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In many applications of THz laser radiation its state of polarization is 
an important parameter that determines the result of the interaction of this 
radiation with matter. In a number of such tasks, it is necessary to use a 
laser beam with axial symmetry, including polarization. In this case a laser 
beam with a uniform distribution of the electric field vector (the electric 
vector is linearly polarized and has a common direction across the entire 
cross section of the beam) is unacceptable. With circular polarization the 
parameters of the interaction of radiation with matter are averaged, which 
means that they are not optimal either from the point of view of minimum 
losses or from the point of view of maximum absorption [78]. Currently 
axisymmetric laser beams with radial and azimuthal radiation polarizations 
are of great practical interest.

The problem of its obtaining occupies an important place in the studies 
of axisymmetrically polarized radiation [12]. Several basic methods for 
solving this problem are known: use of a conical reflector or a Brewster 
conical window in the resonator, induced axisymmetric birefringence in 
the active element of a solid-state laser, Zeeman polarization effect in an 
axisymmetric magnetic field, extra-resonator formation of axisymmetrically 
polarized laser beams from beams with circular and linear polarization.  
All of the above methods are technically difficult or their application is limited 
to low-intensity radiation. Recently a direction has been developed in the 
optical range associated with the use of diffractive mirrors possessing high 
polarization selectivity. The special pattern of their relief provides the maximum  
Q-factor of the mode with a given direction of polarization [79]. However, 
these methods are oriented towards a specific type of radiation polarization.

Let us mention several papers devoted to generation, propagation and 
focusing of beams with various spatial polarisation of radiation in the terahertz 
(THz) frequency range [80–84], as well as papers [29; 31–33; 85–87], 
which describe methods of and approaches to forming laser beams with a 
required polarisation structure in this range. Nevertheless, they all pertain to 
the group of extracavity methods and utilize pulsed radiation emitted upon 
nonlinear conversion of IR femtosecond laser radiation.



63

Scientific monograph

In this regard, an urgent problem is the search for simple and energy-
efficient intracavity methods for the formation and selection of transverse 
modes with a given polarization state of the output radiation in THz quantum 
generators.

2.1. MATHEMATICAL MODELING OF QUASI-OPTICAL LASER 
RESONATORS WITH DIFFRACTION MIRRORS

2.1.1. A Multi-ring Diaphragm in a Dielectric Waveguide
It is well known that TE, TM and EH modes exist in a hollow dielectric 

waveguide. Let's write the expressions for the transverse components of the 
electric field inside the waveguide ( r a< ) for the case when the radiation 
wavelength λ is much smaller than the waveguide radius a (� �� a ) [50]:

– for TE0m mode
E r A J u r am

m m� �� � � � �( , ) /1 0 ,                          (2.1)
– for TM0m mode

E r B J u r ar
m

m m
� � � � �( , ) /� 1 0 ,                          (2.2)

– for EНnm mode (here the index n can also be negative)

E r C J u r a nnm
nm n nm� � �� �

�� � � � �( , ) / cos1 ,             (2.3)

E r C J u r a nr
nm

nm n nm
� �

�� � � � �( , ) / sin� �1 .              (2.4)
Here unm  is the m-th root of the equation J un nm� � � �1 0 .
The constants Am , Bm  and Cnm  can be determined from the following 

orthonormalization condition:

E r E r E r E r rdrdr
i

r
j i j

a

i
� � � � � � � �

�

� � � � � � � � �� � ��� , , , ,� � � � � �� �

�

00

,, j .    (2.5)

At the same time, superscripts i  and j  correspond to different modes and 
the spatial distribution of the field is determined by formulas (2.1) – (2.4). 
Note that, in a hollow dielectric waveguide, in addition to modes (2.1) – (2.4), 
there are also combined modes that represent the superposition of some 
modes considered above (for example, TE0m + EH2m) [88]. The field for such 
combined modes is defined as the sum of the corresponding expressions 
from formulas (2.1) – (2.4). 

In an infinite regular hollow dielectric waveguide, all modes propagate 
independently. However, on inhomogeneities, the interaction of different 
modes and the transformation of energy from one type of mode into 
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another takes place. We have conducted a study of mode diffraction with 
an axially symmetric large-scale diaphragm consisting of metal rings.  
Due to the presence of axial symmetry, the angular dependence of the fields 
during diffraction on the diaphragm does not change. However, modes with 
different radial dependences of the field (with different radial indices) will 
interact on an axially symmetric diaphragm and transform into each other. 
Thus, TE0m (TM0m) modes can transform into modes of their own class, 
but with different TE0k (TM0k) radial indices. Similarly, ЕНnm modes can 
transform into ЕНnk modes, as well as ЕН-nk modes, which have the same 
axial dependence of the fields (see formulas (2.3) – (2.4)).

In the finite-difference method in the time domain for bodies of rotation 
(BOR-FDTD), the investigated fields are decomposed into a series of 
independent angular harmonics [89]:



 


 

E e m e m

H h m h m

u v
m

u v

� � � � � �� �

� � � � � �� �
�

�

� cos sin ,

cos sin

� �

� �

0

mm�

�

�
0

.



 


 

E e m e m

H h m h m

u v
m

u v

� � � � � �� �

� � � � � �� �
�

�

� cos sin ,

cos sin

� �

� �

0

mm�

�

�
0

.                        (2.6)

This allows us to convert Maxwell's three-dimensional equations into 
a two-dimensional problem for independent angular modes in cylindrical 
coordinates ρ, .z

In this case, the renewal formulas for the field components can be easily 
obtained from Maxwell's equations in the cylindrical coordinate system 
[89; 90]. The equations for components u  and v  from (2.6) are identical, 
in the following these indices are omitted.

The renewal formulas for the electric field:
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The renewal formulas for the magnetic field:

Here, ∆t , ∆ z  and ∆ r  are the time step and spatial (longitudinal 
and radial) steps, respectively. Superscript index n describes the time step 
index t n t� � , subscripts i and k are spatial radial and longitudinal indices 
r i r z k z� �� �, , respectively. Formulas (2.7) – (2.8) allow to calculate the 
values of the field components at off-axis points ( r ≠ 0 ). In the case of axial 
points ( r = 0 ), the situation is different [89]: different equations are used for 
different angular indices.
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If m =1, e� � 0 and h� � 0.
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The explicit finite-difference scheme described above becomes unstable 
with a certain choice of space and time step. The numerical limit of stability 
for the time step used in the BOR-FDTD algorithm can be empirically 
represented as � �t x sc� / . Here ∆x  is a spatial step, s m� �� �1 1  for 
m > 0 , and s = 2  for m = 0  [89]. Thus, the renewal formulas (1.7) – (1.8) 
make it possible to calculate the values of the field components at the 
following moments of time through the values of the field components at 
previous moments of time.

In the described numerical scheme, some boundary conditions are used 
to limit the calculation domain. These conditions should model free space. 
For this purpose, conditions in the form of a perfectly matched layer (PML) 
were used [89]. Based on the technique proposed in [90], inside the PML 
layer

rotH j E

rotE j H

�� � ��
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���

���

,

. (2.11)
Next, the construction of the PML for the r-direction is shown, for 

the z-direction, the PML is built similarly. Here, the following tensors of 
dielectric and magnetic permeability are introduced

� �

� �

� �

� �

� �

� � �

  � � �

�

�

�
�
�

�

�

�
�
�

� �

�

�

�

s

S S S

S S S

S S S

S

z

z

z

1

1

1

0 0

0 0

0 0

,

// , , / ,

/ ,

j S S j

d d

z� �

� � � � � � � �

� � �

� ��

�

� �

� � �

� � ��  ��  � ��  ��

1

0
0

� 


� 

��

�
�

0
��  / . (2.12)

The value Sz  is equal to one, which means there is no absorption in the 
z direction. The values ��  and ��  in (2.12) have the following dependence 
on the radial coordinate (here rmax  is the maximum radial coordinate for 
PML, the parameters σmax , κmax  and a  must change to obtain the minimum 
reflection)
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As a result, the formulas for updating the field components inside the 
PML layer have the following form:
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At the same time, the following coefficients, depending on the radial 
coordinate, are introduced
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We use auxiliary variables q dz z� � � �, , , ,,  (for electric field calculations) 
and a bz z� � � �, , , ,,  (for magnetic field calculations) to calculate the field 
components in (2.14) – (2.19). It is important to note that in formulas 
(2.14) – (2.19) some field components are calculated outside the usual 
“leap-frog” time grid [89] (electric field components are calculated at 
integer points in time e q e q e q

n n n n

z

n

z

n

� � � �, , , , , , and the components 
of the magnetic field are calculated in half-integer points in time 
h a h a h ar

n

r

n n n

z

n

z

n� � � � � �1 2 1 2 1 2 1 2 1 2 1 2/ / / / / /
, , , , ,� �

.
These additional variables have only symbolic time indices. They 

are introduced for the convenience of calculations (when calculating 
using formula (2.14), only one variable is needed for the values 

1/2 1/2
, ,

n n n
p p pe e e

 
 ,  which are updated only in formula (2.14)) using 

expressions (2.14) – (2.19) and do not approximate the real values of the 
field at these moments of time.

The scheme of the computational PML region of a dielectric waveguide 
with an annular diaphragm is shown in Figure 2.1. Comparison of the field 
at a distance of one cell from the PML with the field at this point, calculated 
with a larger radial size of the computational domain, was carried out to 
check the influence of the PML domain on the computational scheme. From 
this study it was found that the error of the borders of the PML area is close 
to 0.15 %.

