Chapter «Engineering sciences»

EVOLUTION OF COMPUTER CHESS
Yurii Moroz!
DOT: https://doi.org/10.30525/978-9934-26-602-7-10

Abstract. Chess has always been a subject for scientists to explore
and apply new technological tools. The game has clear rules and a defined
structure, which made it one of the few problems well-suited for testing new
ideas in logic, computation, and machine reasoning. From early mechanical
“chess players” — which created only the illusion of intelligence — through
pioneers like Turing and Shannon, who introduced early algorithms and
search methods for computer chess, and continuing to today, chess has
provided a clear, measurable challenge inspiring exploration of machine
intelligence and decision-making. The purpose of this paper is to demonstrate
how technological progress — particularly in computing hardware, software
architectures, and algorithm design—has steadily influenced the development
of computer chess from its early stages to the present. It aims to show not
only how advances in hardware and software shaped the evolution of chess
engines but also how ideas from this field contributed to the progress of
other scientific and technological domains. The methodology of the study
is based on collecting, summarizing, and structuring key technological
achievements throughout the history of computer chess. Based on original
papers, the study highlights each major engine’s hardware design, software
structure, algorithmic innovations, tournament successes, and long-term
influence on the field. Results of the survey showed a significant impact
of technological developments on computer chess, influencing both the
strength and structure of chess engines. At the same time, many ideas
that emerged from building chess engines demonstrated practical value
in other areas too. This study can inspire the development of new chess
engines, tools, and heuristics to improve how artificial intelligence systems
analyze the game. Moreover, the methods discussed here can be applied
not only to chess, game theory, and information technology, but also to
other fields such as mathematics, physics, chemistry, biology, and many

! Graduate Student at the Department of Computer Information Systems and Technologies,
Interregional Academy of Personnel Management, Ukraine

© Yurii Moroz 231

232

Yurii Moroz

others. The value of this study is in presenting a clear, structured overview
of the technological side of computer chess — from early experiments to
modern neural networks. This interconnection shows that the advancement
of computer chess, general technology, and modern digital life are closely
linked, each contributing to and benefiting from the others.

1. Introduction

For centuries people wanted to believe that the magic might be real —
that there could be a robot or automaton capable of solving any problem.
At the same time, chess independently was one of the most prestigious
games, and those who played at a high level were regarded as brilliant minds.
The peak moment when engineering was ready to build something beyond
primitive but still limited came in the 18th century with the Turk, which was
just a trick because technology was not ready for a real playing machine.
Later, in 1900-1950, technology advanced toward building an exceptional
machine; real experiments began with El Ajedrecista, and algorithms such
as Minimax were invented. Then, in 1950-2000, technology evolved from
early engines such as TuroChamp to Deep Blue, which defeated Garry
Kasparov. Since 2000, interest in computer chess has actually increased
because it became more accessible for everyone, and AlphaZero introduced
new methods now used by the strongest engines. Both general technology
and chess helped each other and gave something to other fields. Herbert
Simon, a co-creator of one of the first-ever chess engines, NSS 1958, won
a Nobel Prize in Economics. Demis Hassabis, CEO of DeepMind, whose
team created a game-changer, AlphaZero, in 2016, later won a Nobel Prize in
Chemistry. This work introduces and explains new approaches in computer
chess that came from chess itself and different periods in its history. Using
clear summaries of the most major engines and important innovations, it
aims to familiarize readers with the world of chess engines and the key
algorithms, which originated from computer chess experiments. The goal is
to inspire readers to build better chess engines, contribute to existing ones,
or even create tools that improve our lives beyond chess. Original papers
by the authors were the primary sources used to keep the accuracy high. It
gives short summaries of all major chess engines in chronological order to
give a solid understanding of key developments in computer chess within a
focused, readable report.

Chapter «Engineering sciences»

2. Fake Automatons (1770-1900)

Even before computers, there were attempts to build so-called “computer
chess” — devices meant to mimic the human mind. The three most well-
known automatons, which were actually secretly controlled by strong
players, were invented before the 20th century.

The Turk was constructed by a Hungarian civil servant, Wolfgang von
Kempelen, in 1770 to impress Empress Maria Theresa [1, p. 22]. It appeared
as a life-sized mannequin, dressed in Ottoman robes and a turban, seated
at a wooden cabinet with a chessboard on top [1, p. 23]. Before each game,
Kempelen opened all the doors of the cabinet, full of mechanical gears and
clockwork machinery, to convince the audience that nobody was hiding
inside, claiming that the Turk was fully automated [1, p. 24]. It traveled
through Europe and North America and faced many historical figures, such
as Benjamin Franklin, Catherine the Great, Napoleon Bonaparte, Charles
Babbage, and Edgar Allan Poe [1, p. 43]. After 84 years of existence, the
automaton was destroyed in a fire in the Chinese Museum in Philadelphia
in 1854, where it had been housed in its final years [1, p. 191]. While there
were many attempts to explain how the automaton worked throughout its
career, only three years after its destruction did the son of its last owner
reveal the secret, showing exactly how it worked and how a hidden, strong
player inside had been able to operate it [2, p. 3].

Ajeeb was created by a cabinetmaker, Charles Alfred Hooper, in 1865 and
followed the same principle as the Turk: concealing a strong player inside.
In addition to chess, it could play checkers [3, p. 2]. It also toured the world
and faced many famous individuals, including Harry Houdini, Theodore
Roosevelt, George Dewey, Sarah Bernhardt, and O. Henry. Unfortunately, it
was destroyed by fire in Coney Island in 1929, repeating the Turk’s tragic fate.

Mephisto was built by a manufacturer of artificial limbs, Charles
Godfrey Gumpel, in 1876 and was technically more advanced. Unlike the
Turk and Ajeeb, there was no player inside; it was remotely controlled by
electromagnetic devices, primarily by Isidor Gunsberg, the runner-up in
the first-ever Chess World Championship match, where he lost to Wilhelm
Steinitz, marking a step toward real automation [4, p. 46]. The automaton’s
lifetime was significantly shorter: it was dismantled in 1889.

