
23rd annual International scientific conference

336

DOI https://doi.org/10.30525/978-9934-26-459-7-68

COMMON CHALLENGES

IN IMPLEMENTING HTTP AUTHENTICATION

Samandar Jumanazarov
1
, Amit Joshi

2

1ISMA University, Valērijas Seiles iela 1-korpuss 6, Rīga, LV-1019
2ISMA University,Valērijas Seiles iela 1-korpuss 6, Rīga, LV-1019

e-mail: samandarjumanazarov2001@gmail.com, e-mail:

Amit.joshi@isma.lv

 www.isma.lv

Abstract

Implementation of HTTP authentication is a very important aspect

of securing web applications, but this proccess comes with several common

challenges for developers. This is abstract is about the different obstacles

faced during the implementation of HTTP authentication mechanisms and

outlines strategies for overcoming them. Challenges which include choosing

the right authentication method, managing user credentials securely,

handling session management and token expiration, mitigating common

security vulnerabilities such as brute force attacks and session hijacking,

and ensuring compatibility with different client technologies, were

discussed. As a reslut of understanding these challenges and implementing

best practices, developers can enhance the security and usability of their web

applications.

Key words: Security, Access control, Digest, Oauth.

1. Introduction

Through authentication, web security is achieved by the means of giving

unique credentials to admit only rightful users to their strictly restricted

resources. HTTP approaches like the authentication mechanisms are

providing standardized models to verify the person‘s identity, but when

implementing this, it gets complicated because of the security, usability, and

scalability factors. In this article, we get into details of the prevalent issues

that the developer's face while implementing authentic HTTP authentication

and the appropriate ways to solve the problems.

2. Selecting the Right Authentication Method

The selection of a proper authentication technique, in turn, lays the

foundation for the implementation of secure authentication for all web

Riga, the Republic of Latvia April 25–26, 2024

337

apps. While programmers are dealing with the variety of ways including

those like Basic, Digest, and OAuth authentication techniques. The methods

of biometric authentication carry along both advantages and disadvantages

making the identification of suitable method a vital procedure in order to

achieve the right balance among security, user experience and compatibility.

Simple authentication follows the basic structure, which needs the users to

supply their identity (username and password) in every one of the

requests. On the one hand, the transmission of credentials poses a serious

security concern because it‘s unencrypted, which means they can be

intercepted. HTTP Basic Authentication is exposed to view since encryption

is considered of a high priority by HTTPS so it‘s not uncommon for

eavesdropping attacks to be led against it. Digest authentication deals with

the existing issue of basic authentication that plaintext of the password is

being sent by applying hashing algorithms. This is more secure as the private

key is not exposed to attacks on the network. But Digest authentication calls

for the server to save passwords in a reversible coding text and there will

soft sources of threat to privacies if this step is not properly put into

consideration. Nonetheless, Digest authentication may not be supported by

all client technologies, which can pose a system of compromatibility. OAuth

is the de facto implementation of standardization for token-based

authentication. It offers this possibility to users that they can transfer only

a specified fraction of resources (such as email, contacts, and calendar)

to those third party apps that they are not going to share their credentials

with. Although OAuth is obviously suitable for passwordless situations,

it is in situations where a person wants to authorize access to their data while

keeping sensitive information secret. Yet apart from this, OAuth

implementation is not easy at all, you will have to grasp different

authorization flows, client registration process, and token management

mechanisms.

3. Securely Managing User Credentials

Selection of the credential management strategy is the next most

important thing to do after this. Thusly, secure management of user

credentials should be the main concern now. Plaintext password storage is a

weakness often seen in applications leading to compromised users‘s data

financial loss if there is a data breach. To this end, developers at this point

should incorporate solid encryption techniques such as the for instance

hashing and salting.Hashing involves to change user passwords into

inadmissable bonds, which are made using encryption methods. These

measures prevent even that notwithstanding the loss of the password hashes,

23rd annual International scientific conference

338

hackers still can't perform a reverse engineering and get the

passwords. known hashing algorithms are SHA-256 and bcrypt. Their

security parameters are permanent that‘s why they are used by a wide

audience. Making a salt improves the security of password hashes by

revealing the random string (salt) prepended before hashing each pass

phrase. Using of hashing prevents from rainbow tables method to decipher

the passwords fast and efficiently. Salting out-demonstrates itself as being

mostly effective against brut-force attacks and the commonly used key work

guessing attacks, as it makes it extremely difficult to crack a password.