The field distribution corresponding to the spatial distribution of the 
mode under study (see formulas (2.1) – (2.4)) is created to excite the 
computational region in the transverse distribution of the waveguide to 
the diaphragm. The time dependence of the field is chosen in the form of 
a harmonic function with an appropriate frequency, which is smoothly 
turned on in order to reduce the impact of a sudden change of the field 
at t = 0 [90]. After that, the calculation of the field change in the studied 
structure is carried out until the steady-state mode is established. Values 
Cmi are calculated in cross-sections z1 and z2 before and after the grating to 
determine the reflection and transmission coefficients

C E r z E r E r z E r rdrdmi r i r
m

i
m

a

� � � � � � � � � �� �� � � �
�

� , , , , , ,� � � � �� �

�

00
�� . (2.21)
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Here E rr
m� � � �,�  and E rm

� �� � � �,  are the field distributions corresponding 
to the  m -th mode (see formulas (2.1) – (2.3)). They are calculated using 
BOR-FDTD algorithm. If the mode with the number p is excited, then the 
reflection coefficient by power into this mode is equal to Cp1

2
1�� � , and the 

reflection coefficients (transformation) into other modes are equal Cp1
2

1�� �
(the incident wave has unit power). The transmission coefficient into this 
and other modes is calculated as Cml

2.
For calculations of reflection coefficients of combined modes, it should 

be taken into account that the components of these modes (for example, 
TE0m and EH1m modes for TE0m + EH1m) diffract independently of each other 
on an axially symmetric diaphragm. First, a calculation is made for each of 
these modes separately, and then the reflection and transmission coefficients 
for the combined mode can be determined from the obtained results, taking 
into account the amplitude of each of the components.

The influence of the dielectric substrate on the scattering characteristics 
of the various modes should also be evaluated. In theoretical calculations, 
this part is not modeled in the FDTD scheme described above, because it 
leads to a significant increase in the time required to reach the stationary 

Figure 2.1. Scheme of the computational domain  
of a dielectric waveguide with a finite diaphragm
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mode due to a large number of reflections between the dielectric walls of 
the layer (preliminarily it can be estimated that this will lead to an increase 
in the calculation time by 5–10 times).

Thus, the following approach is used to model the substrate. Assume that 
the reflection and transmission coefficients for the substrate are equal to the 
reflection and transmission coefficients for the infinite layer. As it is known, 
the Fresnel power coefficients for a half-space with a refractive index n 
located in free space are equal to R n n T n n� �� � �� � � �� �1 1 4 1

2 2 2
, . 

The reflection and transmission coefficients for a layer of thickness L are 
equal

R R T R R T T R eL L
ikL� � �� � � �� � �2 2 2 2 2 21 1� � � � �/ , / , .     (2.22)

Here, the propagation constant k for the investigated mode in the 
waveguide is used in the phase multiplier. As a result, there are two 
inhomogeneities: the grating and the substrate. We denote the reflection 
and transmission coefficients for the grating obtained from the BOR-FDTD 
algorithm described above as Rg  and Tg . Then the total reflection RΣ  
and transmission coefficients TΣ  for the grating located on the dielectric 
substrate (on the dielectric layer) can be obtained taking into account the 
reflections between the grating and the layer in the following form

R R T R T T R R R T T R R R R R T

T T T T R R T

g g L g g L g L g g L g L g L g

g L g L g L

�

�

� � � � �

� � �

,

TT R R R R Tg L g L g L �.
     (2.23)

After simple transformations we get

R R T R T R R T T T R Rg g L g L g g L L g� �� � � � ��
��

�
��

� � � ��
��

�
��

1 1
2 2

, .     (2.24)

The presented algorithm for modeling the dielectric substrate was 
verified by comparison with the results of full FDTD simulation.

The described computational algorithm was tested in the article [91] 
for calculating the propagation of signals in a dielectric waveguide, as 
well as when solving the problem of scattering of electromagnetic waves 
on an azimuthally symmetrical metal small-scale diaphragm in a dielectric 
waveguide for a dielectric without losses [92], for a dielectric with 
losses [93]. The method for taking into account the dielectric substrate is  
described in [94].
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2.1.2 An Inhomogeneous Mirror 
in a Quasi-optical Waveguide Resonator

The geometry of the investigated waveguide resonator, formed by an 
oversized dielectric waveguide of circular cross-section, closed on one end 
by a flat mirror, and on the other by a diffraction mirror in the form of an 
annular diaphragm, is shown in Figure 2.2.

The waveguide diameter (reflector aperture) with length L is denoted by 
2a. We will assume that the conditions of the quasi-optical approximation are 
fulfilled [95]: all dimensions of the resonator are larger than the wavelength 
λ (L/λ >> 1, a/λ >> 1), and the longitudinal dimensions are larger than 
the transverse ones (L/a >> 1). The dependence on time, proportional to  
exp(−iωt) (ω = ck, c is the speed of light in a vacuum, k = 2π/λ), is  
further omitted.

Figure 2.2. Scheme of a waveguide quasi-optical resonator: 
1 – flat mirror; 2 – diffractive mirror

The theoretical approach to the calculation of waveguide resonators is 
based on the interpretation accepted for quasi-optical systems of the process 
of formation of types of oscillations as the interference of wave beams 
propagating towards each other, reflected by reflectors, as well as the display 
of the desired field distribution functions by the mode decomposition of the 
corresponding waveguide [96; 97]. Limiting ourselves to the axisymmetric 
case for mirrors, the interaction of oncoming beams with mirror 1 is 
described by the amplitude-phase correction function Ф1 1�� � � (ρ = r/a 
is the relative radial coordinate), and with mirror 2 by the amplitude-phase 
correction function �2 �� �  proposed in [98] and it has the form:

1 2
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              (2.25)

where d = l − b, l is the period of the nonuniform ring structure; b is the 
width of the dielectric ring on the period of the structure; N is the number 
of periods in the structure.

The complex amplitude of the field component of the wave beam 
propagating from mirror 1 to mirror 2 at the aperture of the latter is sought 
in the form

U C U em m
m

M
i Lm( , ) ( , )( )� � � � ��

�
� 0

1

, (2.26)

where Um
( ) ( , )0 � �  are the functions that characterize the modes of the 

hollow dielectric waveguide of the corresponding symmetry class; φ is the 
angular coordinate; λ are the propagation constants of waveguide modes of 
the corresponding class. The number M of terms in the expansion (2.26) is 
determined by the required accuracy of the calculation.

This component after the interaction of the wave with the reflector at its 
aperture can be represented by the following expression:

U C U em m
m

M
i Lm( , ) ( ) ( , )( )� � � � � ��

�
� �2

0

1

.               (2.27)

Let's rewrite (2.27), presenting �2
0( ) ( , )( )� � �Um

 in the form of a series 
of eigen waveguide functions

U C B U em mn n
n

N

m

M
i Ln( , ) ( , )( )� � � � ��

��
�� 2

0

11

,               (2.28)

where B F U U d dmn m n2 2
0 0

0

2

0

1

� �� ( ) ( , ) ( , ) .( ) ( )� � � � � � � �
�

Considering the complete round trip of the beam, describing its 
additional to the geometrooptical shift the phase shift and the amplitude 
reduction by the argument and the modulus of the number μ, as well as 
using the conditions of reproduction of the mode field per the round trip of 
the resonator [95], we obtain a system of equations for finding μ and Cm:

� � �
C e C B e k Mk

i L
m

m

M

nk

i L

n

N
k n� �

� �
� �

1 1

1 2 32 , , , ,... .             (2.29)
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Solving the system of linear algebraic equations (2.29) carried out 
using the modified LR-Rutishauser algorithm [98], which allows finding 
the eigenvalues of μ and the eigenvectors Cm, the components of which 
are the coefficients of the expansion of the resonator modes by waveguide 
waves. The relative fractions of energy of the waveguide waves forming the 
resonator mode are determined by the value

�m m i
i

M

C C�
�
�| | / | |2 2

1

.                               (2.30)

The complex eigenvalues determine the relative energy loss and 
additional to the geometrooptical shift the phase shift of the mode for the 
round trip of the resonator

�k k� �1 2| | ;�  �k k� Arg� .                      (2.31)
The relative intermode interval can be calculated using the formula

�
� �

�
�kk

k kc

L
�

��
��

�
�

�
�
�2 2

.

2.1.3. Calculation Results and Their Analysis
According to the method described above (subsection 2.1.2), the 

reflection and transmission coefficients of an axially symmetric diffraction 
grating located on a crystal quartz substrate were calculated for different 
modes of a hollow dielectric waveguide. As part of this method, the 
calculation domain, spatial resolution, and boundary conditions were 
specified. The step according to the spatial coordinates is chosen to be 
equal to � �r z� �10 μm. Based on the technical conditions, the radius 
of the hollow dielectric glass waveguide was a r� �1750 17 5� . mm, the 
wall thickness of the waveguide was t r� �400 4� mm. When calculating 
the field in glass, it is taken into account that its refractive index at the 
calculated wavelength (� � 432 6. μm) is equal to n i� �2 57 0 15. .  [99]. 
The calculation area was set in size 1800 80� �r z� . In addition, marginal 
PML regions with a thickness of 15 cells are located on top and on both 
sides. The time step is chosen equal to � �t s z c� �/ .0 017  ps (here c is the 
speed of light). The azimuthally symmetrical diffraction grating is located 
in the cross section z zd � 50� . It is a cylindrical grating of metal rings of 
width b with a given period l. The parameters of the inhomogeneous mirror 
were calculated using the BOR-FDTD numerical algorithm given above. 
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It made it possible to calculate the reflection and transmission coefficients 
of both symmetric and asymmetric waveguide modes with different field 
polarization through an axially symmetric diffraction mirror located inside 
a hollow circular dielectric waveguide. The calculations took into account 
the thickness of the quartz substrate, which was 3.1 mm. The studies were 
carried out at a wavelength of � � 432 6. μm for diffraction mirrors with 
different periods l.