There were several other lesser-known automatons from that period, but
all followed a similar principle or were almost exact copies of the three

233

234

Yurii Moroz

described above. While these machines were nothing more than mere hoaxes,
they still played a vital role in the history of computer chess by pushing
engineers to create something increasingly close to a true chess engine.

3. Real Automaton and Theory (1900-1950)

The first half of the 20th century is remembered for its theoretical
work, but the necessary technology was still lacking to apply these ideas in
practice. Nevertheless, during that time, the first true automaton was built,
and the most important theoretical concept was discovered.

El Ajedrecista, built in 1912 by Leonardo Torres Quevedo, was the first
automaton capable of playing without human intervention, relying solely on
electromechanical components, and could win a king and rook versus king
endgame by following a simple algorithm. For example, when the black
king came close enough to capture the rook, the rook moved to the far side
of the board, keeping it cut off horizontally; when the kings stood in vertical
opposition, the rook advanced one square vertically towards the black king,
pushing it back to the last row to deliver checkmate [5, p. 4-6]. Torres
mentioned that it was just a scientific toy and had no practical purpose, but
he believed that any device — regardless of complexity — could be built by
defining a set of rules [5, p. 2]. Although the problem was relatively simple,
the machine was quite advanced for that time and can be considered the first
chess computer.

Minimax is a foundational theorem in game theory for two-person zero-
sum games, proven by John von Neumann in 1928. The core idea is to
minimize the maximum possible loss by selecting the optimal strategies for
both players. It is expressed as:

m?xm}ng(x,y):myinm?xg(x,y):M, (1)

where g(x, y) is the payoff function, x and y represent the strategies of the
two players, and M is the value of the game [6, p. 303]. This concept was a
revolutionary development for both chess and game theory and continues to
serve as a primary algorithm in many strong chess engines today.

The main barriers that prevented scientists from applying their ideas
to working chess engines in the first half of the previous century were no
programmable machines, slow early devices, and unfinished minimax.
But fortunately, things started to change in the second half.

Chapter «Engineering sciences»

4. Early Chess Engines (1950-1960)

Real computer chess development began after World War II. Back at
that time, the first digital computer was built, and scientists started to apply
their ideas into practice in many fields of life, including chess. Turing and
Shannon were pioneers of experimenting with chess.

Turochamp was a computer chess program started being developed by
Alan Turing and David Champernowne in 1948 but was never physically
implemented due to limited computational power. In addition to piece
values, the evaluation function included features such as mobility, piece
safety, king mobility, king safety, castling, pawn credit, checks, and mate
threats [7, p. 291-292]. The only recorded game, played in 1952 against
Alick Glennie, was lost by Turochamp and took several weeks to complete
because Turing acted as a human processor, manually calculating each move
with paper and pencil following the algorithm. According to Champernowne,
sometime earlier, Turochamp defeated his wife Wilhelmina, a beginner at
chess, marking it as the first chess program known to beat a human, yet,
unfortunately, the game was not recorded [8, p. 563]. Although Turochamp
never became a functioning chess engine and remained a ‘paper machine,’
it is widely considered the first chess program.

A revolutionary paper, “Programming a computer for playing chess,”
written by Claude Shannon, was published in 1950. In his work, Shannon
suggested a board representation, minimax routine, and two types of
programs: Type A — a brute-force search exploring all moves; and Type B —
a selective search focusing on promising moves. To evaluate the score of a
position, he considered three factors: material, pawn structure, and mobility,
and suggested a crude evaluation function for illustrative purposes:

f(P)=200(K-K"')+9(Q0-0Q")+5(R-R")+
+3(B-B'+N-N')+(P-P'")-
—0.5(D-D'+S—-S+I1-1")+01(M-M") .)
where K, O, R, B, N, and P are piece values; D, S, and / are doubled,
backward, and isolated pawns; M is mobility; and primed letters refer to
Black [9, p. 260]. Shannon also estimated that there are 10120 possible
sequences of moves from the initial position — known as the Shannon
number — which exceeds the number of atoms in the universe; therefore,
solving chess by brute force would be impractical in the foreseeable future

235

236

Yurii Moroz

[9, p. 259]. His contribution has remained enormously influential for the
following computer chess engineers and enthusiasts, and most engines
developed thereafter have followed Shannon’s ideas.

Maniac I was a chess variant program written in 1956 at the Los
Alamos Scientific Laboratory by Stanislaw Ulam, Paul Stein, Mark
Wells, James Kister, William Walden, and John Pasta for the MANIAC
I computer, which had a memory of 600 words, storage of 80K, 11KHz
speed, and 2,400 vacuum tubes. In order to allow the machine to reach a
depth of four plies, the scientists reduced the board to 6 x 6, omitting the
bishops, castling, and two-square pawn moves. They used pure minimax
search (Shannon’s type A) with an evaluation function that scored material
and mobility, resulting in an average of 12 minutes per move [10, p 174].
The first game it played was against itself, with White winning; second,
it lost to a strong player who gave a queen handicap; third, it defeated a
beginner who had learned the game just a week earlier [10, p 175-176].
Even though Maniac I is considered a chess variant, it was the first
functioning engine — unlike Turochamp — to beat a human, albeit in a
simplified chess game.

The Bernstein chess program was developed by Alex Bernstein,
Michael de V. Roberts, Timothy Arbuckle, and Martin Belsky in 1957 for
the IBM 704 — one of the last generations of vacuum-tube computers — with
42,000 instructions per second, 4,096 words of memory, and 70K storage.
Bernstein presented the program under construction at the Dartmouth
Workshop, which is widely recognized as the birthplace of artificial
intelligence. Although there are about 30 legal moves in a typical chess
position, the authors decided their machine would select only seven for
detailed analysis on the basis of eight questions, such as “Can minor pieces
be developed?” and “Can open files be occupied?” [11, p. 100]. They used
selective forward pruning (Shannon’s type B) with an evaluation function
considering material, king defense, mobility, and area control, which took
close to eight minutes to reach a depth of four plies [11, p. 103]. Bernstein’s
program might be considered the first known fully automated chess
engine, but IBM’s executives were unhappy with company resources being
dedicated to chess research, and the project was discontinued.

