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Radiation beams formed in laser resonators and used for scientific and 
applied purposes usually have a Gaussian intensity distribution in their 
cross section. Oversized hollow metal and dielectric waveguides are used 
for constructing resonators and transmission lines in the terahertz frequency 
range. The designing of waveguide transmission lines requires information 
about energy losses in inhomogeneous radiation beams propagating in such 
systems, the conditions of their optimal excitation, the nature, magnitude and 
ways of minimising distortions introduced in the signals being transmitted.

The possibility of using waveguides with a diameter much larger than the 
wavelength as low-loss transmission lines was pointed out already in [49]. 
However, the problem of propagation of terahertz laser beams in waveguide 
systems has only recently been developed in a number of theoretical and 
experimental works. The data given in the literature refer to the transmission 
of radiation from gas discharge lasers in the form of individual waveguide 
modes and wave beams with a flat wavefront through hollow waveguides. 
However, radiation beams propagating in OPL (optically pumped lasers) 
resonators are formed due to the coherent summation of waveguide modes 
and have a close to Gaussian intensity distribution in the cross section with 
different levels of wavefront curvature.

In the THz range, the Marcatili-Schmeltzer ratio [50], which determines 
the excitation in waveguides of hybrid modes, is not satisfied for metal 
waveguides: 2πa /λ >> |ν | Umn, where a is the radius of the waveguide, 
ν is the refractive index of the waveguide material, Umn is the m-th root 
of the equation Jm -1 (Umn) = 0, integer subscripts m and n characterize the 
propagating hybrid mode. For this reason, the metal waveguide parameters 
are calculated by the mode technique using analytic expressions for the 
waveguide ТЕ and TM modes obtained in the "ideal metal" approximation 
[51], although metals cannot be treated as ideal conductors in the short- 
wavelength part of the THz range. At the same time, dielectric waveguides 
are excited by strongly divergent radiation beams, when a considerable 
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part of the energy is transferred by higher modes, for which the Marcatili-
Schmeltzer approximation may not be satisfied either. Therefore, a 
verification of the mode approach in these cases requires the use of an 
alternative (e.g., ray-optics) method. The ray-optics techniques being used 
at present [52, 53] need to be developed further since they do not take 
into account the interference of beams incident on and reflected from the 
waveguide walls.

In this chapter, we have studied theoretically and experimentally the 
transmission of OPL radiation with a Gaussian intensity profile through 
hollow metal and dielectric waveguides to determine the optimal conditions 
for waveguide excitation, minimum depolarisation of the initial beam, and to 
work out recommendations for using these waveguides in THz transmission 
lines.

1.1. PROPAGATION OF LASER RADIATION THROUGH  
HOLLOW CIRCULAR WAVEGUIDES

1.1.1. Mode and Ray-optics Methods of Calculation
1.1.1.1. Mode Approach for Dielectric Waveguides

This method can be used to analyze the transmission of radiation in 
both hollow circular dielectric and metallic waveguides. However, the 
main criterion for the excitation of hybrid modes in these waveguides is 
conformity to the Marcatili-Schmeltzer ratio [50]: ka v umn>> , where a 
is the radius of the waveguide; v is the refractive index of the waveguide 
material; Umn is the nth root of the equation Jm–1 (Umn) = 0 [Jm–1 is the Bessel 
function of (m – l)-th order]. In the THz range, this ratio is not fulfilled for 
metal waveguides, therefore this method is used to analyze the propagation 
of radiation in hollow circular dielectric waveguides. Let's write the field 
configurations for the main modes of a hollow circular dielectric waveguide:

1. Circular electric modes TE0n (m = 0)
E J u r i z i tn n n� � �0 1 0 0� � �( ) exp( ),

H J u r i z i tr n n n0
0

0
1 0 0� � � �

�
�

� �( ) exp( ),
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u

ka
J u r i z i tz n

n
n n0

0

0

0
0 0 0� � � �

�
�

� �( ) exp( ).
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2. Circular magnetic modes TM0n (m = 0) 

H J u r i z i tn n n�

�
�

� �0
0

0
1 0 0� � �( ) exp( ),

E J u r i z i tr n n n0 1 0 0� � �( ) exp( ),� �
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n
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0 0 0� � �( ) exp( ).� �

3. Hybrid modes EHmn (m ≠ 0)

 
E J u r

iu

nka
v J u r m imn m mn

mn
m mn mn� � �� � � �

�

�
�

�

�
� ��1

2
2

2
1( ) ( ) cos exp( zz i t� � ),

E J k r
iu

kr
v J u r m i z irmn m i

mn
m mn mn� � �

�

�
�

�

�
� � ��1

2

2
1( ) ( ) sin exp(� � �tt),

   
E i

u

ka
J u r m i z i tzmn

mn
m mn mn� � � �( )sin exp( ),� � �

H J u r
iu

kr
v J u r m imn m mn

mn
m mn m�

�
�

� �� � �
�

�
�

�

�
� ��

0

0
1

2

2
1( ) ( ) sin exp( nn z i t� � ),

,
H J u r

iu

nka
v J u r mrmn m mn

nm
m mn� � � � �

�

�
�

�

�
� ��

�
�

�0

0
1

2
2

2
1( ) ( ) cos exp(( ),i z i tmn� ��

 
H i

u

ka
J u r m i z i tzmn

mn
m mn mn� � �

�
�

� � �0

0

( )cos exp( ),

where r is the radial coordinate, φ is the polar angle, ꞷ is the circular 
frequency of the wave, γmn  are the propagation constants of the eigenmodes 
of the waveguide along the z axis: 
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where r is the radial coordinate, φ is the polar angle, ꞷ is the circular 
frequency of the wave, γmn  are the propagation constants of the eigenmodes 
of the waveguide along the z axis: 

Let’s consider the excitation of a hollow circular dielectric waveguide 
by linearly polarized, for example, in the direction 



y  an axisymmetric 
Gaussian beam propagating along the axis of the waveguide. The beam 
waist is located at the entrance of the waveguide. For this beam the axis of 
symmetry coincides with the axis of the waveguide, and the radiation waist 
is located at the entrance of the waveguide. Then the initial radiation field 
in the cylindrical coordinate system has the form:







E E Ein ( , , ) ( )sin ( )cos� � � � � � � �0 0 0� � � � ,                   (1.2)

where 
 

� �,  are the unit vectors of polar coordinates,

E E
w0 0

2

0
2

( ) exp ,�
�

� �
�

�
�

�

�
� w w a0 0= ' / , w '0  is the radius of the beam waist 

in amplitude at the e-1 level from its maximum value.
For the polarisation of the initial radiation beam specified in this manner, 

only hybrid EH1n modes described by orthonormal fields will propagate in 
the waveguide







V z V z V zn ( , , ) ( , )sin ( , )cos ,� � � � � � � �� � � �0 0               (1.3)

where V z
J u

J u r iz
n

n n0

1 1

0 1 1

2
( , )

( )
( ) exp( ).�

�
��

�
� �

So, we can present the input radiation in the form of the following series
 

E C Vin n n
n

M

( , , ) ( , , ),� � � �0 0
1

� �
�
�                             (1.4)

where C E V d dn in n

a

� ��
 

� � �
�

00

2

 are the excitation coefficients of the 

corresponding hybrid modes, M a
�

�
 [54].

Then the field distribution 


E  and the beam power Pout  in the waveguide 
cross-section at a distance L from its input end can be found from the 
expressions

 

E L C V Ln n
n

M

( , , ) ( , , )� � � �� �
�
�

1
,                         (1.5)
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P L C Lout n n
n

M

( ) exp( )� �
�
� 2

1

2� ,                           (1.6)

where � �n n� Im( )1  are the attenuation coefficients of the corresponding 
waveguide modes.

The obtained relations allow us to determine the power transmission 
coefficient T(L) of radiation in the waveguide and the degree of polarization 
of the output radiation П (L):

T L P L Pout in� � � ( ) / , П L
I L I L

I L I L
y x

y x

( )
( ) ( )

( ) ( )
�

�

�
,                  (1.7)

where P L E d din ( ) ( , , )�
�

��


� � � � �
�

0
2

00

2

 is the radiation power of the initial 

beam, I L E L d dx y x y

a

, ,( ) ( , , ) .� �� � � � � �
�

2

00

2

1.1.1.2. Mode Approach for Metal Waveguides
This method is similar to the one described above. However, the 

calculation of the characteristics of circular oversized metal waveguide 
transmission lines is carried out using analytical expressions for 
waveguide TE and TM modes obtained in the approximation of an ideal  
metal [51]. 

