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MATHEMATICAL MODELLING OF ASTROPHYSICAL 

OBJECTS AND PROCESSES 
 

Andronov I. L., Breus V. V., Kudashkina L. S. 

 

“The book of Nature is written 

in the language of Mathematics” 

Galileo Galilei (15.2.1564–8.1.1642) 

 

INTRODUCTION 

Mathematical methods are the base of each branch of science. Similar 

equations may be used for a wide variety of processes. 

At the Department “Mathematics, Physics and Astronomy”, there are some 

scientific directions of research, which may be generally described as 

“Mathematical modeling of processes and systems”. The International 

Astronomical Union
1
 listed numerical directions of impact of astronomy into 

studies and technical applications to the society. Among them there are 

medicine, climate change, computing, time keeping, imaging, communication, 

Wi-Fi. One may add (planar, spherical, multi-dimensional) geometry, 

coordinate keeping, mathematical modeling, high-energy physics, space 

research. 

Currently, there are huge international projects, which are also present in 

Ukraine – “Virtual Observatory”
2
, “AstroInformatics”

3
. These topics are 

related to the international project ILA (“Inter-Longitude Astronomy”)
4
, which 

consists of a series of smaller projects on concrete variable stars of different 
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types, binary systems with possible exo-planets or stellar-mass companions or 

pulsators. 

The corresponding scientific school of researchers of variable stars
5, 6

 was 

founded by Prof. Vladimir Platonovich Tsesevich (11.10.1907-28.10.1983), 

the famous Scientist, Lectures, Popularizer and Organizer of Science in our 

country. 

In this review, we will highlight the aspects of the Astroinformatics related to: 

‒ Statistically optimal data analysis – elaboration of improved algorithms 

and programs with a complete set of formulae; 

‒ Highlights of the monitoring and analysis of binary systems; 

‒ Highlights of the monitoring and analysis of cataclysmic variables; 

‒ Highlights of the monitoring and analysis of pulsating variables; 

 

TIME SERIES ANALYSIS: BEYOND THE OVERSIMPLIFIED 

METHODS 

General equations. There are many methods for the time series analysis 

(generally, the data analysis), which are described in many hundreds (or even 

thousands) of monographs and textbooks (see the classical ones,  

e.g. 
7, 8, 9, 10, 11

). There is no unique solution for many types of variability, 

especially, in a case of few simultaneously acting physical mechanisms. There 

are special methods, which are oriented to separate types of data. Do our usual 

advice is to use a net of different methods to check, if they will produce self-

consistent results. 

Numerous electronic tables provide a wide variety of functions for making 

graphs and stastistical studies of the data. There is also a possibility to show 
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approximations using the function from some list. The user may choose a 

desired function and visually estimate a quality of the approximation. 

However, the choice is based on “estetic” feeling, or, maximally, on the value 

of 𝑟2, the square of the correlation coefficient between the original data and 

the approximated values. The approximations do not take into account possible 

weights (different accuracy) of the data. 

Generally, one may write an approximation as a function of the data and 

the parameters (coefficients) 

𝑥𝑐(𝑡) = ∑ 𝐶𝛼
𝑚
𝛼=1 · 𝑓𝛼(𝑡; 𝐶𝛾),                                       (1) 

where 𝛾 = 𝑚 + 1,… , 𝐿. The coefficients may be formally classified as “linear” 

(1,… ,𝑚) and “non-linear” (𝑚 + 1,… , 𝐿) ones. So 𝐿 = 𝑚 + 𝑝 is the total 

number of coefficients, and 𝑝 − is the number of “non-linear coefficients”. 

We number them in such a way, that two types will be separated into two 

groups. 

The same approximation may be (typically) written with a different 

number of linear and non-linear coefficients, e.g., for a polynomial 

 

𝑥𝐶(𝑡) = 𝐶1 + 𝐶2 · 𝑡 + 𝐶3 · 𝑡
2 +⋯+ 𝐶𝑚 · 𝑡

𝑚−1 = 

= �̃�1 + �̃�2 · (𝑡 − �̃�𝑚)
2 +⋯+ �̃�𝑚−1 · (𝑡 − �̃�𝑚)

𝑚−1.                (2) 

 

The second type has only one (𝑝 = 1) non-linear coefficient �̃�𝑚, which 

corresponds to an extremum or a stationary point, as 
𝜕𝑥𝑐(𝑡;𝐶𝛾)

𝜕𝑡
= 0. 