The NSS chess program was written in the high-level Information
Processing Language by Allen Newell, Herbert Simon, and Cliff Shaw

Chapter «Engineering sciences»

for the early JOHNNIAC computer in 1958. While earlier engines simply
picked the move with the highest minimax value, the authors of NSS created
a conceptually and technically much more sophisticated analysis procedure,
which might be described as an approximation to the alpha-beta algorithm.
The program treated all evaluation factors as goals and employed specific
routines to reach them. For example, to reach the goal “material balance,”
a whole series of possible moves was generated, including “capture the
attacker,” “add a defender,” and “move the attacked piece,” among others
[12, p. 327]. NSS became the first full-game engine to defeat a human
player, a secretary who had been taught to play just one hour prior to
the game. Notably, the authors’ approach and techniques were a genuine
breakthrough in the field — especially the combination of minimax and
alpha-beta pruning — which is now used in many strong engines.

The alpha-beta algorithm is a technique for reducing unneeded
branches in a game tree. John McCarthy was the first to suggest it to Alex
Bernstein at the Dartmouth Workshop, but the latter was unconvinced. Then
the authors of the NSS chess program used the idea in their implementation,
which McCarthy later described as an “approximation”.

In alpha-beta pruning, the maximizing player stops evaluating a branch
if its value is greater than or equal to a previously encountered minimum
(beta), as the minimizing player would not allow that line of play [13, p. 2].
Likewise, the minimizing player prunes a branch if its value is less than or
equal to a previously encountered maximum (alpha), since the maximizing
player would avoid it, as shown in Figure 1.

Alpha-beta pruning can dramatically reduce the number of nodes
explored. For a standard minimax search tree with x nodes, the best-case
scenario of the moves that are left to evaluate can be expressed by the
following formula: "o

x=b*+b? -1, 3)
where b is the assumed number of legal moves per position and # is the
depth of the search tree.

The number of nodes that may be cut largely depends on the move
ordering. Assuming there are always 40 moves available in each position
and the best move is always considered first, the number of nodes that are
left to explore using alpha-beta pruning over the minimax algorithm is
shown in Table 1.

237

238

Yurii Moroz

0 -

G 0
© ® @ O -

N

@ @ @ & O @ O O -«
DODOOREAAOWROOOOO

Figure 1. Alpha-beta pruning

=
H

Table 1
Minimax and Minimax with Alpha-Beta pruning (best-case)

Minimax + Alpha-Beta pruning

depth Minimax (best-case)
0 1 1
1 40 40
2 1,600 79
3 64,000 1,639
4 2,560,000 3,199
5 102,400,000 65,569
6 4,096,000,000 127,999
7 163,840,000,000 2,623,999
8 6,553,600,000,000 5,119,999

Despite significant hardware limitations of the vacuum tube computer
era, this decade is remembered for taking computer chess from theory to
practice with the creation of the first chess engines and the development of
foundational algorithms.

Chapter «Engineering sciences»

5. Transistorized computers (1960-1970)

While transistors were invented in 1947, it took over a decade to replace
vacuum tube computers entirely, and by 1960 new designs were fully
transistorized. It made computers more capable and practical for chess.

The Kotok-McCarthy Program was the first chess program to run on a
transistorized computer — the IBM 7090, which had 36-bit architecture and
32,768 memory words and was much faster than vacuum tube computers —
developed in FORTRAN and FAP by Alan Kotok, Elwyn R. Berlekamp,
Michael A. Lieberman, Charles Niessen, and Robert A. Wagner in
1962 [14, p. 1]. While testing their program, the authors noted it searched too
many irrelevant positions and decided to prune the move tree by combining
minimax with McCarthy’s alpha-beta algorithm — more advanced than the
one-sided technique in NSS and involving upper and lower bounds — as he
had suggested to Bernstein years earlier [14, p. 5]. The evaluation function
was a weighted sum of material balance, center control, pawn structure,
tempo advantage, and development [14, p. 2]. Based on Bernstein’s selective
search routine, the algorithm considered four moves at the first ply, three at
the second, two at the third and fourth, and one move at plies five through
eight, enabling a search depth of eight plies [14, p. 8]. Building on earlier
work, the Kotok-McCarthy Program refined and combined existing ideas to
reach amateur-level play and became a benchmark for future innovations in
computer chess.

MacHack was written in the macro assembly language MIDAS by
Richard Greenblatt in 1966 for the PDP-6 computer, which had 16K of
memory and could execute 225,000 instructions per second [15, p. 802].
Greenblatt was convinced that Kotok and McCarthy were fundamentally
mistaken in limiting their search to 4 moves at the first ply, so he decided
to search less deeply but more broadly. His program considered six moves
at each ply to a depth of five for normal play, increasing to 15 moves at
the first and second plies, nine moves at the third and fourth, and seven
at the fifth ply for tournament play. The evaluation function summed
material balance, piece ratio change, pawn structure, king safety, and center
control. Greenblatt incorporated about 50 heuristics into the plausible move
generator, such as discouraging non-positional moves and encouraging
attacks on weak spots (weak pawns, pinned pieces, pieces defending other
pieces, etc.), among others [15, p. 804-805]. Greenblatt’s program was the

239

240

Yurii Moroz

first to use a transposition table, a database that stores results of previously
performed searches, which helped to avoid re-evaluating approximately
25% of positions [15, p. 806]. Additionally, with the assistance of MIT
students Larry Kaufman and Alan Baisley, who added over 5,000 moves,
it was the first program to utilize an opening book, a database storing the
best moves at the beginning of the game [15, p. 807]. MacHack became
the first chess program to defeat a human in tournament play and to receive
a chess rating [15, p. 801]. It became an inspiration for computer chess
developers, which led to a rapid rise in chess programs and the idea of
holding championships between chess engines.