Consider the excitation of a hollow circular metal waveguide by a 
linearly polarized Gaussian beam of the form (1.2). For the polarisation 
of the initial radiation beam specified in this manner, only the TE1n and 
ТМ1n waves will be excited in the waveguide. These modes are described 
by transverse orthonormal fields







V A
J r

r

dJ r

drn
TE

n
n n

1
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�
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� � ,                (1.8)
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where A
Jn

n n

� �
�

�
2 1

1

1
2

1� � �( )
, B

Jn

n n

� � � �
2 1 1

2� � �( )
, νn  is the 

n-th root of the equation � �J1 0( )� , χn  is the n-th root of the equation 
J1 0( ) .� �

Then the field distribution in the cross-section of the waveguide at a 
distance L from its input end has the form

  

E L C V i L D V i Ln n
TE

n
TE

n
n n

TM
n
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n

( , , ) exp( ) exp( )� � � �� �� �1 1
,      (1.10)

where C E V d dn in n
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 are the 

excitation coefficients of the corresponding modes, � � �n n ni� �1 1
 are the 

propagation constants for the corresponding modes [51]:
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� ,

λ1n
TE TM,  is the critical wavelength for ТЕ and ТМ modes, R0 = 376.73 Ω 

is the wave resistance of free space, Rs is the characteristic resistance of the 
metal walls of the waveguide.

Then the power of the beam at a distance L from the input end of the 
waveguide is equal

P L C L D Lout n n
TE

n
n n

TM

n

( ) exp( ) exp( )� � � �� �2 2
2 2� � .      (1.11)

The power transmission coefficient of the radiation in the waveguide and 
the degree of polarization of the output radiation are determined similarly 
by the expressions (1.7).
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1.1.1.3 Frost's Geometrical Optics Approach
This method, described in [53], can be used to analyze the transmission 

of radiation in both hollow circular oversized dielectric and metallic 
waveguides. As will be shown below, the refractive index of the waveguide 
walls plays a significant role in the radiation propagation model.

Let a linearly polarized axially symmetric Gaussian beam with the 
polarization vector directed along the   axis be incident on the entrance end 
of a circular waveguide (z = 0). The beam propagates along the  axis of the 
waveguide in free space and the beam waist coincides with the input of 
the waveguide. Let’s present the incident radiation in a general form in the 
Cartesian coordinate system





E E y( ) ( )� �, , ,0 0� �                                (1.12)
where

E A
w

( ) exp�
�

,
( )

,0 0

2

0
2

� �
�

�
�

�

�
�

                        (1.13)
and ρ is the radial coordinate, w0 is the beam radius measured  

at the e–1 level of its maximum amplitude at the waist; А0 is the field 
amplitude of the beam.

We take into account the influence of the entrance aperture of the 
waveguide of radius a on the incident radiation and consider "weak" 
Gaussian beam diffraction. A Gaussian beam weakly diffracted by a 
circular aperture (w0 ≤ 0.7a) can be approximated in the far field by 
another Gaussian beam with slightly different characteristics [55].  
The relationship between the parameters of the incident beam and the beam 
passing through the entrance aperture of the waveguide, is determined by  
the expressions:

� � � �
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,     (1.14)

where Aˈ0 is the field amplitude and wˈ0 is the waist radius of the 
diffracted beam. 

Considering the expression (1.14), radiation of the following form will 
be propagated in the waveguide:
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where � � � �
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 is the radius of the beam, where the 

field decreases by a factor of e–1, λ is the wavelength, R z z
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( ) � �
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is the curvature radius of the wave front of the beam.
We decompose the field vector of the propagating beam into two 

components parallel and perpendicular to the plane of incidence on the 
waveguide wall: � � �

�� � � �E z E z E z( ) ( ) ( )� � � � � � � �, , , , , , ,                 (1.16)
where E z E z E z E z�

� �
( ) ( )sin ( ) ( )cos� � � � � � � � � �, , , , , , , , ,� � � �� , are 

the unit vectors of the cylindrical coordinates.
By using geometrical optics, we assume that a beam consists of ray 

tubes or rays contained in an elementary solid angle, lying in the meridional 
planes of the waveguide and having a common origin – the center of 
the beam. In such an analysis, it is not possible to determine the field at 
the axis of the waveguide [56]. At any other point of observation in the 
waveguide, the field is a superposition of the fields of the incident ray and 
the ray reflected from the waveguide wall. These rays can be assumed to 
emerge from the points displaced by 2an along ρ (Figure 1.1), where n is the 
number of reflections from the wall:

	 E ( z) E ( z)rn
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n
n

 , ,
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�� � �
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�
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�� � �
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�
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                    (1.17)

where � �n
nan r r� � � �2 1( ) , ,



 are Fresnel's reflection coefficients [9]. 
They have the following form

r
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1 2�� �� � �� �
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� �� �
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,
vv2� �

,   (1.18)

where n1 is the refraction index of the medium in the waveguide, n2, k2 are 
determined from the expression for the refractive index of the waveguide wall 
n n ik u v

2 2 2 2 21� �( ), , , according to the ratio n u ivtn in tn


2 2 2cos� � �� � , ,  
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are the angles of incidence and refraction of the beam. The angle of 
incidence is determined by expressions

           	  � � �in n n
n

z
� � � �

�
�

�
�
�

� �
2

, .arctg                       (1.19)

The cross-sectional area of the ray tube, which it would have possessed in 
the absence of reflections (Figure 1.2), is equal to dS d dn n n n� � �2 sin� � , 
where �n

n

z
�

cos�
 is the distance to the observation point along the beam.

Figure 1.1. Schematic representation of the decomposition 
of the input beam into elementary ray tubes 
and their transmission along the waveguide
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Figure 1.2. Cross section of beam tube

Then the energy flux passing through this cross section is:

dW I z z d dn

n

n� �( )
tg

cos
� �, ,2 �

�
�

where � � �I z E zn n( ) ( )� �, ,
2  is the intensity of radiation in a cross-

section perpendicular to the beam.
We assume that a ray tube after reflection is focused into a line along the 

waveguide axis. In this case, the cross-sectional area of the ray tube at the 
point of observation is

dS d d z d dn

n

� �� �� �sin
tg

cos
� �

�
�

�
2 ,

where � ��
��

� �
�

�
�

�

�
�

z

azcos
; arctg

�
�

0
2

  is the angle at which this point 

is seen from center of the beam. 
Because the energy flux in a ray tube is constant, the intensity I zn

' ( , )ρ  
at the given point is related to the intensity �I zn( , )�  in the unfocused beam 
by the expression

� � � �I z
dW

dS
I zn n

n( ) ( )� �
�
�

, , ,

while the intensity of the rays in the cross-section perpendicular  
to the waveguide axis is equal I z I zn n n( ) ( )cos� �, ,� � � . Thus, the field of 
the nth ray in (2.17) has the form
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� � �E z E zn n
n

n( ) ( ) cos� �
�
�

, , .�                         (1.20)

Thus, the total intensity at any point of the waveguide will be determined 
by the following expression

I z I z I z( ) ( ) ( )� � � � � �, , , , , , ,� � �

                       (1.21)   
where

I z E z rn
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n
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n N
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( ) ( ) cos sin� � �
�
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�, , , ,| |� �
��
� �

2

I z E z rn
n

n
n

n N

N

� �
��

� ��( ) ( ) cos cos� � �
�
�

�, , , .| |�

2

The power of the beam at a distance L from its entrance end

P L I L d dout

a
( ) ( )� �� 00

2�
� � � � �, , .                     (1.22)

The power transmission coefficient of radiation in the waveguide  
and the degree of polarization of the output radiation are determined by 
expressions (1.7).

However, this approach has limitations on the length of the waveguide, 
so the length of the waveguide should not exceed the value a2/λ [56]. This 
is due to the fact that complex interference effects arise in the waveguide 
between the incident and reflected beams, which this approach does not 
take into account.

1.1.1.4. Crenn's Geometrical Optics Approach
Using the ray-optics representation, we assume that the incident beam 

consists of elementary beams with a power of dP, contained in an elementary 
solid angle, lying in the meridional planes of the waveguide and having a 
common origin – the center of the beam [52]. At the waveguide input, the 
power of the elementary beam has the following form

dP I d d I
w

d d� � �
�

�
�

�

�
�( ) exp� � � �

�
� � �0 0 0 0

0
2

0
2 0 00, ,            (1.23)

where ρ0  is the radial coordinate, ϕ  is the polar angle in the transverse 
plane (Figure 1.3), I0 is the beam intensity on the axis at the waveguide 
entrance, w0 is the beam radius at the waveguide entrance.
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Figure 1.3. Electric field at point M.  
The plane of the circle is perpendicular to the z axis

The reflection coefficients on the wall depend on the complex refractive 
index ν  of the wall material given by

� � � �
�
� �

� � �exp( ) .i i
0

For metallic waveguides made of copper, silver, gold, or brass, the 
conductivity σ is larger than 107Ω-1/m. At IR frequencies, the corresponding 
values of the refractive index of the waveguide material ν are several 
hundreds. Consequently, the values of ν are very large, and despite the 
paraxial approximation the condition ��1  is not always true for the 
Gaussian beams. Thus, the term ��  cannot be neglected in the calculations. 
Therefore, as a condition for the paraxial approximation

            tg =� � �� , ,
�
�

0

0
2

1
k

                               (1.24)

and the condition ν1 must be taken into account in these calculations. 
Due to these large values of ν1, one has

�
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�
��0

1
2

 , ,v i� �( )

Assuming the paraxial approximation, i.e., the angle �� is small, and 
using a first-order expansion in ��, the following approximate relations can 
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be derived for angles of incidence ��in and reflection ��tn of radiation on the 
waveguide wall

sin cos 1,

sin

cos sin ,

cos ( )

