCES»

POSITIONAL ENCODING FOR TRANSFORMERS

Kateryna Antipova1

Hlib Horban2

DOI: https://doi.org/10.30525/978-9934-26-436-8-1

Abstract. The attention mechanism is a powerful and effective method
utilized in natural language processing. This mechanism allows the model
to focus on important parts of the input sequence. Transformer model
utilizes attention mechanisms to replace recurrent and convolutional neural
networks, which eliminates the need for increasingly complex operations
as the distance between words in a sequence increases. However, this
method is notably insensitive to positional information. Positional encoding
is crucial for Transformer-like models that heavily rely on the attention
mechanism. To make the models position-aware, the position information
of the input words is typically incorporated to the input token embeddings
as an additional embedding. The purpose of the paper is to conduct a
systematic study to understand different position encoding methods. We
briefly describe the components of the attention mechanism, its role in the
Transformer model, and the encoder-decoder architecture of the Transformer.
We also study how sharing position encodings across various heads and
layers of a Transformer affects the model performance. Methodology of
the study is based on general research methods of analysis and synthesis,
experimental testing, and quantitative analysis to comprehensively examine
and compare the efficacy and performance of different positional encoding
techniques utilized in Transformer models. The obtained results show
that using absolute and relative encodings results in similar performance

2

Kateryna Antipova, Hlib Horban

for the model, while relative encodings worked much better with longer
sentences. We found the original encoder-decoder form worked best for the
tasks of machine translation and question answering. Despite using twice
as many parameters as "encoder-only" or "decoder-only" architectures, an
encoder-decoder model has a similar computational cost. Besides that, the
number of learnable parameters can often be reduced without performance
loss. Practical implications. Positional encoding is essential for enabling
Transformer models to effectively process data by preserving sequence
order, handling variable-length sequences, and improving generalization.
Its inclusion significantly contributes to the success of Transformer-
based architectures in various natural language processing tasks. Value/
originality. Positional encoding is such a critical issue for Transformer-
like models. However, it has not been explored how positional encoding
establishes positional dependencies within a sequence. We chose to analyze
several approaches to position encoding in the context of question answering
and machine translation tasks because the influence of positional encoding
on NLP models in terms of word order remains ambiguous and requires
further exploration.

1. Introduction
The Transformer architecture has been essential for some of the biggest

breakthroughs in deep learning in recent years. Especially in the field of
Natural Language Processing (NLP), pre-trained autoencoding models (like
BERT) and autoregressive models (like GPT-3) have continuously managed to
outperform the state-of-the-art and reach human-like levels of text generation.
One significant advancement introduced by the Transformer model is the use
of attention layers as its main way for directing information flow.

Transformers have two major components: self-attention and a position-
wise feed forward layer. The attention mechanism is a powerful and effective
method utilized in NLP. However, it has been observed that this method
suffers from a notable disadvantage, i.e. its permutation invariance, which
makes the attention mechanism insensitive to positional information. While
numerous studies have sought to enhance positional encoding and explore
the effects of changing the word order, it remains unclear how positional
encoding impacts NLP models in terms of word order. Notably, the word
order is particularly relevant for natural language generating tasks, such as

3

Chapter «Engineering sciences»

machine translation. This significance is imposed by metrics used to evaluate
generated results, such as BLEU, which are sensitive to word order.

Typically, the models are made position-aware by integrating the position
information of the input words as an additional embedding to the input token
embeddings. These position embeddings only depend on the location the
word appears. There have been multiple works exploring different ways to
include position information in Transformers, such as learnable fixed-length
positional encoding, sinusoidal positional encoding and relative positional
encoding. Typically, these methods assign positional encodings to words at
different positions through vector addition in multiple indexing mechanisms.

In this work we undertake a systematic study to understand different
position encoding methods. We briefly describe the components of the
attention mechanism, its role in the Transformer model, and the encoder-
decoder architecture of the Transformer. We also compare different
position encodings and examine the effect of sharing position encodings
across different heads and layers within a Transformer. Positional encoding
is essential for enabling Transformer models to effectively process data
by preserving sequence order, handling variable-length sequences, and
improving generalization. Its inclusion significantly contributes to the
success of Transformer-based architectures in various natural language
processing tasks. However, it has not been explored how positional encoding
establishes positional dependencies within a sequence. We chose to analyze
several approaches to position encoding in the context of question answering
and machine translation tasks because it remains unclear how positional
encoding impacts NLP models from the perspective of word order.

Methodology of the study is based on general research methods of
analysis and synthesis, experimental testing, and quantitative analysis to
comprehensively examine and compare the efficacy and performance of
different positional encoding techniques utilized in Transformer models.