Although the basic functions in Eq. (1) are defined for 𝛼 = 1,… ,𝑚, this 

definition may be extended to a fill range (𝛼 = 1,… , 𝐿): 

𝑓𝛼(𝑡; 𝐶𝛼) =
𝜕𝑥𝐶(𝑡;𝐶𝛾)

𝜕𝐶𝛼
.                                           (3) 

The coefficients should be determined to minimize the generalized squared 

distance between the observations 𝑥𝑘 and the approximation 𝑥𝐶𝑘 = 𝑥𝑐(𝑡𝑘; 𝐶𝛾). 

The test function currently may be written in a general case as
12
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𝛷𝐿 = ∑ 𝑝𝑘𝑗
𝑛
𝑘𝑗=1 𝑤𝑘𝑗𝜀𝑘𝜀𝑗 .                                        (4) 

Here 𝑤𝑘𝑗 = 𝜎0
2𝜇𝑘𝑗

−1 is the matrix proportional to the inverse of the 

covariation matrix 𝜇𝑘𝑗 of errors of measurements, 𝑝𝑘𝑗 = 𝑝(𝑡𝑘, 𝑡𝑗 , 𝑡0, 𝛥𝑡) is the 

additional weight function, which is typically used in the wavelet analysis and 

in the dynamical spectra. 

The deviations of the “observed” (𝑂) data from the “calculated” (𝐶) ones 

are 𝜀𝑘 = 𝑥𝑘 − 𝑥𝐶𝑘 . There is also a relation 𝜇𝑘𝑗 = 𝜎0
2𝑤𝑘𝑗

−1. Contrary to usual 

simplified matrix equations, in the advanced formulae, we have to write 

indices for clarity. 

The coefficients 𝐶𝛼 should minimize the test function 𝛷𝐿, so 
𝜕𝛷𝐿

𝜕𝐶𝛼
= 0, and 

the linear coefficients may be determined as 

𝐶𝛼 = ∑ 𝐴𝛼𝛽
−1𝑚

𝛽=1 𝐵𝛽 ,                                              (5) 

𝐴𝛼𝛽 = ∑ 𝑝𝑘𝑗
𝑛
𝑘𝑗=1 𝑤𝑘𝑗𝑓𝛼(𝑡𝑘)𝑓𝛽(𝑡𝑗),                                  (6) 

𝐵𝛽 = ∑ 𝑝𝑘𝑗
𝑛
𝑘𝑗=1 𝑤𝑘𝑗𝑥𝑘𝑓𝛽(𝑡𝑗),                                     (7) 

 

Error estimates of the parameters and functions 

The covariation matrix of the errors of the coefficients is 

𝑅𝛼𝛽 = ∑ 𝐴𝛼𝛾
−1𝐿

𝛾𝜀=1 𝐴𝜀𝛽
−1∑ 𝑝𝑘𝑗

2𝑛
𝑘𝑗=1 𝑤𝑘𝑗

2 𝑓𝛾(𝑡𝑘)𝑓𝜀(𝑡𝑗),                   (8) 

Every function 𝐺(𝐶𝛼) has a mathematical expectation of the variance 

𝜎2[𝐺(𝐶𝛼)] = ∑ 𝑅𝛼𝛽 ·
𝐿
𝛼𝛽=1

𝜕𝐺

𝜕𝐶𝛼
·
𝜕𝐺

𝜕𝐶𝛽
.                              (9) 

Particularly, 𝜎2[𝐶𝛼] = 𝑅𝛼𝛼 , so the accuracy of the coefficient is  

𝜎[𝐶𝛼] = √𝑅𝛼𝛼. 