� �
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� � �

�

in

tn
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v

v

� �
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1

1
1 2

,

.                                  (1.25)

Using Eqs. (1.18) and (1.25) and a first-order expansion in �� and ( )1 2/ v , 
we find for the reflection coefficients

r
v� � � �1

2�
,
                                    

(1.26)
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1
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From Eqs. (1.26) і (1.27) one obtains 

r
v� � �2 1

2 2�
,                                    (1.28)
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where r


 and r⊥  are, respectively, the moduli of r


 and r⊥ .
The intensity of the incident beam is related to the electric field  

by (Fig. 1.3)
	 I E E E E E� � � � ��

2 2 2 2 2 2 2


sin cos� � .               (1.30)
The intensity of the reflected beam is expressed as

 r r r I2 2 2 2 2( )I=( sin + cos ) .�,� � �
 �                    (1.31) 

This intensity is the sum of two components, corresponding to E


 
and E⊥. Because Θ  and 1 / ν  are small, Eqs. (1.28) and (1.29) show that 
the coefficient r⊥  is very close to unity, but this is not always true for r



. 
Therefore, after one reflection, a strong depolarization of the beam may 
occur, and it cannot be assumed that the incident Gaussian beam will retain 
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its polarization inside the waveguide The experimental results in [57] agree 
well with this statement. After n reflections in the waveguide, the output 
intensity of the components E



 and E⊥ is proportional, respectively, to r n


2  
and r n

⊥
2 . Note that the number of reflections n depends on the angle �� or 

on ρ0  (Eq. 2.24).
Consider an elementary ring in the cross section of a Gaussian beam, 

defined by ( )ρ ρ0 0,d . After n reflections in the waveguide, the beam power 
in this ring is calculated from the expression
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where ′w0
and ′I0

 are determined, respectively, from (Eq. 1.14) and the 
transmission coefficient tn ( )ρ0  is found as

t
r r

n

n n

( )=
( ) ( )

�
� �

0

2 20 0

2


� � .                               (1.33)

Accordingly, using expression (1.32), the power P Lout ( )  can be 
calculated as

P L I t
w

dout n

m

( )=2 ( )exp( )� �
�

� �
�

� �
�� 0

0

0
2

0
2 0 0.                   (1.34)

The coefficient tn ( )ρ0
 depends on the function n( )ρ0

, which, when it 
approximated by a linear function using (Eq. 1.24), has the form:

  	 n
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akw
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�
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2 2
0

0
2

�
.                                (1.35)

Equation (1.35) allows us to calculate the coefficients r n
�

2 0( )� , r n


2 0( )ρ  
and tn ( )ρ0

.

1. Calculation r n
�

2 0( )� . Since the coefficient r⊥
2  determined from (1.28) is 

very close to 1 (Θ1 an ν1), the following exponential approximation 
is made to simplify the calculation of the integral (1.34):

r
v� � �2 2 2

exp( ).
�

                              (1.36)
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Then the coefficient r n
�

2 0( )�  is derived from Eqs. (1.24), (1.35)  
and (1.36) as
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2.	Calculation r n


2 0( )ρ . The expression for the coefficient r


 defined by 
Eq. (1.29) does not lead to a simple calculation of the integral (1.34). So, in 
the considered range of incidence angles, the function given by Eq. (1.29) 
is well approximated by the exponential function
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Then the coefficient r n


2  is derived from Eqs. (2.24), (2.35) and (2.38):
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To simplify the writing of formulas, we denote
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Substituting values of Eqs. (1.33), (1.37), (1.39) and (1.40) into (1.34), 
the output power P Lout ( )  is defined as

P L I F
w

d I F
wout

km

( )= exp( ) exp( )�
�

� � �
��

�
�

0 1
0
2

0
2 0 0 0 2

0
2

0
2

0 0

�
�

�
�

��
��

�

� �

� �
��

�
��

�

�
�� �

�

�
�

�

�
�

w

wk

d

I
L

a w

0
2

0

0 0

0
0
2

0
2

1 2

2

/�

�

� �

�
�

�
exp exp

22

0 0

/�

�

� �
m

d� . (1.41)

Integration of Eq. (1.41) yields the result
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From Eq. (1.40), taking into account (1.24), we find that
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Then, considering that the power of the diffracted Gaussian beam is 
equal to
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Where ′w0  is given by Eq. (1.14) and using Eqs. (1.24), (1.42−1.44) we 
will obtain an expression for calculating the transmission coefficient of a 
Gaussian beam in a waveguide with high conductivity of the wall material:
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1.1.2. Conditions of Application of Geometrical Optics Approaches 
in Oversized Metal Waveguides

Using the methods described above, calculations were performed for 
the transmission coefficient and the degree of polarization of the field in 
circular copper waveguides excited by linearly polarized Gaussian beams 
of THz radiation with a field of type (1.12). The radiation frequency was 
varied from 4 to 28 THz. The studies were performed when the relative 
radius of the output beam was changed in the range from 0.1 to 0.7  
(in the region of its "weak" diffraction [55]). For copper the surface resistance 
was RS = 2.625х10-7 (c/λ)1/2, taking into account the specific conductivity  
of the metal at direct current σ0 = 5.73х107 S/m [58]. The refractive  
index of copper for the corresponding radiation frequency was chosen 
according to [59].



25

Scientific monograph

Figure 1.4 shows the results of calculations of the transmission 
characteristics of the copper waveguide with a diameter 2a = 3 mm 
and length L = 370 mm using the Crenn's geometrical optics approach 
(subchapter 1.1.1.4) and the mode approaches in the approximations of a 
real metal both by an "ideal metal" and a dielectric. As a reference graph of 
the radiation transmission coefficient in the frequency range from 4 THz to 
28 THz, we selected the curve calculated using ray-optics theory, because 
its calculation is not related to the existence of a certain set of waveguide 
modes, and only depends on the refractive index of the waveguide material 
at a given frequency.

We can distinguish three regions of the terahertz range, where the 
results obtained using the mode approach in calculating the transmission 
characteristics of metallic waveguides are different. In the frequency 
range above 15 THz (λ < 20 μm), the mode approach in approximation 
the real metal by a dielectric gives more reliable results (Figure 1.4a).  
At frequencies below 7.5 THz (λ ≥ 40 μm), there is a better agreement 
between the results of calculations with the help of the ray-optics and mode 
method in the approximation of an ideal metal (Figure 1.4d, e, f). In the 
frequency range from 7.5 to 15 THz (20 μm ≤ λ< 40 μm), the choice of 
the calculation method is determined by the relative radius of the exciting  
beam w0 (Figure 1.4b, c). 

When w0 < 0.3, the application of the mode technique in the 
approximation of an ideal metal gives the best results, and when w0 > 0.3 – 
in the approximation of a metal by a dielectric. This can be explained by an 
increase in the refractive index of copper with a decrease in the frequency 
of transmitted radiation. At a radiation frequency below 7.5 THz, copper in 
its electrodynamic properties is close to an ideal metal (Figure 1.5).

Measurements were made of the transmission coefficient and the degree 
of polarization of radiation in a copper waveguide with a diameter of 
3 mm and a length of 370 mm when it was excited by linearly polarized 
beams of a Gaussian intensity profile of the type (1.12) from an optically 
pumped CH3OH laser (f = 4.25 THz, λ = 70.5 μm) and a stabilized CO2 laser  
(f = 28.3 THz, λ = 10.6 μm). In calculating the transmission coefficient 
of the waveguide, radiation attenuation in the atmosphere inside the 
waveguide was taken into account. At various days during the experimental 
studies, it varied in the range 3–3.4 dB m–1 depending on the air humidity in 
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Figure 1.4. Calculated (curves) and experimental (points) dependences 
of the radiation transmission coefficient T on the relative radius w0  

of the exciting beam in the copper waveguide at 2a = 3 mm, L = 370 mm. 
Solid curves – calculation using the geometric-optical method, 

dashed – using the mode method in the approximation of a metal 
with a dielectric, dash-dotted – using the mode method 
in the approximation of an ideal metal. а) f = 28.3 THz, 
b) 15 THz, c) 10 THz, d) 7.5 THz, e) 6 THz, f) 4.25 THz
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the laboratory. Experimental points in the dependence of the transmission 
coefficient on the relative radius of the exciting beam w0 for the given 
frequency are presented in Figure 1.4e.

There is a good agreement between the experimental and calculated data 
obtained using the mode approach in the approximation of an ideal metal. 
At the same time, depolarization of the laser radiation that passed through 
the waveguide was observed. The measured degree of its polarization at 
different w0 varied from 10 % to 50 %. This indicates that in a metallic 
waveguide excited by a linearly polarised Gaussian beam at a given 
frequency, TE1n and TM1n waves with the field polarisation differing from 
linear one are excited.