4. Handling Authentication Failures

Managing authentication errors softly has to do with ensuring a pleasing

user experience and guarding against security defects. Insufficient error

handling mechanism may as well result in ambiguous error messages, which

in turn allow attackers to deduce confidential information and take

advantage of authentication deficiencies. This risk can be tackled by

thorough and secure error handling and giving clear and useful error

messages to users. Error messages have to be constructed very carefully to

provide the reason of the authentication failure and the sensitive information

needs to be hidden. Message like "Invalid username or password" are not

desirable, because they may be of assistance to the attackers who are trying

to guess correct credentials. Actually, error messages may rather give users a

hint on how to fix the issue, for example changing their password or

contacting support for help. Status codes in HTTP are very important as they

relay this kind of information to the client on the result of authentication

requests. Status codes like 401 Unauthorized and 403 Forbidden must be

used to represent authentication failures too. These codes not only provide a

useful identification of the error but also offer instructions on how to

proceed. Meanwhile, developers need to include appropriate header and

payload among error responses to enable users to understand the exact

reason of authentication issues while solving the problem.

5. Ensuring Scalability

The scalability is an essential aspect in regards to web applications,

especially those experiencing a quick expansion or servicing a big number

of the clientele. The count of authentication requests grows, the traditional

authentication mechanisms may have problem in ensuring the performance

and the responsiveness. Developers need to employ methods for scaling

these authentication systems to keep up with the required growth in demand.

Caching, Load balancing and session management are components of a

Riga, the Republic of Latvia April 25–26, 2024

339

scalable authentication infrastructure. Through the use of caching

authentication tokens or session data, applications can boost the performance

by alleviating the traffic load on authentication servers. Load balancers serve

as a distribution hub that channels authentication requests to multiple servers

in order to prevent any one server from being overloaded. This helps to

maintain fault tolerance and ensure good performance, at all times. As well,

efficient session management is also important, allowing applications to

keep the state of the interaction of the user over multiple requests and to

effectively store data and retrieve it from the session.

6. Meeting Compliance Requirements

Alongside technical issues, implementation of secure authentication

systems requires them to meet with the current regulatory requirements

and industry standards. Guidelines like the Payment Card Industry Data

Security Standard (PCI DSS), the General Data Protection Regulation

(GDPR), and the Health Insurance Portability and Accountability Act

(HIPAA) offer stringent data processing and protection rules that enterprises

must adhere to when dealing with sensitive information. When it comes

to those applications that deal with the payment card data, the PCI DSS

being complied with is of crucial importance to ensuring customers‘ finan-

cial information remains secure. According to the GDPR the organizations

are obliged to specify the rules and regulations of the processing and

preservation of personal data as user authentication information. Healthcare

apps that manage protected health information (PHI) are compelled

by HIPAA, which requires stricter security measures and privacy controls.

7. Conclusion

Finally, efficiently implementing HTTP authentication implies that

developers face multiple challenges, among them are browsing the right

authentication method, storing user credentials safely, handling failed

authentications, managing scalability and satisfying regulation requirements.

Through knowledge of difficulties along with their software development

best practices, developers are able to make applications of the web hard to be

accessed by wrong people as well as there is no chance of security breaches.

References

1. "RFC 2617: HTTP Authentication: Basic and Digest Access

Authentication" – This RFC document outlines the specifications for Basic

and Digest authentication mechanisms in HTTP.

23rd annual International scientific conference

340

2. "OAuth 2.0 Authorization Framework" – The official OAuth 2.0

specification provides detailed information on implementing OAuth

authentication for web services and APIs.

3. "OWASP Authentication Cheat Sheet" – This resource from the Open

Web Application Security Project (OWASP) offers guidance on secure

authentication practices and common vulnerabilities to avoid.

4. "Scalable Authentication Patterns" by Alex Bilbie – This blog post

discusses various authentication patterns and strategies for scalability in web

applications.

5. "PCI DSS Version 3.2" – The Payment Card Industry Data Security

Standard outlines requirements for securing payment card data, including

authentication practices.

Authors

Samandar Jumanazarov, Uzbekistan

Current position, grades: Student

University studies: ISMA University

Scientific interest: Software Engineering

Publications (number or main): main

samandarjumanazarov2001@gmail.com

Amit Joshi, 18th July 1987, INDIA

Current position, grades: Lecturer at ISMA University

University studies: BA School of business and Finance

Scientific interest: Artificial intelligence and machine

learning, iOT

Publications (number or main): 6th

Experience: 12 + years