Similarly, the variance of the derivative of the order 𝑠 of the smoothing 

function 

𝑥𝐶
(𝑠)(𝑡) =

𝜕𝑠𝑥𝐶(𝑡)

𝜕𝑡𝑠
= ∑ 𝐶𝛼

𝑚
𝛼=1 · 𝑓𝛼

(𝑠)
(𝑡; 𝐶𝛾),                      (10) 

𝜎2 [𝑥𝐶
(𝑠)
(𝑡)] = ∑ 𝑅𝛼𝛽

𝐿
𝛼𝛽=1 · 𝑓𝛼

(𝑠)
(𝑡; 𝐶𝛾) · 𝑓𝛽

(𝑠)
(𝑡; 𝐶𝛾).                 (11) 

The matrices are symmetrical: 𝜇𝑘𝑗 = 𝜇𝑗𝑘 ,  𝑤𝑘𝑗 = 𝑤𝑗𝑘 , 𝑝𝑘𝑗 = 𝑝𝑗𝑘, 𝐴𝛼𝛽 =

= 𝐴𝛽𝛼 , 𝑅𝛼𝛽 = 𝑅𝛽𝛼 . The upper limit in these sums is 𝑚 for the approximation 
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and its derivatives, and 𝐿 = 𝑚 + 𝑝, if the initial values of “non-linear” 

parameters are determined using the method of differential corrections 

(sometimes, called the “Newton-Raphson method”). 

It should be noted that the common style is to publish the values of the 

accuracy (statistical error estimates) of the coefficients 𝜎[𝐶𝛼] = √𝑅𝛼𝛼 . From 

these values, it is not possible to restore non-diagonal elements 𝑅𝛼𝛽 , i.e for 

𝛼 ≠ 𝛽. In the absence of this information, these values are suggested to be 

zero. In other words, the correct matrix 𝑅𝛼𝛽 is formally replaced by 𝛿𝛼𝛽𝑅𝛼𝛽 . 

This may lead to wrong results as compared with correct ones in Eq. (9, 11). 

 

Differential corrections 

According to the Marquard’s
13,

 modification of the Levenberg’s
14,

 method, 

the differential corrections may be computed as 

𝛥𝐶𝛼 = ∑ (𝐴𝛼𝛽 + 𝜆 · 𝛿𝛼𝛽 · 𝐴𝛼𝛼)
−1𝐿

𝛽=1 · 𝛥𝐵𝛽 ,                         (12) 

𝛥𝐵𝛽 = ∑ 𝑝𝑘𝑗
𝑛
𝑘𝑗=1 𝑤𝑘𝑗𝜀𝑘𝑓𝛽(𝑡𝑗),                                  (13) 

where and 𝛿𝛼𝛽 − is the Kronecker symbol. At each iteration, the values of 

non-linear parameters are replaced in a sense 𝐶𝛼 ≔ 𝐶𝛼 + 𝛥𝐶𝛼 . The 

regularization parameter is 𝜆 ≥ 0. Typically, 𝜆 = 0 for non-degenerate matrix 

of normal equations with components 𝐴𝛼𝛽 , thus (𝐴𝛼𝛽 + 𝜆 · 𝛿𝛼𝛽 · 𝐴𝛼𝛼)
−1 in 

Eq. (12) may be replaced with 𝐴𝛼𝛽
−1  as in Eq. (5)

15
. For the case of nearly 

degenerate matrix, one may choose 𝜆 ≫ 1. 
This may increase a number of iterations needed to reach the desired 

accuracy. In any case, for correct determination of the matrix 𝑅𝛼𝛽 (Eq. (5)), the 

parameter 𝜆 is not used
16

. 
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Simplification 

Only under two assumptions, this matrix may be simplified to 

𝑅𝛼𝛽 = 𝜎0𝐿
2 𝐴𝛼𝛽

−1 ,                                                (14) 

𝜎0𝐿
2 =

𝛷𝐿

𝑛−𝐿
.                                                    (15) 

The first assumption is 𝑝𝑘𝑗 = const > 0 for all data (“global” 

approximation) or for a subset of data (“local” approximation, “rectangular 

filter”). The second assumption is that the mathematical expectation  

𝑤𝑘𝑗 = 𝜎0
2𝜇𝑘𝑗

−1. As the matrix 𝜇𝑘𝑗 is typically unknown, especially the non-

diagonal elements, which correspond to non-zero correlations between the 

deviations of the observations, there are simplifications. The reasonable 

simplification is that these matrices are diagonal, i.e. 