When measuring the transmission characteristics at the frequency  
f = 28.3 THz (λ = 10.6 μm) а stabilised LG-74 CO2 laser was used as a 
radiation source. Formation of Gaussian beams with a flat phase front was 
carried out using NaCl lenses with different focal lengths. The results of 
the experiment are shown in Fig. 1.4 a. There is a good agreement between 
the experimental results and calculations based on the mode method 

Figure 1.5. Dependence of the calculated refractive index of copper  
n* = n + ik on the wavelength λ of radiation propagating along  

a circular metal waveguide
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using the approximation of the metal by a dielectric at this frequency.  
It is known that hybrid EH1m modes have linear polarization. The measured 
degree of polarization of the radiation that passed through the investigated 
waveguide, in the case of its excitation by a linearly polarized beam with a 
relative radius w0 = 0.5, was equal to П = 99.3 %. For a similar segment of 
the dielectric waveguide the measured degree of polarization of the output 
radiation is П = 99.8 % for the same parameters of the exciting beam.  
This experiment allows us to assert that in the investigated copper waveguide 
EH1m hybrid modes are excited at a given frequency. 

The discrepancy between the calculated and experimental data is 
explained by the irregular cross section, surface roughness and possible 
difference in the calculated material constants for the waveguides used in 
the study.

For quantitative evaluation of the appropriateness of the mode approach 
in the terahertz range, we calculated the dependence of the normalised 
average absolute deviation Δ of the transmission coefficients on the 
relative beam radius w0, found using the ray-optics (G) and mode (R)  
approaches [60]:

�( ) ( ) (ww G w R0 0 0� � ).

Figure 1.6 shows the calculated dependences of the difference 
measure Δ of the transmission coefficient on the radiation frequency f  
(wavelength λ) and the relative radius w0 of the exciting beam in the copper 
waveguide at 2a = 3 mm, L = 370 mm. 

Calculations were performed using the ray-optics and mode methods 
in the approximation of the metal by a dielectric (Figure 1.6а), as well 
as using ray-optics and mode methods in the ideal-metal approximation 
(Figure 1.6b). These results confirm the presence of a transition region in 
the behavior of the electrodynamic properties of metal waveguides in the 
frequency range of 7.5 – 15 THz. In this frequency range, the determining 
parameter for assessing the applicability of mode approaches is the value of 
the relative radius of the radiation beam.
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1.1.3. Attenuation of EH11 Type Oscillations in Dielectric Waveguides
Attenuation in waveguides is one of the most important characteristics 

determining the choice of their geometric dimensions. The attenuation 
in glass and quartz waveguides was calculated and measured at two THz 
wavelengths, 337 µm and 118.8 µm, both for the single-mode EH11 regime 
achieved by self-filtering or direct excitation, and for a multimode signal. 
In the latter case, excitation was performed by a laser with a central hole in 
the output reflector.

The EH11 mode is linearly polarized, its field intensity maximum is 
on the axis, its phase front is nearly planar, and it is excited efficiently 
by the fundamental oscillation mode in laser resonators [61]. This causes 
interest in its real characteristics when the radiation is transmitted through 
a waveguide, first of all, in the attenuation constant α11. Its analytical 
expression was obtained in [50] and has the following form:
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Difficulties in determining α11 according to (1.46) are associated with 
the absence of data on the parameters of the materials from which hollow 
dielectric waveguides are made in the THz range. Conducting experimental 

Figure 1.6. Calculated dependences of the deviation Δ 
of the transmission coefficient on the radiation frequency f 

(wavelength λ) and the relative radius w0 of an exciting beam 
in a copper waveguide
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studies makes it possible to overcoming these difficulties. The block diagram 
of the experimental setup is shown in Figure 1.7. A laser emitting on CH3OH 
(λ = 118.8 μm) [62] and HCN (λ = 337 μm) [63] molecules served as a 
radiation source (1). The HCN laser is excited by a separate HF generator 
at a frequency of 13.56 MHz. The laser emits the EH11 fundamental mode  
with a linear (~ 100 %) polarization. Its resonator is formed by a glass 
tube 2.3 m long and with an inner diameter of 2a = 56 mm and two flat 
mirrors, one of which contains a coupling hole (d = 8 mm). In the process 
of research, a one-dimensional wire grating with a step of 40 μm and a wire 
diameter of 8 μm was also used as an output element. The output power of 
the radiation was at least 60 mW.

Figure 1.7. Structural diagram of the experimental equipment:  
(1) THz laser; (2) modulator; (3) divider of THz radiation;  
(4, 8) pyroelectric receivers; (5, 9) measuring amplifiers;  

(6, 10) oscilloscopes; (7) waveguide under study; (11) recorder

The radiation is modulated in amplitude by a mechanical chopper (2) 
with a frequency of 30 Hz at the output of the laser. Part of the radiation  
(~ 10 %) is diverted using a beam splitter (3) to control the output power of 
the laser. The main part of the radiation is used to study hollow dielectric 
waveguides (7). At the output of the studied waveguide, the radiation 
arrives at pyroelectric receiver (8), insensitive to the polarization of the 
radiation incident on it. From the output of the receiver, the electrical signal 

 
 



31

Scientific monograph

is fed to the selective amplifier B6-4, tuned to the modulation frequency. 
The amplified signal is detected and registered using a recorder (11). 
Oscilloscopes (6, 10) are used for visual observation of the signal from the 
output of the selective amplifier. 

Measurement of the spatial distribution of the intensity of the EH11 mode 
emitted by the laser at various distances from the laser and the waveguide is 
performed by scanning the receiver (8) across the beam both in the vertical 
and horizontal planes. The distance from the exit window can vary within 
a wide range from 0.15 m to 3 m. At any point it is possible to register the 
radial profile of laser radiation. Binding to the center of the laser aperture 
along the entire length of the path is carried out using a He-Ne laser.  
The pyroelectric detector made of LiNbO3 crystal serves as a laser radiation 
signal receiver. Like all thermal receivers, it does not have selective 
properties and its frequency response is determined only by the properties 
of the absorbing layer. The pyroelectric current is directly proportional 
to the absorbed power and depends on the thermal characteristics of the 
sample. The threshold sensitivity of the pyroelectric receiver is not worse 
than 10-8 W/Hz. Bolometric receiver with a measurement error of ~ 10 %. 
was used to measure the absolute value of the laser output power, as well as 
to estimate the attenuation in the waveguide.

Measurements of α11 were performed by indirect and direct methods. 
The indirect method was based on a comparison of the losses of the 
TEM00 mode of an open cavity with the losses of the EH11 mode of a 
resonant system of a waveguide laser having the same mirrors. An HCN 
laser with a wavelength of 337 μm served as the signal source. Its open 
resonator had a semiconfocal geometry with mirrors characterized by the 
radii of curvature R1 = 3, 4, and 5 m, and R2 =∞; the diameters of the mirror 
apertures were 60, 80, and 100 mm, respectively. In these configurations 
the diffraction losses were much less than the sum of the coupling losses 
and those due to heating of the mirrors. The losses experienced by the 
EH11 mode could then be higher than those in the case of the TEM00 mode 
by an amount governed by the attenuation in the walls and in the medium  
(in the case of resonators of different lengths). The measured attenuations for 
the EH11 mode in waveguide laser tubes with diameters 36, 56, and 80 mm 
were found to be 0.012, 0.0035, and 0.0011 m–1, respectively. The results of 
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these measurements led to a scaling relationship for the attenuation constant 
α11 (in reciprocal meters):

2 0 55 0 60 211
3� � � �( . . ) ( ) ,a                            (1.47)

where a is the waveguide radius in centimeters.
A direct method for the determination of the attenuation constant 

involved a comparison of the powers at the exit and entry of a section of a 
hollow waveguide of known length excited by the EH11 mode generated in a 
waveguide filter because of the self-filtering effect in hollow-core dielectric 
waveguides [61]. Our experiments were carried out at a wavelength 
of 118.8 µm using glass tube waveguides with an internal diameter  
2a = 5.5 and 6.2 mm. In each case we used a filter of the same diameter and 
the single-mode EH11 propagation was established over a distance of ~ 1 m. 
The measured attenuations were 0.691 and 0.437 m-1, respectively. Hence, 
we obtained the following relation:

2 0 055 0 074 211
3� � � �( . . ) ( )a ,                         (1.48)

which was derived from the experimentally determined values of 
the attenuation constant by subtracting the measured attenuation of the 
118.8 µm radiation in the atmosphere, which amounted to 0.66 dB/m. 
Comparing (1.47), (1.48) with (1.46), we finally obtain the following 
scaling relationship:

2 0 6 0 811
2 3� �� � �( . . ) ,a                              (1.49)

where λ is the wavelength in millimeters, a is in centimeters, and α11 is 
in reciprocal meters.

Taking into account the weak influence of the dispersion of the 
refractive index of the waveguide material on α [61], expression (1.49) can 
be considered valid in the entire THz range for calculating the attenuation 
constant attenuation of the EH11 mode, which depends on the geometric 
dimensions of the waveguide. The total attenuation should include the 
losses in the medium and should be found – for example – using a table 
given in [64].