Calculations of the reflection coefficients R and transmittance T of TE01q, 
TM01q and EH11q modes were performed for small-scale (l < λ), resonant  
(l ≈ λ), and large-scale gratings (l > λ). Figure 2.3 provides graphs describing 
the dependences of the reflection and transmission coefficients of TE01q, 
TM01q, and ЕН11q modes for gratings with a fixed filling factor η = 0.5.  
The periods of these diffraction gratings varied in the range from 120 μm 
to 1750 μm.

For the study of a small-scale mirror, when choosing the grating period, 
the conditions of the long-wave approximation l << λ were fulfilled, and 
the results of this study are given in the papers [100; 103]. The period is 
chosen equal to l = 120 μm. Figure 2.4 presents the dependences of the 
reflection and transmittance coefficients of the grating on its filling factor η 
for TE01q, TM01q and ЕН11q modes. The grating filling factor η � � b l/  varied 
in the range 0 – 1. In order to excite a mode with the necessary spatially 
inhomogeneous polarization in the waveguide resonator of a THz laser, it is 
necessary that the mirror located at the exit of the resonator should provide a 
significant reflection of such modes (R ≥ 80 %) and a significant transmission 
of modes with other undesirable types of polarization. As can be seen, the 
introduction into the waveguide of a mirror based on a small-scale multi-
ring diaphragm with a filling factor of η = 0.5 leads to a significant increase 
in the reflection coefficients (R > 90 %) for the azimuthally polarized TE01q 
oscillation type. This high reflection coefficient contributes to its generation 
in the laser. At the same time, this mirror provides fairly small reflection 
coefficients (R ≈ 30 %) for linearly polarized EH11q and radially polarized 
TM01q modes.

For the study the resonant case, the period of the diffraction mirror was 
chosen to be close to the radiation wavelength (l ≈ λ), and was l = 430 μm. 
Figure 2.5 presents the dependences of the reflection and transmission 
coefficients of this grating on its filling factor for TE01q, TM01q and EH11q 
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modes. The filling factor of the grating varied in the range of 0 – 1. As can 
be seen, the introduction of a mirror with a resonant multi-ring diaphragm 
at η = 0.5 in the waveguide leads to a significant increase in the reflection 
coefficient (R ≥ 80 %) for the radially polarized type of TM01q oscillations, 
which contributes to its generation in the laser. At the same time, such a 
mirror provides fairly small reflection coefficients (R ≈ 30 %) for linearly 
polarized EH11q and azimuthally polarized TE01q modes.

Figure 2.3. Dependencies of reflection R (a)  
and transmittance T (b) coefficients grating  

with a filling factor η = 0.5 from period l for modes TE01q (solid line), 
TM01q (dashed line) and EH11q (dashed line)
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Using a numerical algorithm, we also carried out numerical simulations 
of various large-scale diffraction mirrors, the period of which satisfies 
the condition l > λ. Using expressions (2.21 − 2.28), the relative energy 
losses per passage and phase shifts of the lower symmetric EH1mq, TE0mq, 
and TM0mq modes of the investigated quasi-optical resonator, in which a 
diffraction grating in the form of an annular diaphragm was used as one 
of the mirrors, were calculated. The longitudinal index in the notation of 
resonator modes was omitted here. During the calculations, the length 

Figure 2.4. Dependencies of reflection R (a)  
and transmittance T (b) coefficients of a small-scale grating  

with a period of l = 120 μm from the filling factor η for modes TE01q 
(solid line), TM01q (dashed line) and EH11q (dashed line)
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of the glass waveguide (L = 565 mm) was chosen taking into account 
its further use in the WQR of the HCOOH laser (λ = 0.4326 mm).  
The calculation was carried out for a waveguide with a diameter of  
2a = 25 mm. The number of waveguide modes m in each n-type of oscillations, 
which is determined by the required accuracy of the calculation, is chosen 
equal to m = 10. Crystalline quartz with a refractive index at the working 
wavelength n = 2.1073 and an absorption index k = 0.008 was chosen as the 
substrate material for the diffraction mirror [102]. Based on technological 

Figure 2.5. Dependencies of the reflection R (a)  
and transmittance T (b) coefficients of the resonant grating  

with a period of l = 430 μm on the filling factor η for modes TE01q 
(solid line), TM01q (dashed line), and EH11q (dashed line)
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capabilities and the need to ensure large-scale inhomogeneities, the period 
of the ring diffraction grating was chosen in the range l = (2.0÷3.5) λ.  
The size of the dielectric ring was d = 0.2 ÷ 0.6 mm. In the calculations, the 
reflection coefficient of radiation at the working wavelength from the quartz 
substrate of the diffraction mirror equal to R = 0.35 was taken into account.

The results of calculations of the total energy losses per pass δ, of 
the lower EH1mq, TE0mq, and TM0mq modes for a quasi-optical resonator  
based on a glass waveguide at the period of the diffraction mirror  
l = 0.89 mm (~ 2 λ) are presented in Fig. 2.6, at l = 1.25 mm (~ 3 λ) – in 
Fig. 2.7 and l = 1.56 mm (~3.5 λ) – in Figure 2.8. As can be seen from  
Fig. 2.6, the relative energy loss during the passage of the azimuthally 
polarized TE01 mode in the resonator with a diffraction mirror period of the 
order of 2 λ is at least 18 %. Increasing the period of the diffraction mirror  
to 3 λ allows them to be reduced to 12 % (Figure 2.7). A further increase 
in the period of the diffraction mirror to 3.5 λ makes it possible to further 
reduce the loss of the investigated mode by 0.2 (Figure 2.8). However, in 
this case, the number of periods of the diffraction mirror becomes small – 
a/l = 8, which will not provide the necessary interference of wave beams 
reflected from the surface of the mirror. In this case, the investigated mirror 
loses its diffraction properties. At all values of the periods of the diffraction 

Figure 2.6. Dependences of the total energy loss per pass  
of the lowest-order modes of the resonator under study on the value  

of the dielectric diffraction ring of the mirror; l = 0.89 mm (2 λ)



81

Scientific monograph

Figure 2.7. Dependences of the total energy loss per pass 
of the lowest-order modes of the resonator under study on the value 

of the dielectric diffraction ring of the mirror; l = 1.25 mm (3 λ)

Figure 2.8. Dependences of the total energy loss per pass 
of the lowest-order modes of the resonator under study on the value 
of the dielectric diffraction ring of the mirror; l = 1.56 mm (3.5 λ)
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mirror the dependence of the intermode intervals on the size of the dielectric 
ring remains constant. Figure 2.9 shows the dependences of the mode phase 
shifts of the resonator relative to the TE01q mode. Modes TE01q and TM01q are 
degenerate in frequency. 

Figure 2.9. Dependences of the phase shifts of the resonator modes 
under study with respect to the TE01q mode on the size  

of the diffractive dielectric ring of the mirror; l = 1.25 mm ( 3 λ)

2.2. EXPERIMENTAL SETUP
The structural diagram of a universal experimental setup based on a 

terahertz laser with optical pumping is shown in Figure 2.10. 
The setup includes 5 main blocks:
– continuous dc-discharge CO2 laser;
– a system of rotating mirrors, which ensures focusing of CO2 laser 

radiation on the coupling hole of the mirror of the terahertz cell;
– terahertz cell;
– system of pumping and filling the terahertz cell with the working 

mixture;
– terahertz radiation registration system.
A continuous dc-discharge CO2 laser is used in the setup to excite the 

working molecule of a terahertz laser. DC glow discharge is carried out 
from a stabilized source (4) with a voltage of 20 kV at a discharge current of 



83

Scientific monograph

up to 40 mA. The laser resonator is formed by a spherical mirror (7) with a 
radius of curvature of 10 m and diffraction grating of the "echelette" type 8. 
The length of the resonator is 1500 mm. By turning the grating the laser is 
retuned along the lines of generation of P- and R-branches. The echelette 
mirror (corner reflector) (9) is used to maintain the direction of the radiation 
coming out of the resonator into the zero order of the echelette. The laser 
works on a mixture of CO2 + N2 + He + Xe gases in the ratio 1: 1: 4: 0.25 at 
the total pressure of the working mixture 12 mm Hg (1600 Pa).

The possibility of smooth tuning of the laser frequency within the 
contour of the amplification line is provided by moving the mirror (7).  
The mirror is fixed on a piezoelement of the KP-1 type, which provides a 
shift of ± 5 μm when a voltage of ± 50 V is applied to it from a direct current 
source (5). The laser radiation power at the centers P and R of the generation  
branches is at least 40 W. Laser radiation is modulated by a mechanical 
interrupter (12).

Figure 2.11 shows a record of the change in the output power of a 
quasi-soldered CO2 laser from the moment of its powering and continuous 
operation during 5.5 hours. During this period of its operation, the capacity 
changed by no more than 10 %. This change is caused by temperature 
changes in the length of the resonator. A smooth decrease in power was not 
observed during the recording, which could be attributed to the degradation 
of the working mixture and a change in its total pressure.

A system of folding mirrors is formed by three flat mirrors (11) and a 
spherical mirror with a focal length of 0.5 m and provides the focusing of 
CO2-laser radiation on a coupling hole of an input mirror (14) through the 
Brewster window of the terahertz cell. Such system for introducing pumping 
radiation into the cell provides a good separation of the CO2 laser from the 
radiation reflected by the cell. This eliminates the influence of the terahertz 
cell during its frequency tuning on the CO2 laser radiation characteristics.

The THz cell is a cylindrical vacuum chamber made from a segment 
of a circular hollow dielectric waveguide (16) with a diameter of 35 mm 
and a length of 1848 mm. A segment of the waveguide and two flat mirrors 
(17, 18) form a laser resonator. The input mirror (17) is copper with a 
central coupling hole of diameter 3 mm. Such inhomogeneity introduces 
insignificant changes in the losses and intensity distribution of the resonator 
modes. The output mirrors (18) are selected based on the need to obtain a 
given transverse generation mode, and they were either two-dimensional 
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capacitive gratings or axially and radially symmetric diffraction gratings of 
various configurations. The input mirror (17) is fixed in the plane-parallel 
movement mechanism, which allows the mirror to be displaced by a distance 
of about 2 mm with a movement parallelism of at least 10'. Movement is 
carried out with the help of an electric motor.