As computers got better, so did chess engines. In 1965, Gordon Moore
observed that transistor counts had been doubling every two years, causing
hardware speed to increase exponentially; this is known as Moore’s law and
still holds today [16, p. 114-116]. But chess engines grew stronger not just
because of faster hardware but also thanks to smarter software and better
heuristics.

6. Competition and Brute Force (1970-1980)

In this decade many new engines appeared on the stage, and
computer chess championships were started: the ACM North American
Computer Chess Championship in 1970 and the World Computer Chess
Championship in 1974.

Chess, the Northwestern University program, started being developed
in 1968 by engineering students Larry Atkin, Keith Gorlen, and David
Slate, who joined a year later, in FORTRAN and assembly language for
supercomputers — the CDC 6600 and the CDC Cyber — that executed up to
3 million instructions per second — more than 10 times faster than earlier
machines. It was a long-running project that dominated the computer chess
scene for almost a decade. Until 1973, the program versions from 1 to
3.6 were based on Shannon’s type B selective routine, like most earlier
programs, to cope with hardware limitations, but then, frustrated by the code’s
complexity, the authors decided that big changes had to be implemented
[17, p. 84]. Chess 4.0 was fundamentally rewritten in COMPASS, the CDC
assembly language, switching to Shannon’s type A brute-force search of
all positions, taking advantage of CDC supercomputers’ speed. Central to
its strength were bithoards — 64-bit integers encoding board states for fast

Chapter «Engineering sciences»

move generation — and incrementally updated square-centric attack tables
improving evaluation efficiency; iterative deepening, which increased
search depth over time; a sophisticated #ransposition table to avoid
redundant calculations; and the killer heuristic, prioritizing moves that
previously caused beta-cutoffs [17, p. 85-88]. Proving its dominance, the
Chess program won eight of 10 ACM North American Computer Chess
Championships in the decade and the second World Computer Chess
Championship in 1977. By the end of the decade, the last versions of the
program reached the level of Expert and became the first to achieve a victory
against an International Master — David Levy — in classical time control and
a Grandmaster — Michael Stean — in blitz. Combining advances in hardware
and innovative techniques, the Chess program became an inspiration for the
next programs.

Belle was a chess machine developed by Ken Thompson, co-author
of the UNIX operating system and B programming language, and
experimental physicist and scientist Joe Condon. It was not just a chess
program but special-purpose hardware and associated software. The origins
of the program date back to 1972, when Thompson wrote a software-
only version for the PDP-11. After playing in tournaments, the authors
realized that full-width search produced the best chess play and the largest
computer would usually win, so they decided to build special-purpose
hardware and software [18, p. 45]. The first version of the chess-specific
hardware Belle was built in 1976, when Condon added a hardware move
generator that scanned moves using registers and microcode, supporting a
full-width fixed-depth iterative search, a sophisticated evaluation function,
and a transposition table. A second generation of the machine in 1978 had
several refinements: internal move stacks, a static position evaluator, and
a transposition memory. A third generation of Belle in 1980 had hardware
move generation (64 transmitter/receiver circuits), finite-state machine
evaluation for pins and pawn structure, and a 1MB transposition table with
48-bit hashing. The system ran alpha-beta search microcode on a 64-bit
machine, achieving 100k—200k positions/sec, 8—12 ply depth (up to 30 plies
in endgames), and a 360,000-position opening book. From the late 1970s
to the mid-1980s, Belle won five ACM North American Computer Chess
Championships and the third World Computer Chess Championship in
1980. Belle became the first chess engine to achieve a level of Master, and

241

242

Yurii Moroz

Thompson and Condon were awarded a $5,000 Fredkin Prize. Belle proved
the power of brute force search combined with hardware and influenced the
next generations of programs.

As hardware improved, brute-force search quickly became a far better
option than selective search. Some chess engines were able to explore
a hundred thousand positions per second and were already beating
grandmasters in faster time controls.

7. Microprocessors and Parallelism (1980-1990)

While microprocessors were first designed in 1968, they weren’t widely
used until the 1980s, when they greatly boosted the speed and depth of
chess engine searches. Parallel computing also became a thing; now chess
engines could evaluate many positions at once, making them more powerful.

Cray Blitz was written in FORTRAN and Cray Assembly Language
by Robert Hyatt and Albert Gower in 1980 for the Cray-1 supercomputer.
Hyatt started working on his undergraduate project, called Blitz, in 1968,
but after more than a decade of moderate progress and average results in
tournaments, the authors realized the necessity for a fast computer and
approached Cray Research [19, p. 2]. With the help of Harry Nelson, the
program was adapted to Cray architectures, including the Cray-1, X-MP,
Y-MP, and finally C916, which had 16 processors and 8 gibibytes of
memory. As a parallel search algorithm, Cray Blitz used root splitting,
then principal variation splitting, enhanced principal variation splitting,
and finally dynamic tree splitting, which divided the search tree among
several processors on a shared memory parallel machine to significantly
increase search speed. It also used vector operations and a hybrid bithoard/
mailbox chessboard representation to accelerate attack detection and
game evaluation. Cray Blitz won two ACM North American Computer
Chess Championships in 1983 and 1984 and two World Computer Chess
Championships in a row: in 1983 and 1986. The program played the level
of Master in the 1980s and the level of Senior Master in the early 1990s.
Cray Blitz’s success was due to careful low-level coding, innovative ideas
that saved significant time during the search, and efficient use of powerful
supercomputer hardware.

HiTech was developed in 1985 by the World Correspondence Chess
Champion Professor Hans Berliner and a team of researchers — Carl

Chapter «Engineering sciences»

Ebeling, Murray Campbell, Gordon Goetsch, Andrew James Palay, Andy
Gruss, Larry Slomer, and Chris McConnell — and ran on Sun-3 and later
Sun-4 workstations. For move generation and evaluation purposes, the
authors built 64 special-purpose very-large-scale integrated chips, one
for each square of the board, enabling analysis of 175,000 positions
per second [20, p. 246-247]. In addition to alpha-beta, HiTech also
used the B* probability-based search algorithm, created by Berliner and
McConnell, which selectively focused on promising moves by estimating
uncertainty and stopped early when a clearly superior option was found
[21, p. 97]. HiTech won two ACM North American Computer Chess
Championships in 1985 and 1989 (tied with Deep Thought in the latter)
and became the first program to achieve a Senior Master level. HiTech’s
dominant performance was driven by an architecture that combined large-
scale search to examine all promising nodes within a wide horizon with
pattern recognition that identified complex positional features.