2. Attention mechanism
The attention mechanism was first introduced within the encoder-

decoder framework [1]. Attention mechanism allows the model to focus on
important parts of the input sequence. The mechanism itself was introduced
to solve the bottleneck problem that occurs when a fixed-length encoding
vector is used, so the decoder would have limited access to the input

4

Kateryna Antipova, Hlib Horban

information. This limitation is particularly concerning for long or complex
sequences, as it forces the dimensionality of their representation to be the
same as for shorter or simpler sequences.

Essentially, when the generalized attention mechanism is given a
sequence of words, it takes the query vector associated with a particular
word in the sequence and compares it with each key in the database. In
doing so, it discerns the relationship between the word being examined and
others in the sequence. Then it adjusts the values based on the attention
weights (computed from the scores) to concentrate on those words relevant
to the query. This results in the generation of an attention output for the
word in question.

The general attention mechanism makes use of three main components,
namely the queries, Q, the keys, K, and the values, V. The query is analogous
to the previous decoder output, st−1 , while the values are analogous to the
encoded inputs, hi [1].

The general attention mechanism computes the following:
1. Each query vector, q st� �1 , is compared to a database of keys to

calculate a score value. The comparison is based on calculation of the dot
product of the specific query with each key vector, ki :

e q kq k ii, � � (1)

2. A softmax operation is applied to the scores to generate the weights:

�q k q ki i
softmax e, ,� � � (2)

3. The generalized attention is subsequently calculated by taking a
weighted sum of the value vectors, vki , where each value vector is associated
with a corresponding key:

attention q K V v
i

q k ki i
, , ,� � � �� (3)

In the context of machine translation, each word of an input sequence is
assigned its own query, key, and value vectors. These vectors are derived by
multiplying the encoder’s representation of the word under consideration
with three different weight matrices generated during training.

The Transformer attention uses the following main components:
– q and k represent vectors of dimension, dk , containing the queries and

keys, respectively;

5

Chapter «Engineering sciences»

– v represents a vector of dimension, dv , containing the values;
– Q, K, and V represent matrices packing together sets of queries, keys,

and values, respectively;
– WQ , W K and WV represent projection matrices that are used in

generating different subspace representations of the query, key, and value
matrices;

– WO represents a projection matrix for the multi-head output.
Essentially, the attention function serves as a mapping of a query and a

set of key-value pairs to produce an output.
The Transformer implements a scaled dot-product attention, following

the procedure of the general attention mechanism. As the name implies, the
scaled dot-product attention first computes a dot product for each query,
q, with all of the keys, k. Then it divides each result by dk and applies a
softmax function. This process yields the weights that are used to scale the
values, v.

In practice, the scaled dot-product attention can be calculated
simultaneously for the entire set of queries. The matrices Q, K, and V are
used as inputs for the attention function, according to the following:

attention Q K V softmax
QK

d
V

T

k

, ,� � �
�

�
��

�

�
�� (4)

The introduction of a scaling factor 1/ dk aims to counteract the effect
of having the dot products grow large in magnitude for large values of dk ,
where the application of the softmax function would then yield extremely
small gradients that would lead to the vanishing gradients problem. By
reducing the dot product results, the scaling factor can prevent this
problem.

Although, the inclusion of the scaling factor doesn't affect the
computational complexity, as that is dominated by the softmax calculation.
This formula has an issue: multiplying Q and K leads to an n n* matrix.
Taking the row-wise softmax of an n n* matrix has a complexity of O n2� � ,
posing challenges in terms of runtime and memory usage as n can be very
large. For large sequences, it quickly becomes impractical to compute self-
attention over the full input, which means it is necessary to truncate or
chunk the inputs.

6

Kateryna Antipova, Hlib Horban

3. Encoder and decoder
The Transformer model does not employ recurrent neural networks

(RNNs), long short-term memory (LSTM) units, or convolutional neural
networks (CNNs). Instead, it utilizes attention mechanisms to replace
recurrence, which eliminates the need for increasingly complex operations
as the distance between words in a sequence increases. The attention
mechanism operates on a "word-to-word" basis, determining how each
word relates to every other word in the sequence, including the word being
analyzed itself.

Transformer relies solely on the use of self-attention, where the
representation of a sequence (or sentence) is generated by relating different
words in the same sequence. Self-attention is a specific type of attention.
Compared to regular attention, self-attention focuses on a single sequence
instead of relating an input to an output sequence. This way the model lets
a sequence learn information about itself.