The system for pumping out and filling the terahertz cell with the working 
mixture includes a fore-vacuum pump (29), a vacuum gauge (28), a shut-
off valve (27), a leak valve (26), and a volume with working gas (25). This 
design of the injection system ensures a constant pressure of the working 
mixture in the terahertz chamber at the level of ~ 10-1 mm Hg (13 Pa).  

Figure 2.10. Structural diagram of the experimental setup:  
1 – CO2-laser; 2 – cathode; 3 – anode; 4 – high-voltage power source; 

5 – constant voltage source; 6 – piezo element; 7, 13 – spherical 
mirrors; 8 – skeleton; 9 – corner reflector; 10 – NaCl plate;  

11 – flat mirrors; 12 – mechanical modulator; 14 – mirror movement 
mechanism; 15 – electric drive; 16 – hollow dielectric waveguide;  

17 – input mirror; 18 – output mirror; 19 – detector;  
20 – beam scanning device; 21 – selective amplifier; 22 – oscilloscope; 
23 – ADC; 24 – computer; 25 – flask with HCOOH; 26 – flow valve; 

27 – shut-off valve; 28 – vacuum meter; 29 – vacuum pump
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The terahertz radiation registration system consists of a pyroelectric 
receiver (19) fixed in an electromechanical device, which allows scanning 
the transverse distribution of the laser radiation output intensity at different 
azimuths. The receiver could be located at distances from 10 cm to 1.5 m 
from the output mirror (18) of the cell.

The spatial resolution of the receiver was changed using diaphragms 
installed at its input. Volt-watt sensitivity and the expected width of the 
radiation beam were taken into account when choosing the resolution of the 
receiver. The diameter of the aperture was chosen in the range from 3 mm 
to 0.3 mm when measuring the spatial distribution of radiation intensity.  
The signal of the pyroelectric receiver was amplified by a selective  
amplifier (21) of the U2-8 type and fed to the ADC 23 and the  
computer (24). The signal of the amplifier was visually observed on an 
oscilloscope (22) of the C1-83 type.

Figure 2.11. Change in the output power of a quasi-soldered tuning 
CO2 laser during 5.5 hours of continuous operation (line 9P36)
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The polarization state of the generated mode was determined as follows. 
The radiation receiver with a small input aperture was moved along different 
azimuths in the transverse plane of the radiation beam, and the position of 
the plane of polarization was determined at the points of maximum radiation 
using a polarizer. A one-dimensional wire grating with a step of 40 μm and 
a wire diameter of 8 μm was used as a polarizer.

The radiation power of the THz laser was determined by a 
BIMO-1 bolometric power transducer. The power of the CO2 laser was 
measured by an IMO-2N calorimetric power meter. During the performance 
of the work the main experiments were conducted at a wavelength 
of 432.6 μm (generation line of a terahertz laser on a molecule of  
formic acid HСООН, generation line of a CO2 laser 9R20 with a wavelength 
of 9.27 μm).

The measurement technique is similar to that described in [101].  
The spectrum of the natural modes of the resonator was recorded when 
the length of the resonator was changed by the electric drive (15).  
The total energy losses σ during the round trip of resonator were determined 
by the measured width of the resonance curve. Transverse modes were 
identified by the intermode intervals, which were calculated from their 
phase shifts during a round trip of the resonator, and the transverse intensity 
distributions known from theory [88]. Measurement of the transverse 
intensity distributions near the output reflector of the resonator was carried 
out by scanning the pyroelectric receiver (19) with a spatial resolution of 
1 mm across the direction of radiation propagation.

2.3. FORMATION OF LOWER-ORDER MODES  
WITH AZIMUTHAL POLARIZATION

2.3.1. Laser Resonator with a Large-scale Input  
and Homogeneous Output Mirrors

Using the technique described in subsection 2.1.2, calculations were 
made of the dependence of the reflection coefficient for waveguide 
resonator TE01q and EH11q modes with the lowest losses on the filling factor 
of an axially symmetric diffraction mirror located inside a hollow circular 
dielectric waveguide. In order to fulfil the condition of short-wavelength 
approximation l  > λ  the grating period is chosen equal to l  = 1.75 mm.  
Its filling factor η = b/ l  varied in the range of 0.1 – 0.9. Calculations 
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showed that placing a mirror with a diffraction grating on the surface 
at η > 0.8 in the waveguide for the azimuthally polarized TE01q type of 
oscillations makes it possible to obtain a reflection coefficient R ≥ 60 %, and 
for the EH11q mode with linear polarization – less than 50 % (Figure 2.12).  
This contributes to the selective excitation of the TE01q mode in the laser 
cavity with the mirror under study.

In this case, a capacitive two-dimensional grating made by sputtering 
aluminum through a matrix onto a plane-parallel plate of crystalline quartz 
with a thickness of 4 mm was used as the initial homogeneous mirror of the 
resonator. An inductive tape grid with a period of 103 μm and a tape width 
of 17 μm was used as a matrix. Such a mirror has a transparency of 18 % at 
the working wavelength of the laser.

Figure 2.12. Dependences of the reflection coefficient R for TE01q (1) 
and EH11q (2) modes on the filling factor η of the multi-ring diaphragm

The input reflector was a inhomogeneous mirror with a central coupling 
hole with a diameter of d = 3 mm, the reflecting surface of which is proposed 
to be made in the form of an azimuthally symmetrical large-scale metal 
diffraction grating with a different quantity of reflecting rings and radiation-
absorbing grooves of a width with a given period.

Taking into account the calculation results, the inhomogeneous input 
mirror was manufactured mechanically using a special cutter in the form 
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of nine reflective rings and radiation-absorbing grooves with a period  
l  = 1.75 mm and a width of b = 0.35 mm. The profile of the reflector used 
in the experiment is shown in Fig. 2.13. Absorbing grooves were cut with 
a cutter to a depth of ~ 0.2 mm (~ 0.5 λ) at an angle of 30° to the plane of 
the reflecting surface of the mirror. This ensured that the rays from the laser 
resonator were removed from the surface of the grooves, which is similar 
to the almost complete absorption of radiation in these areas of the mirror. 

Figure 2.14 shows the spectrum of excited modes of the laser obtained 
experimentally with the proposed input inhomogeneous mirror and output 
homogeneous capacitive mirror. Cavity length tuning reveals two cavity 
modes with the least losses. The second (by the Q-factor) mode has linear 
polarization and was identified as the EH11q mode on the basis of its 
transverse field intensity distribution. 

Figure 2.13. Profile of the input diffraction mirror:  
(a) relief of mirror surface and (b) transverse cross section  

of the mirror

The frequency distance between the EH11q mode and the mode with 
highest Q-factor coincides with the theoretical calculations for the TE01q 
mode. The transverse distribution of the field intensity of this mode in the 
far zone at the laser output is shown in Figure 2.15.
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Figure 2.14. Tuning characteristic of a waveguide HCOOH laser  
with the input inhomogeneous mirror

Figure 2.15. Experimental transverse distribution  
of radiation intensity I at the output of an HCOOH laser  

with an input large-scale mirror in the far zone for the TE01q mode
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Based on the transverse distribution obtained, the intermode distance in 
frequency, and the direction of the electric field vector for different azimuths, 
this mode is identified as the TE01q mode with azimuthal polarization of 
radiation. The output power of the THz laser in the TE01q mode was 8 mW, 
and in the EH11q mode it was 3.75 mW. When the diffractive mirror was 
changed to a uniform laser radiation power in the EH11q mode, it was 
18 mW. The decrease in the radiation power in the EH11q mode when using 
an inhomogeneous mirror is due to a decrease in the reflection coefficient of 
the mode from this mirror.

One can see that the proposed reflective azimuthally symmetrical large-
scale diffraction mirror effectively selects undesired modes and can be 
simply realised in laboratory conditions. Nevertheless, because of its poor 
energy efficiency, further investigations were performed with small-scale 
diffraction structures arranged on the mirror surface.

2.3.2. Laser Resonator with Uniform Input  
and Small-scale Output Mirrors

A plane uniform aluminum mirror with a coupling hole with a 
diameter of 3 mm was at the entrance of the laser resonator as mirror 17  
(Figure 2.10). Figure 2.16 shows the mirrors that were used as the output 
reflector 18. 

Figure 2.16. Output semitransparent mirrors of an optically pumped 
terahertz laser based on a capacitive grid and an azimuthally 

symmetric grating. I – two-dimensional capacitive grid;  
II – azimuthally symmetric diffraction grating without outer circles
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Initially, a two-dimensional capacitive grid (Figure 2.16, mirror I) with 
a transparency of 20 % at a wavelength of 432.6 μm was used as the output 
mirror 18. In this case, a characteristic type of the tuning characteristic is 
shown in Figure 2.17, which it is registered when the input mirror 17 is 
moved.

Five transverse modes were observed in the radiation spectrum.  
The transverse modes of laser generation are similar in terms of the field 
structure to the modes of a hollow dielectric waveguide. Their identification 
was carried out by comparing the measured experimental and calculated 
intermode distances for a dielectric waveguide resonator with the above 
parameters, according to degrees of polarization known from theory [50] 
and transverse intensity distributions of the observed modes. 

Figure 2.17. Mode spectrum of the HCOOH laser  
with an output uniform capacitive mirror

The experimentally measured and calculated transverse distributions of 
two modes with the maximum radiation power at a distance of 100 cm from 
the laser output mirror are shown in Figure 2.18. There is good agreement 
between experimentally measured and calculated data for radiation beams 
excited by EH11q, TE01q + EH21q modes.