ChipTest was built in 1986 by Carnegie Mellon University doctoral
students Feng-hsiung Hsu, Thomas Anantharaman, and former HiTech
co-developer Murray Campbell. Originally, Hsu planned to work on a
thesis about printer controllers, but when he was asked to help with the
design of HiTech, he realized that a completely different approach might
be possible and decided to change the direction of his study to pursue a
dream of making history by defeating a world chess champion [25, p 32].
Unlike the 64 chips used in HiTech, Hsu built a single-chip VLSI parallel
move generator to significantly speed up the search [22, p. 278-279].
The team implemented singular extensions, a selective search technique
that deepened the search on moves that appeared much better than
alternatives by performing a reduced null-window search to confirm their
singularity before extending the search depth. The first version of the
program, running on a Sun-3, searched 30,000 positions per second, while
the second version, named ChipTest-m, running on a faster Sun-4 and
already using singular extensions, reached 400,000 positions per second.
ChipTest-m won the ACM North American Computer Chess Championship
in 1987 and eventually evolved into Deep Thought.

Deep Thought, successor to ChipTest, was built in 1988 by the original
team — Feng-hsiung Hsu, Thomas Anantharaman, and Murray Campbell —
joined by Andreas Nowatzyk and Mike Browne, with Joe Hoane and Peter

243

244

Yurii Moroz

Jansen contributing later. Deep Thought’s main improvement over ChipTest
was a hardware evaluation function that recognized dynamic positional
factors like pawn structure, passed pawns, and rooks on open files. Using
singular extensions — focusing on promising moves — it was able to reach
remarkable depth and at one point found a checkmate in 19 moves (37 plies)
[23, p. 48]. In May 1988, Deep Thought demonstrated Grandmaster-level
performance at the Fredkin Masters Open, and the team was awarded a
$10,000 Fredkin Intermediate Prize. In November 1988, it became the
first chess machine to beat a grandmaster — Bent Larsen — in a classical
time control tournament game at the Software Toolworks Championship
[23, p. 44]. After joining IBM in early 1989, the team continued to refine
Deep Thought and laid the groundwork for a second version. Later that year,
the then-current Deep Thought — running on six processors and searching
more than 2 million positions per second — lost a two-game match to the
world champion Garry Kasparov [23, p. 50]. The team later developed a
more advanced second version, whose main innovations were medium-scale
multiprocessing, enhanced evaluation hardware, improved search software,
and an extended opening book. From the late 1980s to the mid-1990s, both
versions of Deep Thought won five ACM North American Computer Chess
Championships and the World Computer Chess Championship in 1989. By
the mid-1990s, using up to 24 processors and searching 7 million positions
per second, Deep Thought II was already playing at Grandmaster level and
later developed into Deep Blue.

Chess engines evolved from software programs to specialized
hardware-software systems. They were now capable of playing at a
grandmaster level and ready to challenge a world champion.

8. The End of Rivalry (1990-2000)

Supercomputers reached unprecedented capabilities in the 1990s,
allowing chess engines to search hundreds of millions of positions per
second. Beating the world’s best human players became just a matter of
time.

Deep Blue, the successor to Deep Thought, was built in 1996 by Feng-
hsiung Hsu, Murray Campbell, and Joe Hoane; Joel Benjamin served as
chess consultant and opening book author. While the project’s origins
date to 1985, when Hsu started ChipTest, Deep Blue itself began in 1989,

Chapter «Engineering sciences»

when IBM hired the team to develop Deep Thought II, also known as the
Deep Blue prototype. The first version of Deep Blue ran on a 36-node IBM
RS/6000 SP computer and used 216 chess chips with an overall search
speed of 100 million chess positions per second [24, p. 71]. It played a
match against Garry Kasparov in 1996 and achieved a victory in the first
game, becoming the first machine to beat the world champion in a single
game under classical time control, though it ultimately lost the match 2—4.
The second version of Deep Blue ran on a 30-node IBM RS/6000 SP system
with 120-135 MHz P2SC processors, each node having 1 GB RAM, 4 GB
disk, and 16 redesigned chess chips (480 total); the system ran AIX 4.2 over
a high-speed switch, reaching 200 million positions per second [24, p. 72].
Written in C, the chess program combined a hardware evaluation function
(over 8,000 features) with a hybrid search: software used selective alpha-
beta pruning with transposition tables and extensions, while the chess
chips performed fixed-depth null-window and quiescence searches. Deep
Blue’s opening book contained about 4,000 positions; an extended book
drew from 700,000 grandmaster games to support play beyond the opening,
while endgame tablebases for all five- and selected six-piece positions were
stored on 20-GB RAID arrays. In 1997, Deep Blue won a rematch against
Kasparov with a total score of 3.5-2.5, received the $100,000 Fredkin
Prize, and became the first computer to defeat a reigning world champion in
a match under classical time control [24, p. 70]. After twelve years of hard
work on chip designs and software, driven by the goal of beating the world
champion, they succeeded, made history, and ended a human-machine
rivalry.

Garry Kasparov against Deep Blue, the first match, was held
in Philadelphia, Pennsylvania, from February 10-17, 1996. Although
computers had already defeated strong grandmasters, Kasparov was
confident that no machine could beat either him or Anatoly Karpov — the
two strongest players at that time — any time soon, believing they were
simply on a different level. To his surprise, he lost the very first game — the
search speed of 100 million positions per second had done its job, the upset
sparked worldwide interest in the match, and IBM’s website briefly became
the most visited site on the internet [25, p. 172-173]. Despite this early
setback, during the match Kasparov spotted the weaknesses of Deep Blue,
sometimes played anti-computer chess — choosing moves that exploited the

245

246

Yurii Moroz

machine’s evaluation bugs — and eventually won the match 4-2 [25, p. 185].
After the event, there was no longer any doubt that computers had reached
a level where they could genuinely challenge — and even defeat — the World
Chess Champion.