The original Transformer architecture consists of a stack of 6 layers.
Each layer's output serves as the input to the subsequent layer until the final
prediction is produced. The architecture includes a 6-layer encoder stack on
the left and a corresponding 6-layer decoder stack on the right [15, p. 29].

On the left (see Figure 1), inputs are fed into the encoder of the
Transformer through an attention sub-layer and a FeedForward Network
(FFN) sub-layer. On the right, target outputs are processed through two
attention sub-layers and an FFN sub-layer within the decoder.

All layers of the Transformer model retain the same structure as the
original encoder layer. Each layer contains a sub-layer of multi-head attention
mechanism and a sub-layer of a fully connected position-wise FFN. Each
main sub-layer in the model is surrounded by a residual connection that
transports the unprocessed input x of each sublayer to a layer normalization
function. This way, key information such as positional encoding is not lost
on the way.

Despite the identical structure of each layer in the encoder, the content
of each layer differs from the previous layer. For instance, the embedding
sub-layer is only present at the bottom level of the stack, and the subsequent
layers do not contain an embedding layer. This ensures that the encoded
input is stable through all the layers. Similarly, the multi-head attention
mechanisms perform the same functions in all layers, yet they do not

7

Chapter «Engineering sciences»

perform the same tasks. Each layer learns from the previous one, exploring
different ways of associating the tokens within the sequence.

Comprising eight heads, the multi-head attention sub-layer is followed by
postlayer normalization, which adds residual connections to the sublayer's
output and normalizes it. The input of the multi-attention sub-layer of the
first layer of the encoder stack is a vector that contains the embedding and
the positional encoding of each word.

Inside each head hn of the attention mechanism, each word vector has
three representations:

– A query vector that has a dimension of dq = 64 , which is activated and
trained when a word vector xn seeks all of the key-value pairs of the other
word vectors, including itself in self-attention.

Figure 1. The Transformer architecture

8

Kateryna Antipova, Hlib Horban

– A key vector that has a dimension of dk = 64 , which will be trained to
provide an attention value.

– A value vector that has a dimension of dv = 64 , which will be trained
to provide another attention value.

Each attention sub-layer and each feedforward sub-layer of the
Transformer is followed by post-layer normalization (Add & Norm),
which includes an add function and a normalization process itself. The add
function handles the residual connections that originate from the sublayer's
input. The goal of these connections is to ensure that the critical information
is not lost during processing.

The input of the FFN is the dmodel = 512 output of the Add & Norm of
the previous sublayer. The FFN comprises two layers and applies a ReLU
activation function. The output of the FFN is fed to the Add & Norm. Then
the output is sent to the next layer within the encoder stack and the multi-
head attention layer within the decoder stack.

The decoder layer maintains the same structure as the encoder for all
the layers of the Transformer model. Each layer consists of the three sub-
layers: a multi-head masked attention mechanism, a multi-head attention
mechanism, and a fully connected position-wise feedforward network. The
structure of each sub-layer and function of the decoder is similar to the
encoder.

The decoder has a third main sub-layer, which is the masked multi-head
attention mechanism. In this sub-layer output certain words are masked at a
given position. Masking ensures that the Transformer bases its predictions
solely on its inferences without accessing the rest of the sequence. That way,
in this model, the Transformer cannot see future segments of the sequence.

The output of every sub-layer of the model has a constant dimension,
dmodel , including the embedding layer and the residual connections. This
dimension can be set to another value. For the original Transformer
architecture, dmodel is set to 512.

In the original Transformer model, the input embedding sub-layer
transforms the input tokens into vectors using learned embeddings. The
Transformer's subsequent layers have learned word embeddings that
already provide information on how the words can be associated. However,
a lot of information is missing because no additional vector or information
indicates a word's position in a sequence.

9

Chapter «Engineering sciences»

Generating independent positional vectors would significantly impede
the training speed of the Transformer and make attention sub-layers very
complex to work with. The concept entails incorporating a positional
encoding value into the input embedding to describe the position of a token
in a sequence, instead of having additional vectors.

4. Positional encoding
Positional representation is utilized as an inductive bias of positional

relevance information by positional encoding function in the Transformer
model. There have been many attempts to incorporate position information
into the Transformer model.

Typically, embedding-level positional encodings build positional
dependencies via adding positional encodings to embedding results
[5; 7; 18]. In addition, attention-level positional encodings usually capture
positional information based on an analysis of attention mechanisms and
leverage delicate indexing manners, such as the relative distance to the
querying word [8; 14; 17; 21]. However, it is unknown why the attention
mechanism of the Transformer is position agnostic and what is the working
principle behind these positional encodings.