The results of the calculation and experiment, from which the expressions 
(1.47–1.49) were obtained, are given in the Table 1.1.
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Table 1.1
Attenuation of radiation of EH11 mode (λ = 337 µm and 118.8 µm)  

in glass tubes of different diameters

λ, μm Material
Calculated

index of refraction 
from [65]

Diameter, 
mm

Attenuation, dB/m 

Experiment Calculation

337 Glass n = 2.55 + i 0.18 80 0.005 0.004
—“ — —“ — —“ — 56 0.015 0.011
—“ — —“ — —“ — 36 0.052 0.040
118.8 Glass n = 2.32 + i 0.40 5.5 3 1.3
—“ — —“ — —“ — 6.2 1.9 0.9

1.1.4. Transmission of Radiation Wave Beams in Circular Waveguides
Figure 1.8 shows the scheme of the experimental setup. The formation 

of Gaussian beams with a plane phase front performed by an optical system 
consisting of a spherical mirror (3) with a radius of curvature of 0.5 m 
and mirrors (5) with different radii of curvature R. The divergent beam 
emerging from the THz laser through the coupling hole of diameter 4 mm 
in the output mirror is incident on spherical mirror (3). The distance l1 is 
chosen taking into account the beam divergence in such a way that a beam 
with a nearly plane phase front is formed in the plane of mirror (5). For the 
118.8 µm radiation, the distance l1 is 570 mm, while the distance l2 between 
the spherical mirrors 3 and 5 is l2 = l700 mm. The beam diameters d at the 
level 1/10 of the maximum intensity at the waveguide entrance obtained for 
different radii of curvature R of mirror (5) are presented in Table 1.2.

Beam diameters were measured by scanning with a pyroelectric 
detector in a plane perpendicular to the direction of radiation propagation, 
parallel and perpendicular to the direction of THz radiation polarization. 
The resolution of the detector used in experiments was 0.2 mm. In order 
to produce beams of diameter smaller than 2 mm, spherical mirror (5) was 
replaced by a plane mirror and Teflon lenses 6 of focal length 24, 14 and 
9 cm were mounted at a distance of 24 cm from it. In this case, beams of 
diameter 1.7, 1.3 and 0.9 mm at the 1/10 level of maximum intensity were 
formed in the waist. 
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Table 1.2
Dependence of the beam diameter d 

on the radius of curvature R of a mirror
R, m l3, mm d, mm

3 
2 
1 

0.5 

1160
875
475
240

6.5
5.1
3.5
2.2

The total attenuation ��  (in dB.m-l) in the waveguide under study was 

calculated from the expression �� � �1 10 0

1L
P
Plg , where P0 and P1 are 

the radiation powers at the input and output of the waveguide, respectively; 
L is the waveguide length. The radiation powers P0 and P1 were measured 

Figure 1.8. Structural diagram of the experimental equipment: 
(1) THz laser; (2) modulator; (3, 5) spherical mirrors; 

(4) divider of THz radiation; (6) lens; (7) waveguide under study;  
(8) polarizer; (9) power meter; (10) pyroelectric receiver; 

 (11) measuring amplifier; (12) oscilloscope
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with a BIM0-1 bolometer with a relative error of ± 10 %. The attenuation of 
the 118.8 µm radiation was measured taking into account the atmospheric 
attenuation δatm, which was determined by measuring the power in two cross 
sections separated by a distance of ~ 1 m. The atmospheric attenuation 
depends on the humidity of air and is not a constant quantity. On different 
days, it varies in the range 0.5 – 0.7 dB.m-1. In this case, the attenuation in the 
waveguide is � � �w atm= � � . The transmission coefficient T was calculated 
from the attenuation measurements.

The degree of polarisation of radiation was measured by mounting a 
one-dimensional wire grating polariser at the output of the waveguide.  
The degree of polarisation П of the beam was calculated from the expression 
П = (PII – P+) / (PII + P+), where PII and P+ are the radiation powers 
for parallel and perpendicular arrangement of the grating relative to the 
direction of polarisation of the incident radiation.

The techniques described above were used for computer calculations 
and experimental measurements of the transmission coefficient and 
degree of polarisation of radiation in metal (copper) and dielectric 
(glass) waveguides excited by linearly polarised Gaussian beams from 
a 118.8 µm CH3OH laser with a field of type (1.13). Investigations 
were performed by varying the relative radius w0 of the initial beam in 
the range 0.1 – 0.9 (in its "weak" diffraction region) [55]. The surface 
resistance of copper taking into account the dc conductivity of the metal  
σ0 = 5.73 х 107 S/m is Rs � �2 625. 10 7� c / �  [58]. According to [59],  
at λ = 118.8 µm, the theoretical value of the refractive index is 
� � � �216 576i . Pyrex glass with a theoretical refractive index 
� � � �2 32 0 40. .i  at λ = 118.8 µm was chosen as the material for this 
waveguide [65].

Figure 1.9 shows the results of measurements and calculations of 
transmission parameters of copper and glass waveguides of identical 
geometrical dimensions: diameter 2a = 5.7 mm (a/λ ≈ 24) and length  
L = 60 mm. Such a choice of the waveguide length was dictated by the 
restriction imposed on this parameter in the ray-optics approach and by the 
need to perform calculations for L a� 2 / �  [56]. The results presented in 
the figure demonstrate qualitative agreement between the experimental and 
theoretical data obtained by using various techniques. This justifies the use of 
mode approach in the ideal metal approximation at wavelengths exceeding 
0.1 mm, and this technique was employed in subsequent calculations.
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We studied experimentally and theoretically copper waveguides of 
different sizes with parameters 2a = 5.7 mm (a/λ ≈ 24), L = 500 mm and  
2a = 7.8 mm (a/λ ≈ 33) and length L = 400 mm, as well as glass waveguides 
with parameters 2a = 5.7 mm (a/λ ≈ 24), L = 500 mm and 2a = 8.5 mm 
(a/λ ≈ 36), L = 500 mm. Figure 1.10 shows the results of investigation 
of the transmission coefficient and the degree of polarisation of the output 
radiation from these waveguides. One can see that unlike dielectric 
waveguides, the metal waveguides have a transmission coefficient that 
varies weakly with changing the exciting beam radius and does not have 
an optimal value. An analysis of the results of calculations by the mode 
technique shows that for small values of w0, the main part of the exciting 
beam energy is transferred by the higher-order modes that have a weaker 
attenuation (Figure 1.11). As the value of w0 increases, the key role in the 
emission spectrum is played by the TE11 and TM11 modes with a stronger 
attenuation than other modes, which explains a decrease in the transmission 
coefficient for metal waveguides in the case of broad exciting beams.  
For these cases of excitation Figure 1.12 shows the calculated relative 
shares of energies in the radiation spectrum of the main waveguide TE and 
TM modes that arise at the input of a copper waveguide.

The energy fractions of the excited waveguide modes were defined as

U
C

C D
mn
TE mn

mn mn
m n

�
� �

� � � � ��

2

2 2

,

,
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mn
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mn mn
m n

�
� �
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2

2 2

,

.

Dielectric waveguides are characterized by a pronounced optimal value 
of the maximum coefficient of radiation transmission in a waveguide 
corresponding to the range 0.5 < w0 < 0.7, which well agrees with the 
analogous results obtained during the transmission of single-mode and 
multimode radiation [55; 56; 66–71].

This optimum corresponds to the transfer of the highest fraction of 
the exciting beam energy to the fundamental EH11 mode of the dielectric 
waveguide, which has the lowest attenuation (Figure 1.13). Calculated 
relative fractions of energies in the radiation spectrum of the main waveguide 
EH1m modes arising at the entrance of a glass waveguide are shown in  
Fig. 1.14. The energy fractions of the excited waveguide modes were 
defined as U C Cn n m

m

� � � � ��2 2
/ .
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Figure 1.9. Calculated (curves) and experimental (points) 
dependences of the transmission coefficient T (a) and the degree 

of polarization П (b) radiation on the relative radius w0 
of the exciting beam in metallic (1, 2) and dielectric (3, 4) waveguides 

at 2a = 5.7 mm, L= 60 mm. 
Curves 1, 3 – calculation according to the geometroptic method; 

2, 4 – calculation according to the mode method
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Figure 1.10. Calculated (curves) and experimental (dots) dependences 
of the transmission coefficient T (a) and the degree  

of polarization П (b) of radiation on the relative radius w0  
of the exciting beam in the metal (1, 2) and dielectric (3, 4) waveguides  

at 2a = 5.7 mm, L = 500 mm (1), 2a = 7.8 mm, L = 400 mm (2),  
2a = 5.7 mm, L = 500 mm (3) and 2a = 8.5 mm, L = 500 mm (4)
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At w0 > 0.7, a significant part of the incident radiation energy does 
not enter the waveguide, which causes a sharp decrease in the power 
transmission coefficient for both metal and dielectric waveguides.

For dielectric waveguides, the degree of polarization of the transmitted 
radiation is close to 100 % and it is well preserved over the entire range 
of beams under study. In metal waveguides, the degree of polarization of 
the output radiation increases with an increase in the radius of the exciting 
beam w0 and a decrease in and a decrease in a/λ, which is explained by 
an increase in the contribution of the fundamental waveguide TE11 mode  

Figure 1.11. Dependence of the attenuation coefficients α TE
 and TM modes on the wavelength λ of radiation propagating along 

a circular metal waveguide at 2a = 5.7 mm
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(with the maximum fraction of linearly polarized radiation compared to 
other modes) into the spectral composition of the radiation (Figure 1.14).