Garry Kasparov against Deep Blue, the rematch, took place in New
York City from May 3-11, 1997. Unlike the quieter first match, the rematch
attracted significantly greater attention — more than two hundred journalists
attended the press conference, major broadcasters covered the event in full,
and it attracted public interest far beyond the chess community [25, p. 217].
Although Kasparov was aware of Deep Blue’s improvements and the one
game he lost previously, he remained confident in his abilities and started
the rematch by winning the first game. The second game became a turning
point, where the machine played an unexpected move, after which Kasparov
accused the Deep Blue team of human intervention — 20 years later, he
admitted he had been wrong [26, p. 188] — and stated that that game decided
the match because he couldn’t recover. With the score tied before the final
game, Kasparov decided to play a risky line in the opening, not expecting
Deep Blue to have a piece sacrifice in its opening book, but the machine
responded precisely, and in under an hour, the match and chess history were
decided [25, p. 257].

The quest for the holy grail was finally over: man as toolmaker triumphed
over man as performer [25, p. 258].

9. Multicore Processors (2000-2010)

While there were several strong engines in this decade, such as six-time
World Computer Chess Championship winner Deep Junior and three-time
winner Shredder, most of them were commercial, and their algorithmic
details were kept secret. But one of the most influential was an open-source
project, Fruit, that didn’t win major events but became an inspiration for
many other top engine developers.

Fruit was written in C by a French computer chess programmer,
Fabien Letouzey, in 2003 [27]. Fabien wrote clean code that was carefully
debugged and easy to understand, making it highly maintainable. Fruit was
an open-source project until version 2.1 in 2005, and many of its innovative
ideas — such as late move reduction and tapered evaluation — became
widely adopted in other engines, significantly influencing computer chess

Chapter «Engineering sciences»

development. Late move reductions is a search technique that reduces the
depth of moves appearing later in the move list after sorting, under the
assumption they are less likely to cause cutoffs, and selectively re-searches
them at full depth if the reduced search fails high, thereby significantly
reducing the effective branching factor. Tapered evaluation is a technique
that ensures a smooth transition between game phases by weighting opening
and endgame evaluations based on the material remaining on the board,
helping to avoid sudden score shifts (evaluation discontinuities) that can
occur after exchanges. Fruit was the runner-up at the 2005 World Computer
Chess Championship, surpassing the then-dominant engines Junior and
Shredder. It remains one of the most influential chess engines that helped
computer chess make a rapid and significant leap in playing strength.

Personal computers and the internet made it easier for people to
connect and share ideas. By this time, anyone with the right knowledge could
develop their own chess engine, driving innovation and new possibilities in
computer chess.

10. Neural Networks (2010-2020)

As the World Computer Chess Championship became obsolete, the
Top Chess Engine Championship emerged as the most prestigious
tournament in the field. While one of the first attempts to use neural
networks as an evaluation function dates back to 1994 with NeuroChess
by Sebastian Thrun [28, p. 1069], the real groundbreaking progress came
with AlphaZero.

AlphaZero was developed by Google DeepMind in 2017, led by
David Silver, Thomas Hubert, Julian Schrittwieser, and Matthew Lai.
Two years before working on chess, the team developed a Go algorithm
that, with its larger board and more complex permutations, became the first
to defeat a world champion. AlphaZero replaced the handcrafted evaluation
function and alpha-beta pruning with a deep neural network and Monte
Carlo tree search [29, p. 16]. The neural network had an input layer
encoding the chess position, 19 residual blocks, and two heads: a policy
head for a distribution over 4,672 moves and a value head estimating
the position’s evaluation. The Monte Carlo tree search prioritizes high-
probability moves from the policy head and evaluates positions using the
value head, following the steps of selection, expansion, simulation, and

247

248

Yurii Moroz

backpropagation. AlphaZero was trained in 700,000 steps (mini-batches
of size 4,096), using 5,000 first-generation tensor processing units (TPUs)
for self-play games and 64 second-generation TPUs for neural network
training [29, p. 4]. While typical chess programs used handcrafted features,
pruning strategies, and heuristics, AlphaZero relied solely on the game
rules and exceeded top engines after only four hours of self-play training.
Running on a single machine with 4 first-generation TPUs and evaluating
80,000 positions per move (compared to Stockfish’s 70 million), AlphaZero
won its first 100-game match 64-36 (28 wins, 72 draws, 0 losses) [29, p. 27].
While recognizing the achievement, some critics raised concerns about
Stockfish’s setup: outdated version, limited hash size, fixed time per
move, and absence of an opening book. Responding to criticism, the team
configured Stockfish with 44 threads on 44 cores, a 32 GiB transposition
table, and 6-men Syzygy bases, and under a 3-hour plus 15-second increment
time control, the updated AlphaZero won the follow-up 1,000-game match
574.5-425.5 (155 wins, 839 draws, 6 losses) [29, p. 19-20]. This innovative
approach, especially using neural networks for evaluation, has been widely
adopted by top engines.