Positional encodings are typically added to the embeddings of a sequence
right after the embedding layers. They are usually a set of predefined or
trainable vectors, indexed with absolute position numbers. After that, the
contextual representation oi can be presented as following:

o x b X B X B Wi i i V� � �� � �� �� , , (5)
where b Ri

d∈ denotes the positional embedding for the i-th word,
B RL d� � represents the packed positional embeddings for the whole
sequence [22].

Positional encodings at the attention level are based on a key insight into
the attention mechanism. Since they are employed in attention layers, they
can access both the query and the key. This way positional information can be
encoded in a more complex manner, such as using the relative distance between
the query and the key for indexing. Considering a relative positional encoding
as an example, the contextual representation oi can be calculated as [17]:

o v ri
j

L

ij j ij
v� �� �

�
�

1

� (6)

10

Kateryna Antipova, Hlib Horban

� �ij i j ij
kq k r� �� �, , (7)

where r r Rij
k

ij
v dk, ∈ are trainable positional encodings for the j-th key and

j-th value respectively. These encodings are indexed based on the distance
between xi and x j [22].

Sine and cosine functions are used to generate different frequencies for
the positional encoding (PE) for each position and each dimension i of the
dmodel = 512 of the word embedding vector [18; 19]:

PE sin
pos

pos i i

dmodel

� 2 2

10000
� � � (8)

PE cos
pos

pos i i

dmodel

� 2 1 2

10000
�� � � (9)

Figure 2 shows the heatmap of sinusoidal positional encoding method.
The fixed position embeddings are subsequently combined with the word

embeddings of the input sequence accordingly. Although the sinusoidal
version with predefined wavelength has unique extrapolability which
allows it to encode longer sequential positions than pre-training samples,
it does not always perform well on downstream tasks, due to the lack of
learnability and flexibility [17].

Absolute position encoding includes computing a positional encoding
for each token and adding it to the input content embedding to incorporate
positional information into the original sequence. This method was
introduced in [18] for Transformers and it has been commonly utilized
in the follow-up works. There are two variations of the absolute position
encodings: fixed and learned.

Given an input sentence: X x x x Rn
n d� �� �� �

1 2, , , , where n is the
number of words and d is the dimension of word embeddings, the attention
computes the output of the i-th token as:

�ij
i i

Q
j j

K
T

x p W x p W

d
�

� �� �� �()
 (10)

Here, p Ri
d∈ is a position embedding for the i-th token, obtained by

fixed or learned encodings.

11

Chapter «Engineering sciences»

Many successful variants of pre-trained Transformer models, such as
BERT [5] and RoBERTa [12], incorporate the entire embedding matrix as
trainable parameters [7]. To ensure a fixed number of training parameters,
the maximum length of a sequence, denoted as Lmax , must be predefined
before training. Despite lacking the inductive property, this data-driven
approach has proven effective for various NLP tasks. Unlike the fixed
sinusoidal position encoding, a learnable position embedding matrix is not
injected at each block for Transformer due to a large number of additional
parameters.

Figure 3 shows the heatmap of learnable absolute positional encoding
method.

Unit order across different languages is quite different. English uses a
subject-verb-object ordering, that is rather fixed, but all possible orderings
have been argued to occur in other languages. So, the question is whether
it is useful to share position information across languages. Multiple studies
observe mixed results with language specific position embeddings in the
context of transferring monolingual models to multiple languages: for most
languages it helps, but for some it seems harmful. In multilingual models
position embeddings are shared by default [5].

However, one limitation of absolute position encoding is that it requires
a fixed length of input sequence and does not directly account for the relative

Figure 2. Sinusoidal positional encoding with the maximum sequence

length of 256. Each position row represents the embedding vector
as positional representation

12

Kateryna Antipova, Hlib Horban

positions between words [2]. Several approaches were proposed to enhance
positional representation by adding relative position information into the
attention score computation stage to improve performance of Transformer
based models [4; 6; 8; 17].

Due to the fixed context length, the model is unable to capture any longer-
term dependency longer than the predefined context length. Furthermore,
the fixed-length segments are formed by selecting a consecutive sequence of
symbols without considering the sentence or any other semantic boundary.
Hence, the model lacks necessary contextual information needed to well
predict the first few symbols, leading to inefficient optimization and inferior
performance.

