Prague, Czech Republic September 25-26, 2020

DOI https://doi.org/10.30525/978-9934-588-79-2-1.4

SCALABLE MICROSERVICE ARCHITECTURE FOR WRITERS

Hrushko S. S.
PhD,
Associate Professor at the Department of Computer Systems
Zaporizhzhia Polytechnic National University

Timenko A. V.
Assistant professor at the Department of Computer Systems
Zaporizhzhia Polytechnic National University

Vusu-Hovu Silviia
Master at the Department of Computer Systems
Zaporizhzhia Polytechnic National University
Zaporizhzhia, Ukraine

The term "Microservice Architecture” has gained popularity in the past
few years like a way to describe how applications are designed as a set of
independent deployed services. There is no precise description of this ar-
chitectural style, but there is a common set of characteristics: organization
of services around business needs, automatic deployment, transfer of logic
from the message bus to the sink (endpoints), and decentralized control
over languages and data.

Using microservice architecture provides the developer with the follow-
ing opportunities to expand the project:

— modules can be easily replaced at any time: emphasis on simplicity,
independence of deployment and updating of each of the microservices
[1, p.52];

— modules are organized around functions: the microservice, if possible,
performs only one fairly basic function [1, p. 50];

— modules can be implemented using different programming languages,
frameworks, composite software, executed in different development envi-
ronments; run in different environments of containerization, virtualization,
under different operating systems on different hardware platforms;

— the architecture is symmetric, not hierarchical: the dependencies be-
tween microservices are peer-to-peer [4, p. 31].

The microservices philosophy actually mirrors the Unix philosophy, ac-
cording to which every program should «do one thing and do it well» and
interact with other programs with simple gadgets.

21

International scientific and practical conference

To organize a microservice architecture based on a monolithic one, it is
proposed to use the technologies and software, which are used to create a
client-server architecture on a JavaScript technology stack: the server-side
consists of Node.js, Koa, MongoDB, Redis; the client-side was developed
using technologies such as React.js, React-Bootstrap, React Redux, React
Router, React Router DOM. The open source message broker NATS, an
open source messaging system, was used to communicate with the micro-
service modules. The NATS server is written in the Go programming lan-
guage. Figure 1 shows the operation and structure of the system.

Microservice Architecture

Fig. 1. The operation and structure of the system

The presented system for expanding the monolithic architecture is
cross-platform and runs under Windows and Unix / Linux operating sys-
tems. The operation of the system on these browsers has been tested in a
practical way.

Compared to the older version of the program, the microservice en-
hancement provides the application with faster startup times and the ability
to deploy microservices independently, which is really beneficial for
Cl/CD [2, p. 220].

Microservices are not tied to technologies that are used in other ser-
vices. This means that it is possible to use the best fitting techniques. Old
services can be quickly rewritten to use new technologies. The ability to
quickly adapt to new technologies can keep projects relevant for a long
time and expand their potential and capabilities.

22

Prague, Czech Republic September 25-26, 2020

Application scalability is the potential for an application to grow over
time — being able to efficiently handle more and more requests per minute
(RPM) [3, p. 24]. It’s not just a simple tweak you can turn on/off, it’s a
long-time process that touches almost every single item in your
stack, including both the hardware and software sides of the system.

In case of problems, you can keep adding new CPUs or increase
memory limits, but by doing so, you’re just increasing the throughput, not
the app performance.

It’s not the way you should stick to when you see your app is starting to
have efficiency problems. Scaling the app is not an easy thing and thus you
should know your app very well before starting to think about how and
when to scale it.

Scaling can be vertical and horizontal, but in this project the task is to
optimize the application without affecting the hardware part of the project,
but to use software tools to increase performance. In the course of the pro-
ject, vertical and horizontal scaling will be used.

Vertical Scaling

The vertically scale means adding resources to our existing server or to
replace it with another powerful server. Figure 2 shows how vertical scal-
ing works [6, p. 2].

ii—’ﬁ

1.8 GHz Dual-Core 2.8 GHz Quad-Core

4 GB RAM B GB RAM

Fig. 2. Vertical scaling

Basically, the architecture remains the same, it’s just that the server has
been upgraded to accommodate more clients than before. This would solve
our issue temporarily, but it’s not a permanent fix. As more and more peo-
ple begin to use web application, the added resources would eventually run
out and it would need to keep on vertically scaling the server.

Horizontal Scaling

The horizontally scale means adding additional servers that serve the
same purpose [6, p. 3]. As application continues to get popular day by day,
the current servers exhaust out of resources by supporting all the clients,
thus it needs to add more servers to serve other incoming clients. Figure 3
shows how horizontal scaling works

23

International scientific and practical conference

[
o In
-~ Database
i

Servers

Fig. 3. Horizontal scaling

In the course of the project, these two types of scaling will be com-
pared, and in the course of the results an analysis of the effectiveness of a
particular method will be carried out.