Only one mode has a polarization other than linear from the two observed 
modes of generation. By comparing the calculated and measured intermode 
distances, it is identified as the TE02q mode.
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Recently, a direction related to the use of diffraction mirrors with 
high polarization selectivity has been developing. The special pattern of 
their relief ensures the maximum Q-factor of the mode with the given 
direction of polarization [79]. In order to excite radiation with spatially 
inhomogeneous polarization in the waveguide resonator of a terahertz laser, 
it is necessary that the mirror located at the exit of the resonator provides 
greater reflection of such modes and significant transmission of modes with 
other undesirable types of polarization. For this purpose, it is proposed to 
use as the output mirror 18 an azimuthally symmetrical diffraction grating 
without outer rings, shown in Figure 2.16, mirror II. The azimuthally 
symmetrical diffraction grating was made by photolithography. A layer of 
aluminum with a thickness of 0.5 – 0.6 μm was applied to a plane-parallel 
plate of crystalline quartz with a thickness of 4 mm, in which areas of a 
given shape were etched. The grating period to fulfill the condition of long-
wavelength approximation is chosen to be equal to 120 μm. The width of 
the reflective metallized circles is 50 μm, the grating filling factor is 0.4. 
Crystalline quartz at this wavelength has a low absorption index (k = 0.008) 
and a refractive index n = 2.1. When calculating the transparency of the 
mirror, the reflection from the crystalline quartz was not taken into account. 
So the measured and calculated values of the transmittance of the mirror 
differ. The measured reflection coefficient of the manufactured mirror at the 
wavelength of the pumping radiation is about 60 %.

Figure 2.18. Calculated (1) and experimental (2) radial intensity 
distributions of the field for EH11q and TE01q+EH21q laser modes  

at a distance of 100 cm from the output mirror
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The diameter of the diffraction grating on the mirror was d0 = 14 mm. 
This configuration of the mirror is chosen based on the known transverse 
distributions of intensities for TE0n modes and higher asymmetric waveguide 
modes. For symmetric TE0n modes, which have a minimum field intensity 
in the center and on the periphery of the beam, mirror II also introduces 
minimal losses, which will increase with an increase in the mode index.  
The calculated reflection coefficient R of such a mirror for the TE01  
waveguide mode was R – 50 %.

Figure 2.19 presents the tuning characteristics of the HCOOH laser with 
an output mirror based on an azimuthally symmetric diffraction grating 
without external circles. Their identification was carried out by comparing 
the measured and calculated intermode distances for the dielectric waveguide 
resonator with the above parameters, the degree of polarization of the output 
radiation, and the transverse intensity distributions of the observed modes 
of generation. The mode with the highest Q-factor was identified based on 
its transverse intensity distribution and radiation polarization state.

Figure 2.19. Mode spectrum of a waveguide HCOOH laser  
with an azimuthally symmetric diffraction mirror  

without outer circles

The mode with linear polarization of radiation, identified as the EH11q 
mode, has the highest Q-factor. Modes with both linear and azimuthal 
polarization are also observed in the laser radiation spectrum. The second 
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most intense mode is identified as TE01 mode. For this confirmation 
research was conducted on the transverse distribution of the intensity 
of this mode (Figure 2.20). The position of the field strength vector E at 
different azimuths for this mode in the radiation intensity maxima is shown 
in Figure 2.21. A one-dimensional wire grating with a period of 40 μm 
and a wire diameter of 8 μm was used to determine the position of the  
vector E. As can be seen, the proposed initial azimuthal-symmetric small-
scale diffraction mirror without outer circles selects undesired modes and 

Figure 2.20. Transverse intensity distributions 
of the TE01q mode at different azimuths: 

 a) horizontal plane; b) 45°; c) vertical plane; d) 135°
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forms the necessary mode with azimuthal polarization of radiation. However, 
it has a low energy efficiency compared to the well-known semitransparent 
small-scale diffractive mirror [100].

Figure 2.21. Position of the plane of polarization at the intensity 
maxima of the TE01q mode at different azimuths.  
The direction of the electric field strength vector 

is chosen conditionally

2.4. FORMATION OF LOWER-ORDER MODES  
WITH RADIAL POLARIZATION

Figure 2.22 shows the mirrors as an output reflector (18) that were used 
to form modes with radial polarization. Radially symmetric diffraction 
gratings are made by the method of photolithography, which is described 
in the previous section. Three types of radially symmetric mirrors were 
fabricated for the experiments: sector-periodic mirror I, which has 
628 aluminum-sputtered reflective sectors and the same number of uncoated 
nonreflecting sectors of equal angular width; mirror II with the same sector-
periodic relief, but with an anti-reflective central region 12 mm in diameter; 
mirror III with the same sector-periodic relief, but with a well-reflecting 
central region 6.5 mm in diameter.
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The tuning characteristic of the laser obtained using a radially symmetric 
diffraction grating I is shown in Figure 2.23. In this case five modes are 
observed. The higher intensity mode is identified as the EH11q mode.  
Its transverse distribution in the horizontal and vertical planes at a distance 
of 70 cm from the output mirror is shown in Figure 2.24.

Other modes in this spectrum are identified by intermode distance 
and polarization as ТM01q, ТЕ01q+ЕН21q and ЕН12q modes. However, the 
transverse distribution of these modes changes significantly. For example, 
the transverse distribution of the ТЕ01q+ЕН21q mode in the horizontal (a) and 
vertical (b) planes has the form presented in Figure 2.25. Its asymmetry is 
due to the fact that the ТM01q, ТЕ01q+ЕН21q and ЕН12q modes have significant 
degeneracy.

Figure 2.22. Output semitransparent mirrors based on radially 
symmetric gratings. I – radially symmetrical diffraction grating;  
II – radially symmetrical diffraction grating with an enlightened 

center; III – radially symmetrical diffraction grating 
with a center that reflects radiation
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Next, a radially symmetric grating with an illuminated central part with a 
diameter of 12 mm was investigated as the output mirror 18 of the terahertz cell  
(Figure 2.22, mirror II). The tuning characteristic of the laser, obtained by 
using a radial grating with an antireflective coating in the central part as 

Figure 2.23. Mode spectrum of a waveguide HCOOH laser 
with a radially symmetric diffraction mirror 

 

Figure 2.24. Transverse distribution of the EH11q mode 
in the horizontal (a) and vertical (b) planes
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the output mirror (18) of the laser, is shown in Figure 2.26. Two modes 
of approximately equal intensity are observed in this characteristic.  
The radiation powers of the THz laser in these modes are 2.8 and 2.4 mW, 
respectively. Both modes have linear polarization.

The transverse distribution for higher intensity mode in the horizontal 
and vertical planes at a distance of 70 cm from the output mirror is shown 

 
 

Figure 2.26. Mode spectrum of a waveguide HCOOH laser 
with a central part that reflects radiation  
in a radially symmetric diffraction mirror

 
 

Figure 2.25. Transverse distribution of the TE01q+EH21q mode  
in the horizontal (a) and vertical (b) planes
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in Figure 2.27. Considering these properties, as well as the intermode 
distance, it is identified as ТЕ01q+ЕН21q mode. The distribution of the second 
intensity mode in the horizontal and vertical planes at a distance of 70 cm 
from the output mirror is shown in Figure 2.28. The intermode distance and 
close to linear polarization allow us to identify this mode as EН12q mode.  
The asymmetry in the transverse intensity distribution of this mode is 
associated with its frequency degeneracy with other modes. 

 
 Figure 2.27. Transverse distribution of the TE01q+EH21q mode  

in the horizontal (a) and vertical (b) planes

 
Figure 2.28. Transverse distribution of the EН12q mode  

in the horizontal (a) and vertical (b) planes
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Next, as the output mirror (18) of the terahertz cell, a radially symmetric 
grating with a center of 6.5 mm in diameter that reflects radiation was 
studied (mirror III, Figure 2.22). The tuning characteristic of the laser 
obtained with the use of this mirror is shown in Figure 2.29. We observe 
four modes in the spectrum. The transverse distribution of the basic mode 
in horizontal and vertical sections is shown in Figure 2.30. This mode has a 
linear polarization and we identified it as EH11q mode. The second intensity 
mode has the transverse distribution which is shown in Figure 2.31. 

 
 

Figure 2.30. Transverse distribution of the EH11q mode 
in the horizontal (a) and vertical (b) planes

 
 

Figure 2.29. Mode spectrum of a waveguide HCOOH laser  
with a central part that reflects radiation  
in a radially symmetric diffractive mirror
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The results of polarization measurements at the maxima of the radiation 
intensity distribution at different azimuths indicate that this mode has radial 
polarization (Figure 2.32). The transverse distribution profile, intermode 
distance and polarization type make it possible to identify it as TM01q mode. 
Other mods have high losses, so they could not be identified.

Figure 2.31. Transverse intensity distributions  
of the ТМ01q mode at different azimuths. 

 a) horizontal plane; b) 45°; c) vertical plane; d) 135°
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Studies with radially symmetric mirrors of various configurations have 
shown that it is very difficult to select a mode with radial polarization.  
This could be done only by using a radially symmetric diffractive  
mirror III with a center that reflects radiation. The advantage of this mirror 
is that its structure with a reflective center has a negative effect on the modes 
that have a field maximum on the axis. Due to this, energy is transferred 
from the EH12q mode to the required TM01q mode.

2.5. FORMATION OF HIGHER-ORDER MODES  
WITH LINEAR POLARIZATION

Using the matrix technique described in subsection 2.1.2, calculations 
of the input phase-stepped mirror were carried out for the effective 
selection of the EH12q mode in WQR with a high degree of discrimination  
of undesired modes. Figure 2.33 shows the calculated dependences of 
the total energy losses for the round trip of the modes of the investigated 
resonator on the width of the groove b of the diffraction mirror. It can be 
seen from the figure that by placing a groove with a width of b = 1 – 1.2 mm 

Figure 2.32 Position of the plane of polarization 
at the intensity maxima of the ТМ01q mode at different azimuths. 