 Figure 3. Learnable absolute positional encoding
with the maximum sequence length of 256

Figure 4. Similarity of sinusoidal and learnable positional encodings

13

Chapter «Engineering sciences»

The authors of [17] suggested using relative position encoding in lieu of
absolute position encoding, and incorporating position embeddings to the
key and optionally value projections, rather than the input. Their findings
indicate that this alternative method of encoding position information
improves performance on machine translation tasks. The authors of [23]
further simplified this approach by removing the position embeddings in
value projections, resulting in enhanced performance in language modeling
tasks. Both approaches use a vector representation to encode positional
information.

Relative positional encoding produces a vector ri j, or a scalar value βi j,
that depends on the relative distance of tokens. These methods specifically
apply such a vector or bias to the attention head, enabling the adjustment
of the corresponding attentional weight according to the relative distance
between two tokens:

�ij
i

Q
j

K
i j
K T

xW x W r

d
�

�� �, (11)

�
�

ij

i
Q

j
K T

i jxW x W

d
�

� � �() , (12)

Here, the first mode uses a vector ri j, while the second uses a scalar
value βi j, , for infusing relative distance into attentional weight. Relative
position representation reduces the number of parameters to 2 1K d�� � by
dropping the interactions between tokens with a distance greater than K.

Let’s consider the runtime storage complexity of embedding methods
for a transformer model with m layers, h attention heads per layer, and
maximum sequence length of n. For each position in the sequence, a
positional encoding vector is required. Therefore, the storage complexity of
positional encoding is O nd� � . Each token in the sequence is embedded into
a vector. If the vocabulary size is V and the embedding dimension is d, then
the storage complexity of token embeddings is O Vd� � .

Absolute positional encoding introduces embedding parameters with
size of nd, relative positional encoding − with size of mh n d2 1�� � . All
position embedding methods introduce a small number of additional
parameters to a model. Therefore, relative positional encoding introduces
mh n d K2 1 12 12 2 512 1 147�� � � � � �� � �, � parameters at maximum. Comparing

14

Kateryna Antipova, Hlib Horban

this to the number of parameters in large models like BERT (e.g., 108M
parameters), it's indeed negligible. This illustrates that the overhead
introduced by relative positional encoding is relatively small compared to
the overall size of the model.

The cross correlation between position and token embeddings can
result in weaker performance of additive absolute position embeddings,
so instead it was proposed to add both absolute and relative positional
information-based attention directly in each head [9]. So, the Transformer
only uses the word embedding as input. In the self-attention module,
different types of correlations are separately computed to reflect different
aspects of information, including word contextual correlation and absolute
(and relative) positional correlation. Each kind of correlation has its own
parameters and is added together to generate the attention distribution.
This design successfully eliminates the randomness in word-to-position
or position-to-word correlations and provides greater expressiveness in
characterizing the relationship between a pair of words or positions.

The relative positional encoding denotes the position of a word
within a sentence, either through a vector representation [4; 17] or a
scalar representation [14]. In the scalar approach, the embedding vectors
of relative positions and the word embedding have the same dimension.
Scalars are used to encode relative position between query and key indices
by directly incorporating them into the attention scores matrix. These
position embeddings are streamlined, with each "embedding" essentially
being a scalar added to the corresponding logit for computing attention
weights. For efficiency, they also share the position embedding parameters
across all layers in our model, though within a given layer each attention
head uses a different learned position embedding. Typically, only a fixed
number of embeddings is learned, with each corresponding to a range of
possible offsets between keys and queries.

The approach used in the T5 Transformer consists of bucketing function
and bucket embedding [14]. The bucketing function categorizes the
relative positions into different buckets using a fixed heuristic algorithm,
and the bucket embedding component maps each bucket to a learnable
scalar value. This "scalar embedding" is then added to the corresponding
context score to derive the final attention score, determining the self-
attention weights. In contrast, Adaptive-T5 adopts a learnable bucketing

15

Chapter «Engineering sciences»

function that automatically adapts to the dependency range specific to the
learning task [21].

In addition to just the input layer, some authors suggest that the injection
of position information to every layer leads to even better performance for the
Transformer. Since it is nontrivial to modify or replace backbone of model
structure during the fine-tuning stage, some research works propose auxiliary
tasks or data augmentation approaches to leverage absolute or relative position
information without modifying model structure [11; 13; 20].

An ideal position encoding approach should satisfy the following three
properties [11]:

1. Inductive. It should have the capability to handle sequences longer
than any encountered during training.

2. Data-driven. The position encoding should be trainable from the data,
allowing it to adapt to different tasks and datasets.

3. Parameter efficient. The number of trainable parameters introduced
by the encoding should be limited to prevent excessive model size, which
could hinder generalization.