Leela Chess Zero is an open-source project initiated by Gary Linscott
in 2018 as an adaptation of Gian-Carlo Pascutto’s Leela Zero Go for chess,
inspired by the breakthrough of DeepMind’s AlphaZero and employing a
similar methodology that combines deep neural network with Monte Carlo
Tree Search. Originally using convolutional neural networks, it trained
T networks through self-play and J networks via supervised learning
on T networks’ games and — with the help of thousands of volunteers —
reached grandmaster level within months. In 2022, Leela switched from
convolutional networks, mainly used in image recognition, to transformer
architectures, typical of language models, improving the handling of long-
range dependencies and significantly increasing strength. Its strongest
models encode chess-specific topologies — like square pairs connected
by piece moves — into attention via trainable biasing, helping prioritize
strategically relevant squares [30, p. 1-2]. Each of the 64 square tokens
contains a linear projection of eight one-hot vectors (each 12-dimensional),
encoding piece history, en passant and castling rights, the 50-move rule
and repetition data, and a learnable positional embedding [30, p. 6].
Additional gains came from attention biasing, the Smolgen module for

Chapter «Engineering sciences»

adaptive attention, shallower FFNs and heads, and a flattened input layer
encoding the full board state. Leela Chess Zero has won two Top Chess
Engine Championships and played in 13 superfinals, becoming the main
rival of Stockfish. Leela’s success comes from its open-source nature and
the community whose contributions made all the difference and laid the
groundwork for hybrid evaluation functions.

With rapid technological advances, computer chess continued to be
a proving ground for new ideas. Cloud computing, Big Data, and Deep
Learning enabled the rise of new methods. In this decade, neural networks
changed the game, showcasing their dominance over the handcrafted
evaluation functions that had been the standard since the beginning of
computer chess development.

11. Evaluation Evolution (2020-2025)

Neural networks, designed to simulate the human brain, revolutionized
computer chess by surpassing traditional evaluation methods. Now, engines
play both more human-like and much stronger than ever before.

Stockfish is an open-source chess engine written in C++ by Tord
Romstad, Marco Costalba, and Joona Kiiski in 2008, with Gary
Linscott joining later; it is now developed and maintained by the
Stockfish community [31]. Techniques that made it one of the strongest
in its early years were relaxed singular extensions, logarithmic
late move reductions, complex king safety evaluation, fine-tuned
evaluation tables and constants, speed-optimized code, and aggressive
late move pruning at low depths. After implementing the testing
framework Fishtest in 2013, Stockfish advanced rapidly, topping rating
lists, winning most major tournaments, and remaining dominant since.
Fishtest is a web application written mainly in Python where developers
submit patches with new ideas and improvements, contributors volunteer
processing power to run tests, and statistically significant ones are accepted
for new engine versions. Another major boost came in 2020 with a hybrid
evaluation adding efficiently updatable neural networks (NNUE) —
originally created by Yu Nasu for Shogi and later adopted by
Stockfish — to its traditional alpha-beta search algorithm, enabling efficient
CPU-based evaluation, unlike AlphaZero and Leela Chess Zero,
which require TPUs and GPUs. It had a compact architecture with an

249

250

Yurii Moroz

82,048-bit Half-King-Piece input, two parallel 256-node shared-
weight layers, two fully connected 32-node layers, and a clipped ReLU
output. NNUE in Stockfish has been refined over time, now using eight
subnetworks indexed by piece count — SmallNet for large material
imbalances and BigNet for detailed evaluation — with larger layers and
improved training. NNUE updates its accumulator incrementally after each
move, avoiding full reevaluation; trained with supervised and reinforcement
learning on billions of positions — including data from the open-source
Leela Chess Zero collaboration — it significantly improves accuracy and
efficiency. In 2023, Stockfish removed the handcrafted evaluation function,
which had been a core method since the very beginning of computer
chess, as it was no longer beneficial to engine performance. Stockfish
has won 18 Top Chess Engine Championships, making it one of the most
successful engines in computer chess history. Stockfish’s key to success
is its community: hundreds of developers and thousands of testers and
contributors worldwide who have volunteered nearly 20,000 years of CPU
time to play about 10 billion games.

The decade is not over yet, but it brought a major shift from handcrafted
to neural network evaluation. What the future holds for computer chess
remains to be seen.

12. Elo Progress (1950-2025)

It is not easy to estimate chess engines’ strength across different times.
The earliest engines did not participate in tournaments. Also, some engines,
such as Deep Blue and AlphaZero, were built to play one match only.
Furthermore, various rating lists use distinct methods to evaluate engine
strength.

We used multiple data sources to build a graph of engines’ approximate
strength: Hans Moravec’s “Robot” [32, p. 71] — for Bernstein, MacHack,
Chess, Cray Blitz, Belle, HiTech, ChipTest, Deep Thought, and Deep Blue;
L. Stephen Coles’ “Computer Chess” [33] — for NSS; Alan Kotok’s thesis
[14, p. 16-17] — for Kotok-McCarthy; performance rating in its matches
against Stockfish — for AlphaZero; and the Computer Chess Rating Lists
(CCRL) [34] — for Leela Chess Zero and Stockfish. Computer chess engine
progress is shown in Figure 2.

Chapter «Engineering sciences»

Grandmaster
magus - —@g‘m : nghes e rumn Taig
2500 Deep Wl Q- Deep Thought
Bt e~ _ OChipTest

Master ‘ -
o cr mezO
2 2
= Expert Chess4.9(). -~
& 2000 o> |
o cress44Q)-
]

o
/

Year

Figure 2. Computer chess engines progress

Chess engines’ strength increased consistently through the second half
of the 20th century, but the pace of improvement has gradually declined
since achieving superhuman level.

13. Conclusion

In this study we presented a structured, technical overview of major
chess engines. Both technology in general and chess in particular helped
each other to push the boundaries. While hardware advancements provided
more power and speed, chess engines leveraged this to perform deeper
searches and ultimately improve play. At the same time, the new methods
that were invented while working on chess were later used in many other
fields far beyond chess, game theory, or the technical world. This report
helps build the bridge between chess and technology by presenting a clear
summary that tracks the evolution of computer chess.

The main takeaways from the research:

— Chess was and still is a good tool to test innovative methods.

— Technology and computer chess evolved simultaneously.

— Hardware progress boosted chess engines’ capabilities.

— Software techniques evolved together with developments in computer
science.

251

252

Yurii Moroz

— Many ideas, implemented in chess, became useful outside the game.