The direction of the electric field strength vector
is chosen conditionally
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(2.3 – 2.8) λ on the mirror, the losses for all undesired modes increase 
as much as possible, and the losses for the higher EH12q mode remain 
practically unchanged.

For the formation of higher-order modes, a capacitive two-dimensional 
grid, made by sputtering aluminum through a matrix onto a plane-parallel 
plate of crystalline quartz with a thickness of 4 mm, was used as the initial 
homogeneous mirror of the resonator. The input reflector in this case was 
a homogeneous mirror with a central coupling hole with a diameter of  
d = 3 mm, the reflecting surface of which is proposed to be made with 
a groove with a width of b = 1.1 mm. Taking into account the results of 
the calculations, the nonuniform input phase-stepped mirror was done by a 
mechanical method using a special cutter. The profile of the reflector used 
in the experiment is shown in Figure 2.34. The absorbing groove was cut 
with a cutter to a depth of 0.11 mm (λ / 4) at a distance of 4.4 mm from the 
coupling hole. This ensured the selection of the higher EH12 mode in WQR 
with a high degree of discrimination of undesired modes.

Figure 2.33. Calculated dependences  
of the total energy loss per round trip Δ
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Figure 2.35 shows the spectrum of excited laser modes obtained 
experimentally using the proposed inhomogeneous input phase-stepped 
mirror and output uniform capacitive mirror. When the resonator length 
is tuned, 4 resonator modes are observed that have linear polarization and 
almost the same radiation power. The radiation power of the THz laser 
in the EH11q, TE01q+EH21q and EH-11q+EH31q modes was 8 mW, and in the 
EH12q mode it was 7.9 mW. These modes were identified on the basis of the 
obtained transverse distributions and intermode distances. The transverse 
distribution of the field intensity for the EH12q mode in the far zone at the 
output of the laser is shown in Figure 2.36.

Thus, it is shown that the proposed phase-stepped mirror with a scattering 
groove effectively forms the required higher transverse mode with linear 
polarization.

Figure 2.34. Profile of the input diffractive 
phase-stepped mirror: a) the relief of the surface of the mirror; 

b) cross section of the mirror
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Figure 2.35. Mode spectrum of a waveguide HCOOH laser 
with an input phase-stepped mirror

 
 

Figure 2.36. Experimental transverse distribution 
of radiation intensity I at a distance of 100 cm 

from the laser output mirror for the EH12q mode
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CHAPTER 3 «PROPAGATION OF THE TERAHERTZ 
LASER RADIATION WITH SPATIALLY INHOMOGENEOUS  
POLARIZATION IN DIFFERENT ZONES OF DIFFRACTION»

DOI: https://doi.org/10.30525/978-9934-26-461-0-3

The development of micro- and nanotechnologies requires new methods 
of formation and research of light fields with subwavelength dimensions 
of energy localization regions. Such problems are characterized by 
nonparaxial propagation of light and the impossibility of applying the scalar 
approximation. The distribution of electric field energy by components 
and, as a consequence, the polarization characteristics of radiation come  
to the fore. 

Light beams are narrowly directed light radiation that spreads in a small 
body angle. If the beam divergence angle is small, θ ~ 10-3–10-2, such a beam 
is called paraxial. In paraxial beams, the longitudinal component of the 
field is much smaller than the transverse components. Therefore, paraxial 
beams are usually described by one transverse component of the field. Such 
beams are called scalar. Most often, paraxial light beams are described as 
scalar, which is quite sufficient in most cases. Such a deliberately simplified 
approach is often used when describing the properties of light beams  
[104; 105]. However, for beams in which the divergence angle is large, 
the scalar approximation is not sufficient. Moreover, even for paraxial 
light beams, in which the polarization is nonuniform across the cross 
section, it is necessary to use a stricter vector formalism. Finally, the scalar 
approximation in all cases does not allow naturally describing the vector 
characteristics of the beam. It is more general to describe laser light beams 
as three-dimensional vector fields. However, vector beams have been 
studied much less (see, for example, [106]).

In [107], it was shown that when analyzing the diffraction of radiation 
beams, a zero value of the intensity on the optical axis is possible due to 
the presence of a longitudinal component of the field. Therefore, when 
studying the spatial-energy characteristics of laser beams, take into account 
the vector nature of the propagating radiation.
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3.1. MODELING OF RADIATION PROPAGATION  
WITH INHOMOGENEOUS POLARIZATION  

IN DIFFERENT DIFFRACTION ZONES
In connection with the decrease in the size of laser systems, much 

attention has recently been paid to the description of nonparaxial propagation 
of light fields and the development of algorithms for modeling such  
propagation. 

In [108], the propagation of a Gaussian beam in a homogeneous, 
isotropic, linear, and nonmagnetic dielectric medium was studied for the 
first time using the angular spectrum method. The electric field excited with 
a Gaussian beam in a dielectric medium is described by the expressions for 
the paraxial part and non-Gaussian correction terms of a higher order. 

Characteristics for the propagation of azimuthally (or radially) polarized 
Lager-Gaussian beams for any optical systems described by the complex 
ABCD matrix were obtained [109]. These systems can have an arbitrary 
number of lenses, sections of free space and dielectrics, media with a radial 
amplification profile, spherical mirrors, reflectors. An analysis of the vector 
wave equation was carried out in [110]. A class of self-model solutions for 
the corresponding resonator modes with inhomogeneous polarization is 
derived. In [111] the solution of the Maxwell equations was proposed using 
the method of the plane wave spectrum of the electromagnetic field. In this 
representation, the solution of the electric field is written as the sum of two 
terms orthogonal to each other in the far zone. The concept of the near field 
to a given beam is introduced and applied to the known linearly polarized 
Gaussian beam.

In [112], the distribution of the field in the far zone, which is formed 
by the output ring modes with different polarization states, was studied 
using the Fresnel vector diffraction integral. It is shown that the azimuthal 
polarization is mainly transformed into radial during the propagation of ring 
beams with an azimuthal index above zero. This effect can contribute to 
increasing the productivity of a laser metal cutting system based on beams of 
this kind. In [113], the features of propagation in free space of light spirally 
polarized beams were studied in both paraxial and nonparaxial cases. 
Simple and important analytical results are obtained when the transverse 
intensity profile is chosen to correspond to a first-order axisymmetric 
Lager-Gaussian beam.
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The polarization properties of vector coherent nonparaxial Gaussian 
beams are studied [114]. It is shown that when the radiation source of a 
nonparaxial Gaussian beam is fully polarized, the degree of polarization 
during field propagation maintains a constant value equal to unity. However, 
when the source is completely unpolarized, the degree of polarization 
during the propagation of the field does not keep a constant value, which 
is equal to zero. In [115], on the basis of the Rayleigh-Sommerfeld vector 
formula and using the relation between the Hermite and Lager polynomials, 
analytical expressions for the propagation of Hermite-Gaussian and Lager-
Gaussian beams in the case of paraxial approximation are obtained with the 
corresponding expressions for propagation in the far zone, which are further 
derived for Gaussian beams as special cases of results. In [116], based on 
Rayleigh's vector diffraction integrals and the stationary phase method, an 
analytical expression was obtained that describes the propagation of the 
vector field of radially polarized Gaussian beams diffracted on an axicon.

The formula for the vector plane wave spectrum of an arbitrarily 
polarized electromagnetic wave in a homogeneous medium is derived 
using the method of mode decomposition of independent transverse fields 
[117]. This expression includes TM and TE modes for the spectrum of plane 
waves, where the amplitudes are separated and the polarization direction 
of each plane wave is given separately. In [118], based on the analysis of 
the vector structure of nonparaxial electromagnetic beams based on the 
stationary phase method, analytical expressions for the TE and TM modes 
of a linearly polarized Gaussian beam are presented in the nonparaxial 
approximation in the far zone. In [119], based on the Rayleigh-Sommerfeld 
vector formula, the nonparaxial propagation of radially polarized beams 
in free space was investigated analytically and with the help of numerical 
methods. An exact expression for describing the propagation of radially 
polarized light beams, which is valid for fields with an arbitrary transverse 
beam size, was obtained in a closed form for any point on the axis.

Based on the study of the vector structure of a electromagnetic beam 
and using the nonparaxial vector theory of moments, relations were 
presented for the beam radius, divergence angles and beam propagation 
factors in the nonparaxial case for a linearly polarized Gaussian beam and 
its TE and TM components [120]. In [121], a comparison of the results of 
calculations using the vector angular spectrum method and the Rayleigh-
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Sommerfeld diffraction formula was made. On the basis of the angular 
spectrum method and the Weyl representation of a spherical wave, vector 
Rayleigh-Sommerfeld diffraction formulas of the first and second kind were 
obtained. In [122], analyzing the vector structure of an electromagnetic 
beam and using the stationary phase method, analytical expressions of the 
TE and TM components for a radially polarized Gaussian beam in the far 
zone were presented and a rigorous solution of Maxwell's equations was 
obtained for a confocal resonator. The components of the vector structure 
of the radially polarized Gaussian beam are compared with the components 
of the Gaussian TEM00 mode. Radially polarized "sophisticated" beams are 
considered in [123]. When describing such beams, the Lager polynomial 
has a complex argument, which is considered and analyzed. The features 
of the propagation of radially polarized beams in free space in the paraxial 
and nonparaxial cases are described from the point of view of the Rayleigh-
Sommerfeld vector formula.

Using the vector angular spectrum method for an electromagnetic 
beam, the analytical vector structure of radially polarized beams is 
described [124]. The obtained results show that radially polarized beams 
consist only of TM waves. The concept of vector Lager-Bessel-Gaussian 
beams is proposed in [125]. On the basis of Rayleigh-Sommerfeld vector 
formulas, analytical formulas for the nonparaxial propagation of such 
vector beams were obtained [126] gives a description of a nonparaxial 
Gaussian beam based directly on Maxwell's equations. The vector 
angular spectrum method was used to solve these equations. Given the 
decomposition of the vector angular spectrum in the frequency domain into 
two terms, it is proposed to represent the nonparaxial Gaussian beam as the  
sum of two terms.