𝜇𝑘𝑗 = 𝛿𝑘𝑗 · 𝜇𝑘𝑘 = 𝛿𝑘𝑗 · 𝜎𝑘
2,                                  (16) 

where 𝜎𝑘 = 𝜎[𝑥𝑘] − is the accuracy of the measurement 𝑥𝑘 . Then 

𝑤𝑘𝑗 = 𝛿𝑘𝑗 · 𝑤𝑘𝑘 = 𝛿𝑘𝑗 ·
𝜎0
2

𝜎𝑘
2                                  (17) 

Then the sum becomes over only one index: 

𝐺 =
𝛷

𝜎0
2 = ∑ (

𝑥𝑘−𝑥𝐶𝑘

𝜎𝑘
)
2

𝑛
𝑘=1 = ∑ 𝑤𝑘𝑘 · 𝜀𝑘

2𝑛
𝑘=1 .                    (18) 

Next often assumption is that the distribution of errors of measurements is 

the 𝑛 − dimensional normal distribution, and 𝜀𝑘/𝜎𝑘 are random normal values 

with a zero mathematical expectation and unit variance. In this case, the 

random value 𝐺 is expected to obey the 𝜒𝑛−𝐿
2  distribution

17
. 

 

Oversimplification 

Assuming that the weights 𝑤𝑘𝑘 of the observations are equal, one may set 

them to unity, so the matrix becomes a unit matrix: 𝑤𝑘𝑗 = 𝛿𝑘𝑗, and thus may 

be omitted in the equations above. 

This “unweighted” oversimplified model is realized in the electronic tables 

like Microsoft Excel, Libre/Openoffice Calc, Kingsoft Spreadsheets, GNU 

Gnumeric et al. There are some polynomial, exponential, power 

approximations. 
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Unfortunately, these programs do not yet allow estimation of the errors of 

the coefficients 𝐶𝛼 in the smoothing function 𝑥𝐶 and its derivatives. This may 

be done using a program code (macros, script) in some computer language, 

including the VBA present in Excel. 

It should be noted that it is convenient to use matrix designations in 

theoretical work. However, for programming, it is more suitable to compute a 

trial vector of values of basic functions for a current parameter. 

“Statistically optimal” number of parameters 𝒎 

The assumption of the 𝑛 − dimensional distribution of errors of 

measurements allows to determine False Alarm Probability (𝐹𝐴𝑃) that the 

variation of the approximation may not be resulted by random errors. The less 

(𝐹𝐴𝑃) is, the more statistically significant is. So the “statistically optimal” 

number of parameters 𝑚 in a case of choosing the model with different number 

of (unknown) parameters 𝑚. 

The “quality of approximation” for 𝑚 and 𝑚 − 𝑞 parameters may be 

compared using the test function from Eq. (4): 

F = 
𝑛−𝑚

𝑞
· (

𝛷𝑚−𝑞

𝛷𝑚
− 1)                                         (19) 

For a common approach of a normal distribution of errors of 

measurements, the value of 𝐹 has the Fisher
18

 probability distribution function 

with 𝑞 and 𝑛 −𝑚 degrees of freedom. One may choose some limiting False 

Alarm Probability (𝐹𝐴𝑃), and then the number of parameters 𝑚 will 

correspond to the maximal value, when still 𝐹𝐴𝑃 < 𝐹𝐴𝑃critical. 
The same FAP estimate may be obtained using 

𝐵 =  (1 −
𝛷𝑚

𝛷𝑚−𝑞
) =  

𝑞·𝐹

(𝑛−𝑚)+𝑞·𝐹
.                                 (20) 

Similarly, 

𝐹 =
(𝑛−𝑚)·𝐵

𝑞·(1−𝐵)
 .                                               (21) 

For a pure noise, the value 𝐵 obeys the 𝐵 (Beta) probability distribution 

function. 