Differences in the values of the calculated and experimental data are 
associated with the irregularity of the cross section, surface roughness 
and the possible difference between the calculated values of the material 
constants for the used waveguide.

Figure 1.12. Dependencies of the relative fractions of energy U 
in the radiation spectrum of the main waveguide TE and TM modes 

excited at the entrance of a circular copper waveguide diameter 
2a = 5.7 mm, from the relative radius of the input beam w0
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An experiment was also carried out on the propagation of 
Gaussian-like radiation beams in WCD, which are formed in lasers on  
CH3OH (λ = 118.8 μm) and HCN (λ = 337 μm) molecules with energy  
output through a central hole in the output reflector. The scheme of the 
experimental setup and the method of measurements are described in 
the previous section 1.2.3. The diameter of the exciting beam, the level 
of curvature of its wavefront, and, accordingly, the coefficients Cm in 

Figure 1.13. Dependence of the attenuation coefficients α 
of the main waveguide EH1m mode on the wavelength λ 

in a circular dielectric waveguide with a diameter of 2a = 5.7 mm
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expression (1.4), which characterize the transfer of beam energy into 
waveguide modes, change with a change in the distance between the 
laser output window and the input end of the waveguide. From physical 
considerations, here, too, one can expect an optimal distance at which the 
transmission coefficient will have a maximum value. Indeed, both for a 

Figure 1.14. Dependencies of the relative fractions of the energy U  
of the main waveguide EH1m modes in the radiation spectrum excited 

at the entrance of a circular dielectric waveguide with a diameter  
of 2a = 5.7 mm on the relative radius w0 of the input beam
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small (relative to the waveguide cross section) beam radius and for a large 
one, the contribution of higher modes to decomposition (1.4) will be more 
significant than in some intermediate case.

Figure 1.15 shows the results of measurements at wavelengths of 
337 µm and 118.8 µm and the results of calculations of the transmission 
coefficient versus the diameter of the exciting beam for glass and quartz 
tubes of various diameters. In the calculations, the complex amplitudes 
of the beams exciting the waveguides were found by applying the scalar 
diffraction operator in the approximation of the Fresnel zone to the complex 
amplitudes of the fields emitted by the lasers. The latter were obtained by 
solving the problem of the fundamental mode of resonators for the lasers 
under study (the solution technique is described in [72]). Moreover, in 
all the cases under consideration, the radiation beams at the input ends of 

Figure 1.15. Dependence of the radiation transmission coefficient T  
at the wavelengths λ = 337 μm (a) and 118.8 μm (b) on the diameter d 

of the exciting beam in the dielectric waveguides for 2a = 19 mm, 
L=1.09 m (1), 2a = 30 mm, L=1.06 m (2), 2a = 36 mm, L=0.86 m (3), 
2a = 56 mm, L=1.32 m (4), 2a = 13 mm, L=1.34 m (5), 2a = 19 mm, 

L=1.05 m (6), 2a = 30 mm, L=1.01 m (7).  
Solid curves – experiment, dotted curves – calculation
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the waveguides had the shape of the field intensity distribution close to 
the Gaussian curve. It follows from the calculated data that the optimal 
ratio of the exciting beam radius to the waveguide radius is in the range 
p = 0.4–0.5. These results are close to the theoretical values of the optimal 
excitation of the EH11 mode d/D = 0.455 [66–68] and to the experimental 
values for a Gaussian beam with a waist at the waveguide input  
0.20 < d / D < 0.55 [57; 70].

1.1.5. Reconstruction of Gaussian Radiation Beams  
in Metal Circular Waveguides

Let a monochromatic light source with electric field distribution E0(ρ) be 
excite the input face of a circular waveguide (z = 0). This distribution can 
be represented as a superposition of an infinite set of the waveguide wave 
functions Fm(ρ) with the amplitudes am:

E a Fm m
m

0
1

( ) ( )� ��
�
�  .                              (1.50)

The field distribution in an arbitrary waveguide section z >> λ is also 
determined by the superposition of the waveguide wave functions. However, 
in contrast to the cross

section z = 0, this superposition takes into account the difference in 
propagation constants of different modes γm and the number of terms in the 
series is limited:

E i z a F izz m m m
m

M

( ) exp( ) ( )exp[ ( )]� � � � �� �
�
�1 1

1

,         (1.51)

where M is the number of the limiting mode of the waveguide.
If now such a section z = L exists, where the phase ratio between any 

modes is a multiple of 2π:
exp[ ( )]iL m� �� �1 1,                              (1.52)

then this section can be called equiphase section. In this section, mode 
superposition (1.51) reproduces the input distribution E0(ρ) with an accuracy 
determined by the number of allowed waveguide modes. It is clear that if 
there is one equiphase cross section, then in the case of ideal waveguides 
there should be an infinite number of them. Any section that satisfies the 
condition zg = gL (g = 0, 1, 2…) will also be equiphase. Thus, the possibility 
of image transmission through a multimode waveguide is determined by the 
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specific type of characteristic spectrum of propagation constants γm for this 
waveguide.

As is known, the propagation of two sets of TM and TE-waves 
(corresponding to two main directions of polarization) is possible in metal 
waveguides. Waves excited in a given waveguide by a certain radiation source 
are, in essence, components of the expansion of the field of this source in 
terms of waveguide eigenwaves. Since waves of different modes propagate 
in the waveguide with different phase velocities υm

� � �m mc� � �( ( / ) ] /1 2 1 2 
(where c is the speed of light in the waveguide, λm  is the critical wavelength 
of the mode with the index m), then in an arbitrary section of the waveguide  
z > 0 their superposition does not repeat the distribution fields of the 
radiation source in the cross section z = 0.

The initial field distribution of the radiation source cannot be reproduced 
exactly in the equiphase section for the following main reasons:

–	in the general case of an arbitrarily complex structure of the initial 
field, the latter cannot be represented as the sum of a finite number of terms, 
limited by the waveguide limiting condition λ λ/ m < 1;

–	the attenuation in the waveguide depends on the mode index, as a result 
of which the ratio of the expansion amplitudes in terms of the waveguide 
eigenfunctions in the equiphase plane zg does not coincide with the initial 
ones at z = 0.

However, in the paraxial case, when ( / )λ λm
2 << 1, there are such 

sections zg > 0, where the phase relation between individual modes coincides 
with the initial one at z = 0 with a sufficient degree of accuracy or differs 
from it by an amount that is a multiple of 2π. Consequently, in these sections 
z = zg, defined as equiphase, the summation of the expansion components 
occurs so that the mode superposition creates an image of the initial field 
of the radiation source that excites the waveguide in the section z = 0. Such 
waveguide, in accordance with its ability to decompose monochromatic 
fields in terms of eigenfunctions, transfer the expansion terms to a remote 
point, and there synthesize the initial field distribution from them, is called 
a polyharmonic waveguide [73].

With regard to the terahertz range, the problem of studying the features 
of image transmission by metal waveguides with cross-sectional dimensions 
significantly exceeding the oscillation wavelength and a relatively large 
number of allowed modes is an actual problem.
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Based on the mode paraxiality condition, let us estimate the location of 
equiphase cross sections in a circular metal waveguide. A circular waveguide 
with a diameter of 2a has a set of TE and TM modes [51] described by 
Bessel functions, and their critical wavelengths are equal to �

�
�k

TE

mn

a
�

2
; 

χmn  is the n-th root of the equation Jm
' ( )χ = 0, � �

�k
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mn

a
�

2 , ηmn  is the n-th 

root of the equation Jm ( )η(η) = 0. The phase difference between the waves 
of any two modes with indices p, l and q, k acquired on the length of the 
waveguide, is equal to
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The phase difference for the paraxial case, when (λ/λpl,qk)
2 << 1 and we 

can restrict ourselves to the second terms of the expansion of the roots, for 
example, in the case of TE modes, is equal to
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In the general case, the difference of the squares of the roots does not 
form an integer (or a constant fraction of an integer), which excludes 
the possibility of an equiphase cross section. If, however, we confine 
ourselves to the case when it is possible to represent the roots in the  
form of series [74]
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and keep only the first terms in them, then for the phase difference  
we obtain
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where the + sign applies only to TE, and the minus sign applies to  
TM modes, and

� �
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when the phase difference between the TE and TM modes is calculated.
It is easy to see that the quantity in square brackets in (1.57) and (1.58) 

is always even for any values of indices p, l, q, k. Thus, the main equiphase 
cross sections for a circular metal waveguide lie at distances

z z
a
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2
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, ( , , ...) ..                     (1.59)

Having calculated the radiation intensity at the observation point as 
I(ρ,ϕ, z) =  |E(ρ,ϕ, z)|2, we will estimate the error in restoring the original 
beam using the normalized absolute average measure of the difference 
between images introduced in [60]:
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where E′ and E0′ are distributions of the field amplitude of the output and 
input beams normalized to the maximum. Indices i, j display the number of 
points for numerically specifying functions.