In [127], for a detailed description of the polarization features of 
nonparaxial radially polarized fields, a simple analytical propagation law 
using the method of the angular spectrum of plane waves is presented. 
Based on the parameter describing the width of the angular spectrum, a 
comparison was made between nonparaxial and paraxial results. In [128], 
using the angular spectrum method, general expressions were proposed to 
describe the propagation in free space of electromagnetic fields with a radial 
or azimuthal polarization structure in the transverse plane. The transverse 
distributions of the radial, azimuthal, and longitudinal components of these 
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fields were also analyzed. In particular, the features of the field on the axis 
during propagation in free space were studied. 

Nonparaxial diffraction of Gaussian optical vortices with initial radial 
polarization was studied [129]. Explicit analytical expressions for the 
radial, azimuthal, and longitudinal components of the electric field intensity 
vector were obtained. Modeling showed that nonparaxial formulas describe 
the field much more accurately when moving away from the optical axis 
than paraxial ones. In [130], a general expression for the electric field of a 
cylindrically polarized vector beam propagating in free space was obtained 
on the basis of the exact vector solution of Maxwell's equations in the 
transverse Fourier plane. His analysis shows that the case of cylindrical 
polarization can be considered as a combination of radial and azimuthal 
polarizations and the electric field preserves cylindrical symmetry during 
propagation.

In [131], based on the method of the vector angular spectrum for 
electromagnetic beams and the method of the stationary phase, analytical 
vector formulas were obtained for describing the propagation of an annular 
beam in the far zone. Analytical expressions for finding the energy flow for 
TE- and TM-components and the entire annular beam in the far zone are 
presented. In [132], on the example of plane wave diffraction on a circular 
aperture in the near zone, a comparison of calculation algorithms using 
the vector integral Rayleigh-Sommerfeld transformation and expansion by 
plane waves was carried out in terms of accuracy and speed of calculations. 
A detailed analysis of the diffraction of a vortex beam at a circular aperture 
in the near zone was carried out using various calculation algorithms: 
vector integral Rayleigh-Sommerfeld transformation, expansion by plane 
waves, and the finite-difference time method [133]. Analytical expressions 
for the electromagnetic fields of radially polarized beams diffracted by 
a circular aperture are derived in [134] on the basis of Rayleigh's vector  
diffraction integral.

Analytical expressions for the electromagnetic fields of a cylindrically 
polarized vector beam propagating in free space were obtained in [135] 
on the basis of the vector angular spectrum and stationary phase methods. 
The analysis shows that azimuthal polarization in comparison with radial 
polarization is characterized by better energy focusing in the far zone.  
In [136], based on the angular spectrum method and the stationary phase 
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method, analytical expressions for studying the vector structure of a 
Gaussian beam diffracted at an aperture in the far zone were obtained in a 
rigorous form. In [137], based on the vector angular representation of the 
beam spectrum and the stationary phase method, an analytical expression 
for a cylindrically polarized Lager-Gaussian beam diffracted by a circular 
aperture in the far zone was obtained. The contribution of propagating 
waves and evanescent waves associated with nonparaxial light fields that 
propagate freely and in which the transverse component of the field is 
azimuthally polarized in an arbitrary plane was studied [138]. The analysis 
is carried out within the framework of the approach of the angular spectrum 
of plane waves. In [139], four fast and rigorous methods for modeling light 
propagation in a homogeneous medium are presented. It is shown that 
when studying the propagation of radiation beams in free space, analytical 
processing of rapidly oscillating phase components is very effective in 
reducing computational costs.

This section describes theoretical and experimental studies of the 
features of the structure of the field of laser radiation beams excited by the 
modes of the waveguide circular resonator of a THz laser in free space in 
diffraction zones with different types of spatial polarization of these modes.

3.2. PROPAGATION OF RADIATION OF TERAHERTZ LASER 
BASED ON A METALLIC CIRCULAR WAVEGUIDE  

IN DIFFERENT DIFFRACTION ZONES
3.2.1. Theoretical Relations

The propagation of laser radiation in free space along the 0z axis will be 
described by the well-known Rayleigh–Sommerfeld integrals [140]:
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where E rx
0

0( )
  and E ry

0
0( )
  are the complex amplitudes of the x and y 

components of the input electric field is given, the z-component is assumed 
to be zero due to the choice of the coordinate system, ∑0 is the area in 
which the input field is specified, k � 2� �/  is the wave number, λ is the 
wavelength   

r x e y e x yx y0 0 0 0 00 0
� � � �, ,  are the Cartesian coordinates in the 

input plane, r x e y e z e x y zx y z



  

� � � � �, , ,  are the Cartesian coordinates in 

the observation plane, R x x y y z� � � � �( ) ( )0
2

0
2 2. Using the nonparaxial 

approximation (3.1), we expand R into a series, keeping its first and second 
terms in the form
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Substituting (3.2) into the rapidly oscillating integrals and into other 
places R r≅ , and passing to cylindrical coordinates, we obtain expressions 
for the field components in different diffraction zones:
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Here ( )� �, , z  are cylindrical coordinates in the observation plane and 
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The modes of the studied laser resonator coincide with the modes of a 
circular hollow dielectric waveguide. Let the given radiation in the initial 
plane be in the form of azimuthally symmetric TE0n modes of a circular 
metal waveguide, the field components of which in the source plane  
z = 0 have the form:
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where A
J a

n

n

0

0 0

1
�

�� �( )� �
is the normalizing factor, ��0n  the nth root of

the equation � � �J0 0( )� .  Using expression (3.3) and the reference integral 
cos( )

sin( )
exp cos( ) ( ) ( )

cosm

m
ix d i J xm

m

�
�

� � � �
��
�
�

�
�
�

� �� � � ��
0

2

2
(( )

sin( )

m

m

�
�

�
�
�

�
�
�

, we obtain

expressions for the field components in different diffraction zones:
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(3.5)

Next, we consider radiation in the initial plane in the form of radially 
symmetric TM0n modes, whose field in the form of a source z = 0 has the 
form:
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where A J an n0 1 01� �� �� �� �  is the normalizing factor, χ0n is the nth 
root of the equation J n0 0 0( )� � . Then, using expression (3.3) and the 
above reference integral, we obtain expressions for the components of the 
field of these modes in the diffraction zones:

 

We also consider radiation in the initial plane in the form of 
asymmetric TE1n modes, the field of which in the source plane z = 0 has  
the form:
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where A
J a

n

n n

1

2 1 1
2

1

2 1
�

�� �( ) ( )� � �
  is the normalizing factor, χ1n is the 

nth root of the equation J1 0( )� � .
Similarly, using expression (3.3) and the reference integral given above, 

we obtain the expression for the field components of these modes in the 
diffraction zones: 

(3.9)

To compare the spatial characteristics of the investigated modes and 
the modes of free space, we consider in the initial plane an axisymmetric 
Gaussian beam linearly polarized in the y direction, in which the field 
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Using expression (3.3), we obtain the final expression for the components 
of the radiation field of a Gaussian beam in free space in the form:
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3.2.2. Comparison of Experimental and Numerical Results
Using the obtained expressions, the transverse distributions of the 

intensities of the waveguide modes during their propagation in free space 
were calculated. The calculation was performed for lower symmetric 
azimuthally (TE0n) and radially (TM0n) polarized modes and asymmetric 
(TE1n) modes.

Experimental studies of the propagation of terahertz laser radiation in 
free space were carried out on the equipment, the structural diagram of 
which was given earlier in chapter 2 (Fig. 2.10). The laser resonator is 
formed by a hollow metal waveguide with a diameter of 19.92 mm and 
mirrors 17, 18. Mirror 17 is similar to the one described above, mirror 18 is 
mirror II (azimuthally symmetric diffraction grating with the parameters 
given in section 3. The radiation wavelength was chosen in the terahertz 
range λ= 0.4326 mm (generation line of a laser with optical pumping on the 
HCOOH molecule).

Figure 3.1 presents the experimental and calculated dependences of 
the half-width of the transverse distributions of intensity w at the level  
of 1/e2 on its maximum value for waveguide modes when the parameter ε, the 
inverse Fresnel number, changes (ε = 1/N, N = a2/λL1, L1 is the distance from 
the output end of the waveguide to the observation plane). The dependence 
for a Gaussian beam with a radius in the output plane of w = 8.56 mm, 
equal to the half-width of the TE01 waveguide mode at the open end of  
the waveguide at the 1/e2 level from the maximum intensity, is given here.
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It can be seen from the given dependences that for small values of ε the 
changes in the width of the beams are nonlinear. In this region, the spatial 
transverse distribution of modes changes significantly (Figures 3.2 – 3.3).

The calculated and experimentally measured transverse intensity 
distributions of TE01 mode at a distance of 15 cm (ε = 0.65) and  
100 cm (ε = 4.36) from the laser output mirror are shown in Figgure 3.4. 
A good coincidence of the experimental and calculated curves is 
observed. Experimentally measured by the method of two intersections 
(points in Figure 3.1), the TE01 mode divergence of an optically pumped 
metal waveguide laser with the wavelength and waveguide radius given 
above is 0.035 rad. Good agreement was obtained between the measured 
and calculated beam divergences for the TE01 mode. For comparison,  
Figure 3.1 shows the dependence of the half-width of a Gaussian beam  
with a radius in the output plane equal to the half-width of the TE01 waveguide 
mode (w = 8.56 mm) at the open end of the waveguide, calculated  
according to formula (3.11). 