Thus, a microservice system for creating and reading works of art,
which consists of a server and a client part, which are supplemented with
microservice modules has been designed. Application operation and per-
formance are optimized by the selected scaling methods, which reduces the
workload on the project. Unlike the old version of the application, the new
one is characterized by a faster data processing speed, has many options for
improvement and is easy to maintain.

References:

1. Kocher Parminder Singh Microservices and Containers 1st Edition.
Addison-Wesley Professional; 1st Edition. 2018. 304 p.

2. Martin Kleppmann Designing Data-intensive Applications: The Big
Ideas Behind Reliable, Scalable, and Maintainable Systems. O’Reilly Me-
dia, 2017. 590 p.

3. Fernando Doglio Scaling Your Node.js Apps: Progress Your Per-
sonal Projects to Production-Ready. Apress; 1st ed. Edition. 2018. 177p.

4. Newman Sam Building Microservices. 2015. Sebastopol: O’Reilly
Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

5. Eyal Ronel Auto Scaling Real-Time NodelS Applications on
AWS - The last tutorial you’ll need!. 2017. URL:

24

Prague, Czech Republic September 25-26, 2020

https://medium.com/@eyalronel1984/auto-scaling-real-time-nodejs-
applications-on-aws-the-last-tutorial-youll-need-ebald2c88a4c

6. Harith Javed Bakhrani Scaling Your Web Application. 2020. URL.:
https://medium.com/@harithjaved/scaling-your-web-application-
693657ce333c

7. AWS Deploying Node.js applications to Elastic Beanstalk — Devel-
oper Guide. URL: https://docs.aws.amazon.com/elasticbeanstalk/ lat-
est/dg/create_deploy_nodejs.html

DOl https://doi.org/10.30525/978-9934-588-79-2-1.5

METO/M PINEHHS 3ABJIAHBb IINTAHYBAHHSA ITIOBEJATHKA
ATEHTIB B IHTEJIEKTYAJIBHUX CUCTEMAX NI ATPUMKH
HNPUMHSTTS PILIEHD

Jemuenko €. 1.
Kanouoam mexHiuHux Haykx,

HAYanbHUK HAYKOBO-00CAIOH020 8i00LTY HAYKOBO-MUEMOOUYHO20
3a6e3neuents po3podieHHs | peanizayii npoepam po3eumKy 030po€enHs
ma GillcCbKOBOI MeXHIKU Ma 0epiHCcaABHO20 0OOPOHHO20 3AMOGIEHHS
LlenmpanvHozo Hayk080-00CAIOH020 THCMUMYMY 030POEHHS
ma siticbkogoi mexwixu 30potinux Cun Yxpainu
M. Kuis, Yxpaina

Beryn. HeoOXiqHICTh IPOEKTYBaHHS IHTENEKTYAIbHUX CHCTEM PHIH-
ATTS/MATPUMKN NpuiHATTS pitneHb (CIIIIP) npu ynpaBniHHI CKIaHUMHU
00’exTaMu 1 TporiecaMu pi3HOI MPUPOAH OOYMOBIIOETHhCS O€3MepepBHUM
3pOCTaHHSIM iX CKJIaJHOCTI 3 OJHOYACHHM CKOPOYEHHSM 4Yacy, IO BiJ[BO-
JIUTBCSI JIFOJIUHI, sika npuiimae pimenns (JIIIP) va anani3z npobieMHoi cu-
Tyarii, iIeHTU(IKAI[IF0 BUHUKIIOTO BiIXUJCHHS BiJ] HOPMAaJIbHOTO (IITATHO-
ro) pexxuMy (QyHKIIOHYBAaHHS 00’€KTY, MOUTYK MOMIIUBHX KOPHTYBAIBHUX
pillleHb 1O BIUIMBY Ha 00’€KT (IIPOLEC), OIIHKY HACIHIAKIB MPUHHATHX pi-
IIeHb i, HapemTi, BWJady KOMaHJI Ha BIANPaIbOBYBaHHS HEOOXiTHHUX
BIUIUBIB.

PeasnizyBaru CIIIIP y noBHOMY 00cs13i MOKHA JIMIIIE 3 BUKOPUCTaHHAM
Cy4acHHMX TEXHOJIOT1 MPOEKTYBaHHS IHTENEKTYalbHUX CHCTEM, 3aCHOBa-
HUX Ha KOHIEMIISX PO3MOAITICHOTO ITYYHOTO iHTEIEKTY, MyJIbTHAareHTHO-
CTi, IWHaMiYHUX 0a3 3HaHb, HEMPOHHUX MEPEX, XMapPHHUX OOUYHCIICHB.

25