The considered beam of the form (1.2) effectively excites only a few 
lower modes in a circular metal waveguide. It is confirmed by the results 

of calculations given in Table 1.3, where u C Cn
TE

n m
m

M
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�| | / | | |2 2
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·100%, 

u D Dn
TM

n m
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1
·100 % are the coefficients characterizing the 

relative fractions of the energy of the waveguide TE and TM modes excited 
in the waveguide by a Gaussian beam of radiation with a radius w0.

When a Gaussian beam is transmitted through a waveguide, energy is 
transferred from higher waveguide modes to lower ones. It is confirmed by 
the data in the Table 1.3 where
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are the coefficients characterizing the relative fraction of the energy of 
the waveguide TE and TM modes at the output of the waveguide when it 
is excited by a radiation beam of radius w0. The calculation was carried out 
for a waveguide with a diameter of 2a = 5.7 mm and a length of 500 mm 
(λ = 0.1188 mm). It follows from the data in the Table that, due to different 
attenuation of the waveguide modes, the ratio of the amplitudes of the 
TM and TE modes in the output beam changes in favor of the latter, i.e.  
the waveguide acts as a polarizer. 

Figure 1.16 shows the field intensity distributions in the waveguide 
sections, characterized by the dimensionless length parameter  
g = zλ/a2. The curves were obtained by calculations on a computer with 
w0 = 0.6 (a/λ = 24). Sections are visible in which the intensity of the  
input distribution is repeated (g = 0).

According to (1.59), in the case of paraxial approximation, when 
images are transmitted in a circular waveguide, the first self-image plane 
of the input distribution corresponds to the parameter value g = 16. In real 
waveguides, due to the attenuation of the TM and TE modes, the imaging 
occurs at a closer distance from the end of the waveguide, corresponding 
to g ≈ 7. As can be seen from Figure 1.16, if parameter g deviates from the 
value at which the specified imaging is observed, the field distribution can 
be significantly distorted.

Results were obtained that are similar to those shown in Fig. 1.16, 
for a set of values a/λ. For each of these values, the calculations were 
carried out with a set of w0 values. For fixed a/λ and w0, the values of the 
relative length parameter g were found, at which the input field is repeated.  
The results are shown in Table 1.4 for a radiation beam with λ = 0.1188 mm. 
The given values correspond to the errors of representing the input field as 
a sum of waveguide modes and imaging the distribution of this field in the 
cross-section z = g (a2/λ), which does not exceed 10 %.
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Table 1.3
Relative fractions of the energy of waveguide TE 

and TM modes in the beam at the entrance and exit of a circular 
metal waveguide excited by a Gaussian radiation beam of radius w0

w0 0.2 0.4 0.6 0.8

uTE11 vTE11
15.7 41.6 50.9 71.7 76.2 83.3 82.9 83.9

uTE12 vTE21
19.6 14.8 14.3 9.0 2.8 1.7 0.8 0.4

uTE13 vTE13
12.6 6.8 0.7 0.6 0 0.1 0.1 0.1

uTM11 vTM11
18.4 14.4 30.6 12.5 20.8 12.7 16.1 13.8

uTM12 vTM12
16.6 12.2 3.5 6.0 0.1 2.0 0 1.4

uTM13 vTM13
8.1 4.2 0.1 0.1 0 0.2 0 0.2

Figure 1.16. Calculated relative transverse field intensity distributions 
at the entrance (g = 0) and exit of a metal waveguide 

with a diameter of 2a = 5.7 mm and a length of L = ga2 /λ. 
when it is excited by a Gaussian beam with relative radius w0 = 0.6
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The meaning of the intervals in the Table 1.4 for the parameters 
w0 and g is that the imaging of the input field with the specified error is 
possible only for the values w0 and g from these intervals. For example, at  
а/λ = 25, for each of the radiation beams with the parameter w0 from the 
range of 0.46…0.75, at least one section in the waveguide can be found 
from the set z = ga2/ λ, g = 6.01…7.08, where the field distribution coincides 
with the input distribution with an error of no more than 10 %, i.e. condition 
(1.60) δ ≤ 0.10 is satisfied. Also in Table 1.4, for a given а/λ the value 
of the beam radius w0 opt, the location of its reconstruction cross section 
gopt and the attenuation value Z are presented, for which the above error 
δ is the minimum. The value of the degree of polarization of the output 
radiation, calculated by formula (1.7), is also given here. Similar data on the 
conditions for the self-imaging of a radiation beam that excites a waveguide 
with a Gaussian field distribution at λ = 0.4326 mm are given in Table 1.5.

Table 1.4
Self-imaging conditions of radiation Gaussian beams 

of the lowest order in circular metal waveguides (λ = 0.1188 mm) 
a/λ 25 50 75 100
w0 0.46–0.75 0.46–0.79 0.48–0.82 0.54–0.77
g 6.01–7.19 6.02–7.20 6.31–7.22 6.48–7.08

L, m 0.45–0.53 1.79–2.14 4.22–4.82 7.70–8.41
w0 opt 0.60 0.62 0.65 0.65
gopt 6.69 6.88 6.84 6.88

δ, % 2.85 4.41 5.95 7.06
Z, dB 1.4 2.33 3.26 4.04
Π, % 97.15 97.79 97.59 97.02

The content of the intervals in the tables for parameters w0 and g is 
that the display of the input field with the specified error is possible only 
for the values of w0 and g from the specified intervals. For example, at  
а/λ = 25, for each of the radiation beams with the parameter w0 from 
the range of 0.46…0.75, at least one section in the waveguide can be 
found from the set z = ga2/λ, g = 6.01…7.08, where the field distribution 
coincides with the input distribution with an error of no more than 10 %, 
i.e. condition (1.60) δ ≤ 0.10 is satisfied. Also in Table 1.4, for a given а/λ 
the value of the beam radius w0 opt, the location of its reconstruction cross 
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section gopt and the attenuation value Z are presented, for which the above  
error δ is the minimum. The value of the degree of polarization of the output 
radiation, calculated by formula (1.7),  is also given here. Similar data on the 
conditions for the self-imaging of a radiation beam that excites a waveguide 
with a Gaussian field distribution at λ = 0.4326 mm are given in Table 1.5.

Table 1.5 
Self-imaging conditions of radiation Gaussian beams 

of the lowest order in circular metal waveguides (λ = 0.4326 mm)
a/λ 25 50 75 100
w0 0.45-0.75 0.45-0.76 0.46-0.77 0.47–0.75
g 6.01–7.08 6.02–7.20 6.02–7.22 6.27–7.09

L, m 1.63–1.91 6.5–7.8 14.6–17.6 27.1–30.7
w0 opt 0.59 0.60 0.61 0.60
gopt 6.68 6.59 6.71 6.79

δ. % 2.66 3.21 3.84 4.74
Z, dB 0.94 1.41 1.90 2.28
Π. % 97.05 96.89 97.07 97.15

1.2. TRANSMISSION AND SELF-IMAGING  
OF GAUSSIAN RADIATION BEAMS  

IN METALLIC RECTANGULAR WAVEGUIDES
1.2.1. Modal Calculation Technique

Let a linearly polarised axially symmetric Gaussian radiation beam be 
incident on the input face of a waveguide directed along the z axis and having 
dimensions 2a× 2b (a > b) in the transverse plane x, y so that its polarisation 
vector is directed along the broad or narrow wall of the waveguide  
(Figure 1.17). The electric field 





E E x y x0 0 00� � � �, ,  or 




E E x y y0 0 00� � � �, ,  
in the plane z = 0 of the source has the form
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where x0 , y0
 are the unit vectors of Cartesian coordinates in x and 

у directions, and w0 is the beam radius at the 1/e level of the maximum 
amplitude.
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Similar to the mode consideration in subsection 1.1.1.2, the transverse 
components of the input field in a metal waveguide can be represented as a 
series expansion in orthogonal waveguide TE and TM modes. In our case, 
the normalised transverse components of the electric field for waves in a 
rectangular waveguide have the form:
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where m, n = 0, 1, … (the m = n = 0 mode does not exist), 
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where m, n = 1, 2, 3…

Fig. 1.17 Rectangular waveguide cross section  
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The series expansion of the original field in terms of the system of 
orthogonal functions introduced above has the form

  

E x y C V x y D V x ymn mn
TE

m n
mn mn

TM

m n
0 0( , , ) ( , ) ( , )

, ,

� �� � ,            (1.64)

where the amplitudes Cmn  and Dmn  of the modes excited at the 
waveguide input are defined by the relations

C E x y V x y dx dymn mn
TE

b

b

a

a

�
��
��
 

0 0( , , ) ( , ) .

In this case, the field distribution over the waveguide cross section at a 
distance L from the input face is
  

E x y L C V x y i L D V x ymn mn
TE

mn
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m n
mn mn

TM( , , ) ( , )exp( ) ( , )exp
,

� �� � (( )
,

i Lmn
TM

m n

�� , (1.65)

where � � �mn
TE

mn mn
TE� � i , � � �mn

TM
mn mn

TM� � i  are the propagation constants 

for TE and TM mode [51]:
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 is the critical wavelength, λ is the wavelength 

in free space, R0 376 73= .  Ω is the wave resistance of free space, Rs  is the 
surface resistance of the waveguide material.
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The radiation power passing through the cross section is
P L C L D Lout mn mn

TE

mn
mn mn

TM

mn

( ) exp( ) exp( )� � � �� �2 2
2 2� � .      (1.66)

The above relations allow us to determine the coefficient of radiation 
transmission in the waveguide and the degree of polarisation of the output 
radiation by the formula (1.7).