Figure 3.1. Calculated dependences of the half-width  
of the transverse intensity distributions w of the waveguide modes  

in free space when the parameter ε changes.  
Circles are an experiment
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Figure 3.3. Relative transverse distributions  
of TM01 mode intensities

 

 

Figure 3.2. Relative transverse distributions  
of TE11 mode intensities at φ = 0
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Figure 3.4. Relative transverse distributions  
of TE11 mode intensities at φ = 0

 
 

Figure 3.5. Relative transverse distributions 
of TM01 mode intensities
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Figure 3.6. Calculated (1) and experimental (2) radial distributions  
of TE01 mode field intensity at a distance of 15 cm (a) 

and 100 cm (b) from the laser output mirror

 

 

а)

 

 

б)
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The angular divergence of the Gaussian beam calculated from the 
obtained data for ε > 2 was 0.0188 rad, and calculated by the well-known 
expression Θ = λ/πw = 0.0161 rad [141]. The angular divergence Θ of the 
waveguide modes is given in Table 3.1.

Table 3.1 
Angular divergence of waveguide modes

Type 
of mode TE01 TE02 TE03 TM01 TМ02 TМ03 TE11 TE12 TE13 Gauss

Q 0.037 0.061 0.084 0.031 0.053 0.075 0.029 0.049 0.065 0.019

The conducted theoretical and experimental comparison of the 
divergence of the TE01 mode and the Gaussian beam allows us to conclude 
that the obtained analytical expressions in the nonparaxial approximation 
correctly describe the propagation of the modes of the metal waveguide 
resonator in free space. A stable field structure for symmetric and 
asymmetric modes in the terahertz range is observed at closer distances, 
in contrast to the distances predicted by the well-known criterion for the  
far diffraction zone.

3.3. PROPAGATION OF RADIATION  
OF TERAHERTZ LASER BASED  

ON A HOLLOW DIELECTRIC CIRCULAR WAVEGUIDE  
IN DIFFERENT DIFFRACTION ZONES

3.3.1. Theoretical Relations
We use the previously obtained expressions (3.3) in a cylindrical 

coordinate system [116; 142] to study the propagation in free space of 
the modes of a terahertz laser based on a circular dielectric waveguide.  
Let the given radiation in the initial plane be in the form of symmetric 
azimuthally, radially and linearly polarized TE0n, TM0n, EH1n and  
asymmetric linearly polarized TE0n+ TH2n, EH-1n+ EH3n (n = 1, 2) modes 
of a circular hollow dielectric waveguide of radius a, the components of 
electromagnetic fields of which in the source plane z = 0 have a known form 
[50]. For TE0n modes, the transverse components of the electromagnetic 
fields have the form:
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For TM0n modes, the transverse components of the electromagnetic 

fields have the following form:
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Transverse components of electromagnetic fields for EH1n modes are 
presented in the following form:
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where U n1  is the nth root of the equation J U A
J U a
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For ТЕ0n + ЕН2n mode, the transverse components of the  

electromagnetic fields have the form:
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For the EH-1n + EH3n modes, the transverse components of the field are 
obtained as the sum of the corresponding components of the EH-1n and EH3n 
modes:
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where A
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2 3
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 is the normalizing factor.

Using formula (3.3) for description the components of the electric field 
intensity vector that propagates, we obtain expressions for the transverse 
and longitudinal components of the field in an arbitrary plane z = z1 in free 
space. For TE0n mods, they look like this:
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Similarly, the expressions for the field components of the TM0n modes 
are obtained:
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The expressions for the components field of the ЕН1n modes have the 
following form:

For ТЕ0n + ЕН2n modes the transverse and longitudinal components of 
the field are expressed in the following form:

 

 

 

1
3

2
0 0 0 0

0 1 1 0 00

1
3

2
0 0 0 0

0 1 1 0 00

03

( 1)

exp
2

( 1)

sin exp
2

( 1) sin

cos

ikr
x

a n
n

ikr
x

a n
n

ikr
z n

iz ikrE r e
r

U kA J ik J d ,
a r r

iz ikrE r e
r

U kA J ik J d ,
a r r

ikrE r e A J
r

     

     




 

              


 

              














0

1

2
0 0 0

0

0 0
0 1 0 0

exp
2

a nU ik
a r

k kJ i J d .
r r

 

      















            
                



(3.18)

(3.19)

 

 

 

2
1 0 0 01

1 0 0 0 03 0

2
1 0 0

1 03 0

0 0
0 0 1 0 0

0

( 1) exp
2

( 1) sin exp
2

x

aikr n
y n

aikr n
z n

E r ,

U kz ikrE r e A J ik J d ,
a r rr

UikrE r e A J ik
a rr

.k kJ i J d
r r

     

 

      













                
           

              

















125

Scientific monograph

 (3.20)

For the EH-1n + EH3n modes the transverse and longitudinal components 
of the field have the form:

  

(3.21)
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To compare the spatial characteristics of the investigated modes and 
the modes of free space, we consider in the initial plane an axisymmetric 
Gaussian beam linearly polarized in the y direction, in which the field 
E E r jy0 0 0 0� � ��� �

,  in the source plane z = 0 has the form:

E A
wy

I

0 0 0
0
2

0
22

�
�� � � �

�

�
�

�

�
�exp ,                             (3.22)

where A
w I

0
0

2 1
� �  is the normalization factor, w w

a
wI

I
I0

0
0�

�
�,   is the 

radius of the beam in terms of intensity at the e-1 level from its maximum 
value, and a is the radius of the waveguide. 

Using expression (3.3), we obtain the final expression for the  
components of the Gaussian beam radiation field in the form:
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3.3.2. Comparison of Experimental and Numerical Results
Experimental studies of the propagation of THz laser radiation in 

free space were carried out on the setup, the structural diagram of which 
is given in section 2 (see Fig. 2.10). The laser resonator is formed by  
a hollow dielectric waveguide with a diameter of 2a = 35 mm and 
mirrors 17, 18. The output mirror 18 was mirror II, made in the form of 
an azimuthally symmetric diffraction grating with the parameters given in 
section 2. Calculations and experiments were carried out at a wavelength 
of 0.4326 mm.

Using the obtained expressions, we calculated the transverse distributions 
of the field intensity of laser beams excited by symmetric azimuthally, 
radially and linearly polarized TE TM EH0 0 1n n n, ,  and asymmetric 
linearly polarized TE EH0 2n n+ , EH EH� �1 3n n  (n = 1, 2) modes of the 
dielectric waveguide resonator of a terahertz laser during their propagation 
in free space in near and far diffraction zones. Figures 3.7 – 3.12 show the 
transverse distributions of the field intensity of the given modes at different 
distances from the laser resonator. 

Figure 3.13 presents the experimental and calculated dependences of 
the half-width of the transverse intensity distributions at the level of 1/e2 on 
its maximal value for waveguide modes when the parameter ε, the inverse 
Fresnel number, changes. It can be seen that when ε < 2, the transverse 
distribution of the mode intensity changes significantly. In the region ε > 2, 
the transverse profiles of the radiation beams acquire a stable structure, and 
only their width changes when ε increases. 



128

CHAPTER 3

There is good agreement between experimentally measured (points 
in Figure 3.13) and calculated data for radiation beams excited by EH11, 
TE01+EH21 modes. For comparison, the figure shows the dependence of the 
half-width of the Gaussian beam on the parameter ε. The radius of the beam 
is chosen equal to the radius of the EH11 mode at the 1/e2 level from its 
maximum value at the output end of the waveguide. 

                             a)                                                        b)
Figure 3.7. Transverse distributions of field intensity EH11 mode:  

a) in the near diffraction zone; b) in the far zone of diffraction

 

 

 

 
                             a)                                                        b)

Figure 3.8. Transverse distributions of field intensity EH12 mode: 
a) in the near diffraction zone; b) in the far zone of diffraction
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The experimentally obtained and calculated values of the divergence of 
laser beams in the far zone, obtained by the method of focal spot, for the 
modes EH11 and TE01+EH21 within the measurement error coincide and are 
shown in Table 3.2, where the calculated divergencies for other waveguide 
modes and the Gaussian beam are also given. 

                             а)                                                        b)
Figure 3.9. Transverse distributions 

of field intensity TE01, TM01, TE01+EH21 modes:  
a) in the near diffraction zone; b) in the far zone of diffraction

 

 

  a)                                                       b)
Figure 3.10. Transverse distributions 

of field intensity TE02, TM02, TE02+EH22 modes:  
a) in the near diffraction zone; b) in the far zone of diffraction
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Table 3.2 
Calculated divergencies of waveguide modes and Gaussian beam
Waveguide 

modes
TE01
TE02

TM01
TM02

EH11
EH12

TE01 + EH21
TE02 + EH22

EH-11 +EH31
EH-12 +EH32

Gaussian 
beam

Angular 
divergence Θ, rad.

0.0212
0.0334

0.0212
0.0334

0.0131
0.0293

0.0212
0.0334

0.0289
0.0371 0.011

 a)                                                       b)
Figure 3.11. Transverse distributions 
of field intensity EH-11+EH31 modes:  

a) in the near diffraction zone; b) in the far zone of diffraction

 

 

 a)                                                       b)
Figure 3.12. Transverse distributions 
of field intensity EH-12+EH32 modes:  

a) in the near diffraction zone; b) in the far zone of diffraction
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These results allow us to conclude that the obtained analytical  
expressions in the nonparaxial approximation correctly describe the 
propagation of laser beams excited by the modes of the dielectric resonator 
of a terahertz laser with a circular waveguide in free space. At the same 
time, a stable field structure in free space for dielectric resonator modes 
in the terahertz range is observed at closer distances from the end of the 
waveguide ( L a� 2 2 / � )in contrast to the distances predicted by the well-
known criterion ( L a� 8 2 / � ) for the far diffraction zone [143].

  a)                                                       b)
Figure 3.13. Calculated dependences of the half-width 

of the transverse intensity distributions w of the waveguide modes 
in free space when the parameter ε

 
 