Table 1
Comparing position representation methods

Methods Inductive Data-driven Parameter
efficient

Sinusoidal PE [18] + - +
Absolute PE [5] - + -
Relative PE [17] - + +
Combined absolute and relative PE [9] - + +
Relative scalar approach [14] + + -
Adaptive-T5 [21] + + -

Transformer language models (LMs) with sinusoidal position
embeddings exhibit very weak extrapolation capabilities. The position
embedding method causes this failure to extrapolate. Recent alternatives
to the original sinusoidal position method have improved extrapolation.
However, the better of these, relative scalar approach and Adaptive-T5, are
considerably slower than the sinusoidal approach and use extra memory
and parameters.

16

Kateryna Antipova, Hlib Horban

Although some approaches lack the inductive property, many of them
are still effective for many NLP tasks, due to the fact that the large sequence
length can be enforced at inference.

To construct position embeddings in a more data-driven way, many
Transformer variants include these embeddings as learnable model
parameters in the training stage. This data-driven approach has a drawback
of imposing a fixed maximum length of input sequences, along with the
computational and memory overhead of additional parameters. A relative
position representation helps to reduce the number of parameters. Also, in
addition to just the input layer, the injection of position information to every
layer leads to even better performance for the Transformer [3].

5. Experiments
In this section, we present our experimental results comparing different

position encoding approaches. We consider training Transformer models
from scratch for question answering and machine translation. We compare
the following positional encoding approaches:

– w/o PE: without any positional encoding, to provide another reference
of positional encoding ability;

– SPE: sinusoidal positional encoding [18];
– LAPE: learnable absolute positional embedding, to evaluate the effect

of trainable positional encoding [5];
– RPE: relative positional embedding [17];
– CARPE: combined absolute and relative positional encoding [9];
– RSA: relative scalar approach [14];
– AT5: adaptive version of T5’s relative positional encoding [21].
For the question answering task, we pre-train the model on Ukrainian

Web Corpus (ukTenTen22). The Ukrainian Web Corpus is a Ukrainian
corpus made up of texts collected from the Internet. The corpus belongs
to the TenTen corpus family which is a set of web corpora built using the
same method with a target size 10+ billion words. Data for the Ukrainian
Web 2022 corpus consists of texts from May 2014, July–August 2020, and
October–December 2023. The Wikipedia part is from December 2020 and
2022. The final size of the corpus contains 9.5+ billion words.

We set a sequence length of 758, a batch size of 128 sequences.
We use language-independent tokenizer, Sentence Piece model [10],

17

Chapter «Engineering sciences»

with 45,000 token vocabulary to encode input text. Performance of the
model is measured by F1 score.

The F1 score is not as strict as the Exact Match score (EM), and more
closely resembles human judgment as far as the similarity of two answer
strings. It measures the word overlap between the labeled and the predicted
answer. It thus symmetrically represents both precision and recall in one
metric. While EM is calculated on the character level, F1 is calculated on
individual word level. We find the performance of the EM and F1 scores to
be highly correlated so we report the F1 score alone.

For the machine translation task we pre-train the model on Multi30K-uk
dataset using English-to-Ukrainian language pairs. Multi30K is a
modification of the Flickr30K dataset with German translations of
English annotations. Multi30K-uk is a variation of this dataset manually
translated for Ukrainian language by [16]. The dataset consists of 31K
English-Ukrainian sentence pairs, 357K tokens in English and 276K
tokens in Ukrainian.

We set a sequence length of 758, a batch size of 128 sequences. We
use Sentence Piece tokenizer with 72,000 token vocabulary to encode
input text. We test the corresponding model and report the BLEU score
output by SacreBLEU with default setting. Following [18] we use a 6-layer
Transformer with encoder-decoder architecture.

BLEU (Bilingual Evaluation Understudy) is an algorithm designed to
assess the quality of machine-translated text from one natural language
to another. Quality is considered to be the correspondence between a
machine’s output and that of a human: the closer a machine translation
is to a professional human translation, the better it is. BLEU was among
the earliest automated metrics to claim a high correlation with human
evaluation, and remains widely used due to its cost-effectiveness.

BLEU computes scores for individual translated segments by comparing
them against a set of high-quality reference translations, which are then
averaged across the entire corpus to gauge the overall translation quality.

However, comparing BLEU scores can be difficult because every
decoder has its own implementation. Tokenization can also be handled in
different ways. SacreBLEU aims to solve these problems by wrapping the
original reference implementation together with other useful features, such
as: automatic download of common WMT test sets, and support of different

18

Kateryna Antipova, Hlib Horban

tokenizers for BLEU. SacreBLEU provides a computation of shareable,
comparable, and reproducible BLEU scores.