Computer chess development can sometimes lead to breakthroughs in
other fields. From Alan Turing and Claude Shannon, who worked across
many domains, to the co-creator of Unix, Ken Thompson. From the
Nobel Prize winner in Economics in 1978, Herbert Simon, to the Nobel
Prize winner in Chemistry in 2024, Demis Hassabis. Many researchers
who worked on chess have contributed significantly to other disciplines.
The hot topic today is neural networks that are designed to simulate the
human brain. They have already become the main method to evaluate
positions on the chessboard, replacing handcrafted evaluation functions.
With many powerful big data tools, one of the ways chess engines might
evolve is by modeling human thinking. One example is Maia — a neural
network chess model that captures human style. Studying computer chess
might be a very fruitful experience for anyone. Not only is it engaging, but
it can also lead to life-changing ideas for humanity. Chess was one of the
best tools for this decades ago — and nothing has changed since.

References:

1. Standage, T. (2002). The Turk: The life and times of the famous eighteenth-
century chess-playing machine. Walker & Co.

2. Mitchell, S. W. (1857). Last of a veteran chess player. Chess Monthly:
An American Chess Serial, 1.

3. Hooper, C. A. (1885). The Adventures of Ajeeb: The Wonderful Chess
Automaton. Chas. H. Woeltje & Company, Printers.

4. Gumpel, C. G. (1889). "Mephisto", the marvellous automaton, exhibited
at the International Theatre, Exposition Universelle, Paris, 1889. T. Pettitt &
Company.

5. Vigneron, H. (1914). Les Automates [Robots]. La Nature.

6. vonNeumann,J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische
Annalen [On the Theory of Games of Strategy], 100(1), 295-320. https://doi.org/
10.1007/b101448847

7. Turing, A. M. (1953). Faster than thought: A symposium on digital comput-
ing machines (B. V. Bowden, Ed.). Pitman.

8. Turing, A. M. (2004). The essential Turing, seminal writings in comput-
ing, logic, philosophy, artificial intelligence, and artificial life plus the secrets of
enigma (B. J. Copeland, Ed.). Oxford University Press.

9. Shannon, C. E. (1950). XXII. Programming a computer for playing chess.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 41(314), 256-275. https://doi.org/10.1080/14786445008521796

Chapter «Engineering sciences»

10. Kister, J., Stein, P., Ulam, S., Walden, W., & Wells, M. (1957). Experiments
in Chess. Journal of the ACM, 4(2), 174-177. https://doi.org/10.1145/320868.
320877

11. Bernstein, A., & Roberts, M. de V. (1958). Computer v. chess-player.
Scientific American, 198(6), 96—106. https://doi.org/10.1038/scientificamerican
0658-96

12. Newell, A., Shaw, J. C., & Simon, H. A. (1958). Chess-Playing programs
and the problem of complexity. IBM Journal of Research and Development, 2(4),
320-335. https://doi.org/10.1147/rd.24.0320

13. Edwards, D. J., & Hart, T. P. (1961). The Alpha-Beta Heuristic. http://hdl.
handle.net/1721.1/6098

14. Kotok, A. (1962). 4 chess playing program for the IBM 7090 computer
[Thesis, Massachusetts Institute of Technology]. http://hdl.handle.net/1721.1/17406

15. Greenblatt, R. D., Eastlake, D. E., & Crocker, S. D. (1967). The Greenblatt
chess program. In The November 14-16, 1967, fall joint computer conference. ACM
Press. https://doi.org/10.1145/1465611.1465715

16. Moore, G. E. (1965). Cramming more components onto integrated circuits.
Electronics, 38(8).

17. Slate, D. J., & Atkin, L. R. (1977). CHESS 4.5 — The Northwestern University
chess program. In Chess skill in man and machine (pp. 82—118). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-06239-5 4

18. Condon, J. H., & Thompson, K. (1982). Belle chess hardware. In Advances
in computer chess (pp. 45-54). Elsevier. https://doi.org/10.1016/b978-0-
08-026898-9.50007-3

19. Hyatt, R. M. (1983). Cray Blitz: A computer chess playing program (Doctoral
dissertation, University of Southern Mississippi).

20. Berliner, H. J. (1985). Hitech wins North American computer-chess
championship. ICGA Journal, 8(4), 246-247. https://doi.org/10.3233/icg-1985-
8412

21. Berliner, H. J., & McConnell, C. (1996). B* probability based search.
Artificial ~ Intelligence, 86(1), 97-156. https://doi.org/10.1016/0004-3702(95)
00092-5

22. Hsu, F.-H. (1987). A two-million moves/sec CMOS single chip chess move
generator. 1987 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, XXX, 278-279.

23.Hsu, F.-H., Anantharaman, T., Campbell, M., & Nowatzyk, A.
(1990). A Grandmaster Chess Machine. Scientific American, 263(4), 44-51.
https://www.jstor.org/stable/24997060

24. Hsu, F.-H. (1999). IBM's Deep Blue chess grandmaster chips. IEEE Micro,
19(2), 70-81. https://doi.org/10.1109/40.755469

25. Hsu, F.-H. (2002). Behind Deep Blue: Building the computer that defeated
the world chess champion. Princeton University Press.

26. Kasparov, G., & Greengard, M. (2017). Deep Thinking: Where Machine
Intelligence Ends and Human Creativity Begins. PublicAffairs.

27. Fruit — pure playing strength. (n.d.). http://www.fruitchess.com/

253

254

Yurii Moroz

28. Thrun, S. (1994). Learning to play the game of chess. Advances in neural
information processing systems, 7.

29. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, 1., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., &
Hassabis, D. (2018). A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362(6419), 1140-1144.
https://doi.org/10.1126/science.aar6404

30. Monroe, D., & Chalmers, P. A. (2024). Mastering chess with a transformer
model. arXiv preprint arXiv:2409.12272.

31. Stockfish. (n.d.). Stockfish. https://stockfishchess.org/

32. Moravec, H. (1998). Robot: Mere Machine to Transcendent Mind. Oxford
University Press.

33. Coles L. H. (1994). Computer Chess: The Drosophila of AI. Al Expert,
vol. 9, no. 4.

34. CCRL — Index. (n.d.). https://www.computerchess.org.uk/ccrl/4040/