Although in these equations, there are no limitations to the value of 𝑞, in 

practice, 𝑞 = 2 for trigonometric polynomials. Numerous publications on a 

topic may be found for “ANOVA” (=ANalysis Of VAriances). 
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Next criterion may be used is the minimization of the accuracy estimate of 

the approximation 𝑥𝐶(𝑡0) (or its derivative of any order) at some fixed point 𝑡0 

using Eq. (11). This may be reasonable, e.g., if to make a forecast at some 

point. 

For the approximation of all data, one may use the estimate of the accuracy 

𝜎 [𝑥𝐶𝐿
(𝑠)
] of the approximation or its derivative of order 𝑠 using the r.m.s. value: 

𝜎2 [𝑥𝐶𝐿
(𝑠)
] =

1

𝑛
∑ 𝜎2 [𝑥𝐶

(𝑠)(𝑡𝑘)]
𝑛
𝑘=1 .                             (22) 

In the simplified model, even with a generally non-diagonal matrix 𝑤𝑘𝑗 , 

𝜎2 [𝑥𝐶𝐿
(𝑠)
] =

𝐿

𝑛
𝜎0𝐿
2                                            (23) 

Often, for small 𝐿, the value of 𝜎0𝐿
2  is decreasing with decreasing systematical 

deviations of the data from the approximation. Then, for good approximations, 

𝜎0𝐿
2  shows a “standstill” (with fluctuations due to sample effects), so 𝜎2 [𝑥𝐶𝐿

(𝑠)
] has 

a minimum at some 𝐿, which corresponds to the “statistically optimal 

approximation”, according to this criterion. Often, the “statistically optimal” value 

of 𝐿 is less than that obtained according to the FAP. 

Other modification may be for the r.m.s. accuracy at some interval from 

𝑡start to 𝑡end, 

𝜎2 [𝑥𝐶𝐿𝐼
(𝑠)
] =

1

𝑡end−𝑡start
∫ 𝜎2 [𝑥𝐶

(𝑠)(𝑡)]
𝑡end
𝑡start

 𝑑𝑡.                    (24) 

As an example, this may be recommended for approximations of data with 

large gaps or large inhomogeneity of distribution of times. For periodic 

functions, it may be recommended to determine r.m.s. value over a complete 

period
15

. 

Sometimes the criterion based on discrete or continuous averaging of the error 

estimates leads to very small 𝐿. Typically, if the the signal is very noisy. 

Formally, the best accuracy may correspond to 𝐿 = 1, e.g. the weighted mean 

value. No variations are present at the approximation in this case. If looking for 

variability, we propose to use the “amplitude-based” SNR (S/N= signal-to-noise 

ratio). It may be defined as the ratio of the weighted r.m.s. deviation of the data 

from the mean value to the r.m.s. accuracy of the approximation 𝜎[𝑥𝐶𝐿]. 
The weighted r.m.s. deviation of the data from the approximation 𝜎[𝑥𝐶𝑊] is 

𝜎2[𝑥𝐶𝑊] =
∑ 𝑤𝑘𝑘·𝜀𝑘

2𝑛
𝑘=1

∑ 𝑤𝑘𝑘
𝑛
𝑘=1

,                                               (25) 

and may be generalized similarly to Eq. (4). 
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Weight function in wavelet analysis-like methods 

The weight (or “window”) function 𝑝𝑘𝑗 = 𝑝(𝑡𝑘, 𝑡𝑗 , 𝑡0, 𝛥𝑡) is written in a 

general form. The dependence on both times 𝑡𝑘 , 𝑡𝑗 is typically neglected, so the 

matrix is diagonal: 𝑝𝑘𝑗 = 𝛿𝑘𝑗𝑝𝑘𝑘 . Often, it is suitable to decrease the number 

of parameters to a single function 𝑝𝑘𝑘 = 𝑝(𝑧𝑘) of a dimensionless parameter 

𝑧𝑘 =
𝑡𝑘−𝑡0

𝛥𝑡
.                                                  (26) 

In the “wavelet terminology”, 𝑡0 may be called as a “shift”, and 𝛥𝑡 − 

“scale”
19

. 