We present our results on the question answering and machine translation
tasks for different position encoding methods in Table 2.

We conduct experiments on the Transformer model without positional
encodings (w/o PE) to assess the importance of positional information. The
outcomes reveal a notable decrease in performance, indicating the critical
role of positional information in Transformer, which relies solely on the
position insensitive attention mechanism.

Table 2
Comparing different position encoding methods

Model QA (F1) MT (SacreBLEU)
w/o PE 51.4 18.59

SPE 57.9 20.55
LAPE 59.0 28.74
RPE 64.8 29.3

CARPE 63.9 29.17
RSA 63.8 36.3
AT5 77.2 40.6

We included two experimental setups: one where the position encoder
was present in all blocks, and another where it was only present at the
input block. Our experiments show that incorporating absolute position
encodings into attention matrices with different parameters for each head
yields significant improvement compared to adding them directly to the
input. This underscores the significance of where position information
is integrated in the Transformer, providing an explanation for the gap in
performance between absolute and relative position encodings.

Adding position encoders at all blocks yields better performance than
only at the input block, except for the fixed-length position embedding
approach. Possibly, this is due to over-fitting caused by learnable parameters
introduced by this approach.

We found the original encoder-decoder architecture worked best
for our models. Though an encoder-decoder model uses twice as many
parameters as "encoder-only" or "decoder-only" architectures, it has a

19

Chapter «Engineering sciences»

similar computational cost. Furthermore, we observed that sharing the
parameters in the encoder and decoder did not lead to a significant decrease
in performance, despite reducing the total parameter count by half.

6. Conclusion
Non-recurrent Transformer models are not sensitive to position.

The primary reason is that there is no inherent encoding of positional
information for input units, making the models permutation equivalent. This
problem explains why existing models are accompanied by a sinusoidal
encoding or embedding layer at the input. Nonetheless, this approach
has obvious limitations: the sinusoidal encoding lacks flexibility as it is
manually designed and does not contain any trainable parameters, whereas
the position embedding restricts the maximum length of input sequences.
Besides that, it has not been explored how positional encoding builds
positional dependencies for a sequence.

There is a range of work comparing and analyzing position information
approaches, because positional encoding is such a critical issue for
Transformer-like models. We chose to analyze several of these approaches
in the context of question answering and machine translation tasks using
Ukrainian corpora. We observed similar performance for absolute and relative
encodings, although relative encodings are superior for longer sentences.
Absolute position embeddings yield worse results mainly because they
are added at the input. The superior performance of some relative position
encoding methods can be attributed to their per-head addition to attention
matrix rather than the position information being relative or absolute.
Therefore, encoding position to attention matrix per-head results in superior
performance for both absolute and relative information. A simple per-head
position attention method achieves the state-of-the-art performance on NLP
tasks and is more computationally efficient than existing approaches.

The original encoder-decoder architecture for the Transformer model
proved to be the most suitable for the chosen NLP tasks. Though an encoder-
decoder uses twice as many parameters as "encoder-only" or "decoder-only"
architectures, it has a similar computational cost. Besides that, the number
of learnable parameters can often be reduced without performance loss.

We would also like to stress how important it is to collect high-quality
datasets for low-resource languages such as Ukrainian. Such datasets on

20

Kateryna Antipova, Hlib Horban

their own lead to a significant improvement of results accuracy for machine
translation and other NLP tasks.

In the future, we aim to explore alternative operations that use word
order to implicitly encode positional information, thus shedding light on
how it impacts the performance of NLP models.

References:
1. Bahdanau D., Cho K., & Bengio Y. (2014). Neural Machine Translation

by Jointly Learning to Align and Translate. DOI: https://doi.org/10.48550/
arXiv.1409.0473

2. Chen L., Varoquaux G., & Suchanek F. (2023). The Locality and Symmetry of
Positional Encodings. In Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 14313–14331, Singapore. Association for Computational
Linguistics. DOI: https://doi.org/10.18653/v1/2023.findings-emnlp.955

3. Chen P., Tsai H., Bhojanapalli S., Chung H. W., Chang Y., & Ferng C. (2021).
A Simple and Effective Positional Encoding for Transformers. Conference on
Empirical Methods in Natural Language Processing. DOI: https://doi.org/10.48550/
arXiv.2104.08698

4. Dai Z., Yang Z., Yang Y., Carbonell J. G., Le Q. V., & Salakhutdinov R.
(2019). Transformer-XL: Attentive Language Models beyond a Fixed-Length
Context. Annual Meeting of the Association for Computational Linguistics.
DOI: https://doi.org/10.48550/arXiv.1901.02860

