Table of Contents

PREFACE	. 1
INTRODUCTION	. 3
CHAPTER 1 «PROPAGATION	
OF THE TERAHERTZ LASER RADIATION	
IN HOLLOW WAVEGUIDES»	. 9
1.1. PROPAGATION OF LASER RADIATION THROUGH	
HOLLOW CIRCULAR WAVEGUIDES	. 10
1.1.1. Mode and Ray-optics Methods of Calculation	
1.1.1.1. Mode Approach for Dielectric Waveguides	
1.1.1.2. Mode Approach for Metal Waveguides	
1.1.1.3 Frost's Geometrical Optics Approach	
1.1.1.4. Crenn's Geometrical Optics Approach	.19
1.1.2. Conditions of Application of Geometrical Optics Approaches	
in Oversized Metal Waveguides. 1.1.3. Attenuation of EH ₁₁ Type Oscillations in Dielectric Waveguides	.24
1.1.3. Attenuation of EH ₁₁ Type Oscillations in Dielectric Waveguides	. 29
1.1.4. Transmission of Radiation Wave Beams in Circular Waveguides	.33
1.1.5. Reconstruction of Gaussian Radiation Beams	
in Metal Circular Waveguides	.44
1.2. TRANSMISSION AND SELF-IMAGING	
OF GAUSSIAN RADIATION BEAMS	- 1
IN METALLIC RECTANGULAR WAVEGUIDES	
1.2.1. Modal Calculation Technique	. 51
1.2.2. Comparison of Experimental and Numerical Results	. 33
CHAPTER 2 «FORMATION OF TRANSVERSE MODES	
WITH A SPATIALLY INHOMOGENEOUS POLARIZATION	
IN A DIELECTRIC WAVEGUIDE RESONATOR»	. 62
2.1. MATHEMATICAL MODELING OF QUASI-OPTICAL LASER	
RESONATORS WITH DIFFRACTION MIRRORS	
2.1.1. A Multi-ring Diaphragm in a Dielectric Waveguide	. 63
2.1.2. An Inhomogeneous Mirror	
in a Quasi-optical Waveguide Resonator	. 73
2.1.3. Calculation Results and Their Analysis	. 75
2.2. EXPERIMENTAL SETUP 2.3. FORMATION OF LOWER-ORDER MODES	. 82
2.3. FORMATION OF LOWER-ORDER MODES	
WITH AZIMUTHAL POLARIZATION	. 86
2.3.1. Laser Resonator with a Large-scale Input	
and Homogeneous Output Mirrors	. 86
2.3.2. Laser Resonator with Uniform Input	
and Small-scale Output Mirrors.	.90
2.4. FORMATION OF LOWER-ORDER MODES	<i>c</i> :
WITH RADIAL POLARIZATION	.95

2.5. FORMATION OF HIGHER-ORDER MODES	
WITH LINEAR POLARIZATION	.102
CHAPTER 3 «PROPAGATION OF THE TERAHERTZ	
LASER RADIATION WITH SPATIALLY INHOMOGENEOUS	100
POLARIZATION IN DIFFERENT ZONES OF DIFFRACTION»	. 106
3.1. MODELING OF RADIATION PROPAGATION WITH INHOMOGENEOUS POLARIZATION	
IN DIFFERENT DIFFRACTION ZONES	107
3.2. PROPAGATION OF RADIATION OF TERAHERTZ LASER	. 107
BASED ON A METALLIC CIRCULAR WAVEGUIDE	
IN DIFFERENT DIFFRACTION ZONES	111
3.2.1. Theoretical Relations	111
3.2.2. Comparison of Experimental and Numerical Results	116
3.3. PROPAGATION OF RADIATION	. 110
OF TERAHERTZ LASER BASED	
ON A HOLLOW DIELECTRIC CIRCULAR WAVEGUIDE	
IN DIFFERENT DIFFRACTION ZONES	.121
3.3.1. Theoretical Relations	
3.3.2. Comparison of Experimental and Numerical Results	. 127
CHAPTER 4 «FOCUSING LASER BEAMS	
WITH DIFFERENT TYPES	
OF SPATIAL POLARIZATION OF RADIATION»	. 132
4.1. FOCUSING OF LOWER-ORDER MODES OF TERAHERTZ LASER	
BASED ON A HOLLOW DIELECTRIC CIRCULAR WAVEGUIDE	
4.1.1. Theoretical Relationships	
4.1.2. Calculation Results and Their Analysis	
4.1.3. Comparison of Experimental and Numerical Results. 4.2. FOCUSING OF HIGHER-ORDER MODES	. 143
4.2. FOCUSING OF HIGHER-ORDER MODES	
4.2.1. Theoretical Relations 4.2.2. Calculation Results and Their Analysis	
4.2.3. Comparison of Experimental and Numerical Results	164
4.3. FOCUSING OF RADIATION OF TERAHERTZ LASER	. 101
BASED ON A METALLIC CIRCULAR WAVEGUIDE	168
4.3.1. Theoretical Relations	
4.3.2. Comparison of Experimental and Numerical Results	173
CHAPTER 5 «CONTROL OF SHARPLY FOCUSED	
LASER BEAMS»	.179
5.1. THEORETICAL RELATIONS AND EXPERIMENTAL SETUP	. 179
5.2. COMPARISON OF THEORETICAL	101
AND EXPERIMENTAL RESULTS	. 181
REFERENCES	187

LIST OF NOTATIONS

BOR-FDTD – body of revolution finite difference in time domain

DOE – diffractive optical element

FDTD – finite difference in time domain

FWHM – full width at half maximum

IR - infrared

LOP – laser with optical pumping

NA – numerical aperture

OPL – optically pumped laser

THz – terahertz

WCD - waveguide in channel dielectric