In other words, 𝑡0 corresponds to a “trial” time, which “scans” the interval 

with a characteristic “half-width” 𝛥𝑡. 
In practice, the most common shape of the function is a “constant” 

(𝑝𝑘𝑗 = 1) one corresponding to “global” approximations. 

Next popular one is the “rectangular” window 𝑝(𝑧) = 1 only  

for −1 ≤ 𝑧 ≤ +1, i.e. for the data inside the interval [𝑡0 − 𝛥𝑡, 𝑡0 + 𝛥𝑡], 
neglecting the data outside (𝑝(𝑧) = 0). This is used in the “running mean” 

(also called “moving average”) smoothing of data, as well as for numerous 

digital filters applied to regularly spaced data, for which 𝑡𝑘 − 𝑡𝑗 = (𝑘 − 𝑗) · 𝛿. 

The classical monograph on “Digital Filters” by Hamming
20

, was followed by 

dozens of other books on linear
21

 and non-linear
22

 filtering. 

The statistically accurate set of expressions for a general case of irregularly 

spaced data (and any basic and weight functions) was presented by 

Andronov
23

. 

The local approximation 𝑥𝐶(𝑡, 𝑡0, 𝛥𝑡) is computed for different 𝑡0, the 

parameters 𝐶𝛼 are computed using a complete form of the method of the Least 

Squares (LSQ), but only one value is used at 𝑡 = 𝑡0: 

�̃�𝐶(𝑡0, 𝛥𝑡) = 𝑥𝐶(𝑡0, 𝑡0, 𝛥𝑡).                                    (27) 

                                                           
19

 Daubechies I. (1992) Ten Lectures on Wavelets. Society for Industrial and Applied 

Mathematics, 350 p. DOI: https://doi.org/10.1137/1.9781611970104 
20
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21

 Proakis J.G., Manolakis D.G. (2006) Digital Signal Processing. Principles, 

Algorithms and Applications. 4th ed. Prentice Hall, 1102 pp. + Solution Manual (+ 427 pp.) 
22

 Pearson R.K., Gabbouj M. (2015). Nonlinear Digital Filtering with Python:  

An Introduction. Boca Raton: CRC Press, 299 pp. 
23

 Andronov I. L. (1997) Method of running parabolae: Spectral and statistical 

properties of the smoothing function. Astronomy & Astrophysics Supplement series, 

Vol. 125, pp. 207–217. DOI: https://doi.org/10.1051/aas:1997217 
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Generally, these functions cross at 𝑡 = 𝑡0, so the derivatives of are not 

equal: 

𝜕�̃�𝐶(𝑡0,𝛥𝑡)

𝜕𝑡0
≠

𝜕𝑥𝐶(𝑡,𝑡0,𝛥𝑡)

𝜕𝑡
]
𝑡=𝑡0

.                                   (28) 

In the “running mean”, the function 𝑝(𝑧) is rectangular. So, every data point, 
which comes inside (or outside) the interval, will change the approximation 

abruptly, and �̃�𝐶(𝑡0, 𝛥𝑡) is discontinuous. This is neglected in the classical 

“running mean”, as the grid of �̃�𝐶(𝑡0, 𝛥𝑡) exactly coincides with the times 𝑡𝑘 . 
Thus it was proposed to use a function with zero value and its derivative at 

the ends of the interval: 𝑝(±1) = 0, 𝑝′(±1) = 0. There may be an infinite 
number of non-negative functions with additional properties. One of the 

simplest ones is 𝑝(𝑧) = (1 − 𝑧2)2 (being zero for |𝑧| > 1). 
Combined to basic functions 1, 𝑧, 𝑧2, this makes a parabolic local 

approximation 𝑥𝐶(𝑡0, 𝑡0, 𝛥𝑡), and a smooth function �̃�𝐶(𝑡0, 𝛥𝑡). Thus the 
method is called the “running parabola”. It allows fitting of the third order 

polynomial exactly at a grid of regular points, when 𝑡𝑘 are located 

symmetrically in respect to 𝑡0 within the interval of 𝑝(𝑧) > 0. 
The only free parameter defining the quality of the approximation is 𝛥𝑡. 