5. Devlin J., Chang M., Lee K., & Toutanova K. (2019). BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. North American
Chapter of the Association for Computational Linguistics, vol. 1, pp. 4171–4186.
DOI: https://doi.org/10.18653/v1/N19-1423

6. Dufter P., Schmitt M., & Schütze H. (2021). Position Information in
Transformers: An Overview. Computational Linguistics, vol. 48, pp. 733–763.
DOI: https://doi.org/10.48550/arXiv.2102.11090

7. Gehring J., Auli M., Grangier D., Yarats D., & Dauphin Y. (2017).
Convolutional Sequence to Sequence Learning. DOI: https://doi.org/10.48550/
arXiv.1705.03122

8. Huang Z., Liang D., Xu P., & Xiang B. (2020). Improve Transformer
Models with Better Relative Position Embeddings. DOI: https://doi.org/10.48550/
arXiv.2009.13658

9. Ke G., He D., & Liu T. Y. (2020). Rethinking positional encoding in language
pre-training. DOI: https://doi.org/10.48550/arXiv.2006.15595

10. Kudo T., & Richardson J. (2018). Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
DOI: https://doi.org/10.48550/arXiv.1808.06226

11. Liu X., Yu H., Dhillon I.S., & Hsieh C. (2020). Learning to Encode Position
for Transformer with Continuous Dynamical Model. DOI: https://doi.org/10.48550/
arXiv.2003.09229

21

Chapter «Engineering sciences»

12. Liu Y., Ott M., Goyal N., Du J., Joshi M., Chen D., Levy O., Lewis M.,
Zettlemoyer L., & Stoyanov V. (2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach. DOI: https://doi.org/10.48550/arXiv.1907.11692

13. Pham T. M., Bui T., Mai L., & Nguyen A. M. (2020). Out of Order: How
important is the sequential order of words in a sentence in Natural Language
Understanding tasks? DOI: https://doi.org/10.48550/arXiv.2012.15180

14. Raffel C., Shazeer N., Roberts A., Lee K., Narang S., Matena M., &
Liu P. J. (2020). Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of machine learning research, vol. 21(140), pp. 1–67.
DOI: https://doi.org/10.48550/arXiv.1910.10683

15. Rothman D. (2022). Transformers for Natural Language Processing. 2nd
edition. Packt Publishing, 564 p.

16. Saichyshyna N., Maksymenko D., Turuta O., Yerokhin A., & Babii A. (2023).
Extension Multi30K: Multimodal Dataset for Integrated Vision and Language
Research in Ukrainian. In Proceedings of the Second Ukrainian Natural Language
Processing Workshop (UNLP), pp. 54–61, Dubrovnik, Croatia. Association for
Computational Linguistics. DOI: https://doi.org/10.18653/v1/2023.unlp-1.7

17. Shaw P., Uszkoreit J., & Vaswani A. (2018). Self-attention with relative
position representations. DOI: https://doi.org/10.48550/arXiv.1803.02155

18. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., Gomez A. N., &
Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, vol. 30. DOI: https://doi.org/10.48550/arXiv.1706.03762

19. Wang G., Lu Y., Cui L., Lv T., Florencio D., & Zhang C. (2022). A Simple
yet Effective Learnable Positional Encoding Method for Improving Document
Transformer Model. In Findings of the Association for Computational Linguistics:
AACL-IJCNLP 2022, pp. 453–463.

20. Wang W., Bi B., Yan M., Wu C., Bao Z., Peng L., & Si L. (2019).
StructBERT: Incorporating Language Structures into Pre-training for Deep
Language Understanding. DOI: https://doi.org/10.48550/arXiv.1908.04577

21. Wu J., Zhang R., Mao Y., & Chen J. (2021). On Scalar Embedding of
Relative Positions in Attention Models. Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35(16), pp. 14050–14057. DOI: https://doi.org/10.1609/
aaai.v35i16.17654

22. Xilong Zh., Ruochen L., Jin L., & Xuefeng L. (2023). Interpreting Positional
Information in Perspective of Word Order. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics, vol. 1, pp. 9600–9613.
Toronto, Canada. Association for Computational Linguistics. DOI: https://doi.org/
10.18653/v1/2023.acl-long.534

23. Yang Z., Dai Z., Yang Y., Carbonell J., Salakhutdinov R. R., & Le Q. V.
(2019). Xlnet: Generalized autoregressive pretraining for language under-
standing. Advances in neural information processing systems, vol. 32.
DOI: https://doi.org/10.48550/arXiv.1906.08237