Following the analysis carried out in [73; 75], we consider the fulfillment 
of conditions (1.52) of restoring the transverse field distribution for an 
initial radiation beam of the form (1.61) in the rectangular metal waveguide 
under consideration, whose characteristic spectrum of phase constants for 
the TE and TM modes has the form:
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1 1
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.

In this case, the phase difference φ between the waves of any two modes 
with arbitrary indices mn and kl in the paraxial case is
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In a rectangular waveguide with an integer ratio of transverse dimensions 
( a b/ ), the sum in square brackets is also an integer number. From the 
condition of the multiple 2π of the phase difference between the modes, we 
find that the equality

z
a

s ss �
�

�
�

�

�
� �

32
1 2 3

2

�
, , , , ...

defines a sequence of in-phase sections zs for a rectangular metal 
waveguide, in which the superposition of paraxial modes reproduces the 
shape of the input field.

Apart from the basic equiphase sections zs additional cross sections 
may also exist for special types of excitation. Consider the special types of 
excitation that are important for our analysis. Suppose that the excitation 
spectrum of a rectangular waveguide with an integer ratio of transverse 
dimensions contains only waveguide TEmn and TМmn modes with an even 
number of half-waves of the field between the center and the wall of the 
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waveguide in the direction of the x-axis (see Figure 1.17), which are denoted 
by the index m and an odd number half-waves between the center and the 
wall of the waveguide in the direction of the y-axis, which are denoted by 
the index n. Then it is easy to show from (1.67) that in this case the in-phase 
sections are located at distances z a ss � ( / )8 2 � . If, however, the excitation 
spectrum contains modes with an odd index m and an even index n, the 
equiphase cross sections are located at distances z a ss � ( / )4 2 � . 

However, the above expressions can be used only to predict the 
approximate position of equiphase cross sections. The reasons for this 
are explained in [73; 75]. The spectral technique described above must be 
used for a more precise evaluation of the position zs of cross sections for 
reconstruction of the Gaussian THz radiation and estimation of the error in 
such a reconstruction.

1.2.2. Comparison of Experimental and Numerical Results
Experiments were performed using the setup described in section 1.1.4, 

the only difference being in the radiation source, which in our case was an 
optically pumped 432.6 µm THz formic acid (HCOOH) laser. For radii of 
curvature of mirror (5) equal to 100 and 50 cm, the laser beam diameters at 
the 1/10 level of the maximum intensity were 6.2 and 3.8 mm, respectively. 
To produce beams of a smaller diameter, spherical mirror (5) was replaced 
by a plane mirror and Teflon lenses (6) of focal lengths 24, 14 and 19 cm 
were mounted at a distance of 24 cm from this mirror. This resulted in 
the formation of beams of diameters 4.4, 3.2 and 2.7 mm, respectively, 
at the waist. Measurements of beam diameter, transmission coefficient, 
and degree of polarisation of radiation were made in the same way as in  
section 1.1.4.

The proposed technique was used for computer calculations and 
experimental measurement of the transmission coefficient and degree 
of polarisation of radiation in rectangular copper waveguides excited by 
linearly polarised Gaussian beams of THz laser radiation with a field of  
type (1.61). The relation RS = 2.625.10–7 (c /λ)1/2 was used in calculations to 
take into account the surface resistance of copper [76]. The relative beam 
radius w = w0/a was varied in the interval 0.1 – 0.9 (in the region of its 
"weak" diffraction [55]).

Figure 1.18 shows the results of theoretical and experimental studies of 
the dependence of radiation transmission coefficient T on the relative radius 
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w of a beam entering a copper waveguide of dimensions 11х5.5 mm2 and  
L = 500 mm.  The polarization vector of the beam is directed along the 
broad and narrow walls of the waveguide. The energy fractions of the 
excited waveguide modes were defined as

U
C

C D
mn
TE mn

mn mn
m n

�
� �

� � � � ��

2

2 2

,

,     U
D

C D
mn
TM mn

mn mn
m n

�
� �
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2

2 2

,

.

Figure 1.19 shows the calculated relative energy fractions in the 
emission spectrum of the basic TE and TM waveguide modes emerging at 
the waveguide input  for such excitations. It can be seen that for rectangular 
metal waveguides, with increasing w, a slight increase in the radiation 
transfer coefficient is first observed, and at values of w greater than 0.5, 
its decrease is noted. The increase in the transmission coefficient with w is 
explained by the fact that the relative fraction of energy of the fundamental 
waveguide modes having a lower attenuation than the other modes  
increases in the input radiation spectrum.

Figure 1.18. Calculated (1, 3) and experimental (2, 4) dependences  
of the radiation transmission coefficient T on the relative radius w  

of the excitation beam linearly polarized along the wide (1, 2)  
and narrow (3, 4) walls in a copper waveguide with dimensions  

2a = 11 mm, 2b = 5.5 mm, L=500 mm
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Figure 1.19. Relative fractions of energy U in the radiation spectrum 
of the fundamental waveguide TE and TM modes excited 

at the entrance of a rectangular copper waveguide with dimensions 
2a = 11 mm and 2b = 5.5 mm, from the relative radius w 
of the exciting beam linearly polarized along the wide (a) 

and narrow (b) waveguide walls
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This is confirmed by calculations presented in Figure 1.20, which 
contains the transmission coefficient of radiation for the fundamental 
eigenmodes of the waveguide under study. The decrease in T for w > 0.5 is 
observed because a part of the beam energy does not enter the waveguide.

Figure 1.20. Dependence of the attenuation coefficients α  
of the main waveguide TE and TM modes on the wavelength λ  

in a rectangular metal waveguide  
with  dimensions 2a = 11 mm, 2b = 5.5 mm

Experimental and numerical results on the study of the self-image in 
a rectangular copper waveguide of initial beams of THz radiation with a 

 
 



59

Scientific monograph

field of the form (1.61), linearly polarized along the narrow wall of the 
waveguide, are given below. One can see from Table 1.6 that in the case of 
excitation of the waveguide by such a radiation, the signal spectrum at the 
waveguide input contains only waveguide modes with odd indices m and 
even indices n.

Unlike other types of excitations (see Section 1.1.1), additional equiphase 
cross sections of beam reconstruction are situated at the shortest distance 
from the input end of the waveguide.

Table 1.6
Relative fractions of energies U in the radiation spectrum  
of basic waveguide TE and TM modes for different values  

of mode indices for a beam of radius w = 0.37 polarized linearly  
along the narrow wall of the waveguide

Umn
TE ,%

n
m 0 1 2 3 4 5 6

0 – 71.19 0 14.66 0 0.63 0
1 0 0 0 0 0 0 0
2 0 0.65 0 0.82 0 0.06 0
3 0 0 0 0 0 0 0

Umn
TM ,%  

1 – 0 0 0 0 0 0
2 – 10.40 0 1.46 0 0.04 0

3 – 0 0 0 0 0 0

Experiments were made on the basis of a rectangular copper waveguide 
of dimensions 11 х 55 mm2 with an integer ratio a/b of its sides. The length  
L = 287 mm ( ′s ≈ 1.03) of the waveguide reconstruction cross section for 
the given radiation beam (s = 1.0) and was refined in calculations by using 
the spectral technique described above. Figure 1.21 shows the calculated  
(1, 3, 4) and experimental (2, 5, 6) relative transverse field intensity 
distributions at the input (1, 2) and output (3–6) of the waveguide for 
initial radiation beams with relative waist radii w = 0.27; 0.32; 0.37.  
The nonzero field at the broad wall of the waveguide in the reconstruction 
cross section is explained in the calculations to the presence of the field of 
the corresponding waveguide modes at this wall [51], which synthesise the 
input radiation beam.
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Figure 1.21. Theoretical [curves (1, 3, 4)] and experimental  
[curves (2, 5, 6)] relative transverse distributions of field intensity  

at the input [curves (1, 2)] and output [curves (3 – 6)] of the waveguide 
[curves (1, 2, 3, 6) correspond to distributions along the broad wall 

and curves (4) and (5) to distributions along the narrow wall  
of the waveguide for w = 0.37, ρ= x/a]
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The reconstruction errors in the theoretical and experimental relative 
input distributions of the field intensity shown in Figure 1.21 were calculated 
from the expressions [77]

�x e t

a

a

I x L I x L dx� �� �
�
� ( , , ) ( , , )0 0 2 ,

 � y e t

b

b

I y L I y L dy� �� �
�
� ( , , ) ( , , )0 0 2 ,

where I Ie t,  are respectively the experimental and theoretical relative 
distributions of the field intensity in the reconstruction cross section.  
The reconstruction of the input field is observed with sufficiently 
small errors. For example, for an initial wave beam with a waist radius  
w = 0.37, the reconstruction of its shape occurs with errors δx = 0.35 % and 
δy = 0.47 %.