For small 𝛥𝑡, the approximation has large-amplitude apparent waves, which 
are not statistically significant due to large error estimates of the 

approximation. This is similar to very large number of parameters 𝐿. For large 

𝛥𝑡, the approximation asymptotically tends to a “global” one with constant 

𝑝(𝑧) = 1 and shows minimal variability. As in the electronic tables for the 

degree of the polynomial, one may choose 𝛥𝑡 “esthetically”, by visual 
comparison of the data with the approximation. 

Criteria for Statistically Optimal Determination of 𝜟𝒕 
Similarly to determination of statistically optimal number of parameters 

discussed earlier, there may be few basic functions describing the quality of 
the fit, which may be rewritten as: 

‒ 𝜎0(𝛥𝑡) − the unbiased weighted r.m.s. estimate of the deviations of the 

data 𝑥𝑘 from the approximation 𝑥𝐶(𝑡𝑘, 𝑡𝑘 , 𝛥𝑡) at this time; 

‒ 𝜎𝑥𝐶(𝛥𝑡) − the r.m.s. accuracy estimate of the approximation at  

times 𝑡𝑘; 
‒ SNR=S/N – the amplitude signal-to-noise ratio. 
The detailed expressions are presented in

23
. One has to compute a 

“scalegram” for a set of values. We recommend 𝛥𝑡 = 𝛥𝑡min · 10
𝑖

20, 
𝑖 = 0,… , 𝑖max. This may be done in the computer program OO

24
, or in the 

                                                           
24

 Andronov I. L. (2001) “Observation Obscurer” – Time Series Viewer, Editor and 

Processor. Odessa Astronomical Publications, vol. 14, pp. 255–260. ADS: 

2001OAP....14..255A 
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more recent software MAVKA
25

 with limits of 𝛥𝑡 by (data related automatic) 
default, or setting by a user. 

There is no analogue of the Fisher’s criterion, as there is no integer parameter 
determining the quality of the observations. Thus one may recommend to use 𝛥𝑡 
corresponding to maximum of the SNR (preferred), or to minimum of 𝜎𝑥𝐶(𝛥𝑡) 
(which typically corresponds to larger value of 𝛥𝑡, than that from the SNR). The 

dependence 𝜎0(𝛥𝑡) is typically negligible for 𝛥𝑡 ≪ 𝑃 (where 𝑃 −is the period of 
a test signal), and then has an increase to a peak, and then a slight decrease to 
another standstill at 𝛥𝑡 ≫ 𝑃. By fitting the theoretical dependence to the sample 
function, one may determine the characteristic timescale (effective period), and an 
effective semi-amplitude of the variations. As a characteristic of stability of the 
period, the “characteristic width” of the scalegram may be introduced. This was 
done for 173 semi-regular pulsating variable stars

26
. 

For the fractal-type variability, the dependence obeys the power law
27

: 
𝜎0(𝛥𝑡) ∝  (𝛥𝑡)

𝛾. For the determination of the characteristic time scale (cycle 
length) and semi-amplitude of quasi-periodic oscillations (QPO), Andronov

16
 

proposed a “𝛬 − scalegram” analysis based on the derivative  

𝛬(𝛥𝑡) = 𝑑𝜎0
2(𝛥𝑡)/𝑑𝛥𝑡. 

For a single value at some point, the criteria may be replaced by least error 
estimate of the approximation. 

“Running Sine” 
This running approximation is based on the function 

 𝑥𝐶(𝑡, 𝑡0, 𝛥𝑡) = 𝑎 − 𝑅 cos (2𝜋(𝑡 − 𝑇0)/𝑃)                   (29) 

with 3 parameters, which are functions of either 𝑡0, or 𝛥𝑡: 𝑎 − the average 

value of the approximation over the period 𝑃, 𝑅 − the semi-amplitude (in some 

literature, also called “amplitude”) and 𝑇0 − moment of minimum of the 

approximation (chosen to be nearest to 𝑡0). Detailed expressions and numerical 
examples are presented in the review

28
. 
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In this method, the weight function 𝑝(𝑧) = 1 for |𝑧| ≤ 1. It should be 

recommended to choose 𝛥𝑡 = 𝑖𝑃/2, where 𝑖 = 1,2, or (with very large gaps in 

the observations) 4,8, 16… This will cease the influence of harmonics of periodic 

variability. The smaller 𝑖 is, the larger are error estimates of these parameters. 

The method is effective for analysis of signals with slow modulation of 

each of these parameters. Moreover, if the period is variable or different from 

the initial value 𝑃, one may analyze, using the dependence of phase 

𝜙 = (𝑇0 − 𝑇00)/𝑃 − int((𝑇0 − 𝑇00)/𝑃 + 0.5)                     (30) 

on trial time 𝑡0 . Here 𝑇00 − is some initial value of the initial epoch. 

This method may be improved for a running trigonometric polynomial: 

 𝑥𝐶(𝑡, 𝑡0, 𝛥𝑡) = 𝑎 − ∑ 𝑅𝑗  · cos (2𝜋𝑗 · (𝑡 − 𝑇0𝑗)/𝑃)
𝑠
𝑗=1               (31) 

In some cases of symmetrical signals, one may decrease a number of 

unknowns by fixing 𝑠 parameters 𝑇0𝑗 to one unknown parameter 𝑇00. It may be 

computed, for each trial 𝑡0, using differential corrections, as described above. 

Morlet –type wavelet 

The “true” Morlet wavelet was proposed for infinite continuous signals. 

For irregularly spaced discrete signals, the integrals were replaced by 

corresponding sums
29

. This is a common method for evenly sampled data, and 

is included in some software. 

The problems arise for unevenly sampled data, for which the noise at the 

wavelet map is large even for a pure cosine signal. This noise may be reduced 

using the method of the least squares
30

. This running approximation is based 

on the function (28) in a form 

𝑥𝐶(𝑡, 𝑡0, 𝛥𝑡) = 𝐶1 + 𝐶2 cos(𝑧) + 𝐶3 sin(𝑧)                 (32) 

and a Gaussian weight function 𝑝(𝑧) = exp(−𝑐 · 𝑧2). Here 𝑧 = 𝜔 · (𝑡 − 𝑡0), 

𝜔 =
2𝜋

𝑃
. A free parameter 𝑐 is typically set theoretically to 

1

8𝜋2
, or practically to 

a close value 
1

80
= 0.0125. Andronov

31, 32
 introduced a complementary test 
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function S for the wavelet map, the peak of which is not shifted in a period, 

contrary to 3 functions (R, WWT, WWZ) used by
30

, a wavelet approximation 

and wavelet periodograms. The use of the least squares instead of 

oversimplified sums allowed decreasing of the noise by a factor of few times 

to (even) few dozen times. 

Depending on stability of the signal variations and the noise of 

measurements, the value of 𝑐 may be changed
33, 34

. Asymptotically, for 𝑐 → 0, 
the approximation becomes a “global” one, thus no modulations of the 

parameters may be seen. Alternately, for 𝑐 → ∞, the approximation becomes 

the same, as of the “running parabola”. Thus, the wavelet analysis is 

“intermediate” between the cases of “global” and “narrow local” 

approximations. 

Taking into account numerous seasonal gaps in ground-based astronomical 

observations, the advantages of using the Gauss function as the weight 

function vanish. It may be recommended to use a wavelet with a compact 

weight function, like that used in “running parabola” 𝑝(𝑧) = (1 − 𝑧2)2 (being 

zero for |𝑧| > 1)35, or even that closer to a rectangular shape:  

𝑝(𝑧) = (1 − 𝑧4)2 (or even larger power). 

Periodogram analysis 

The methods are based on computation of many phase curves for a set of 

trial periods 𝑃 (or frequencies 𝑓 = 1/𝑃) and determination of the one 

corresponding to the “best” curve. For each trial 𝑓, the phases are computed as 

𝜙 = (𝑡 − 𝑇0)/𝑃 − int((𝑡 − 𝑇0)/𝑃).                       (33) 

Contrary to (29), in this definition, 0 ≤ 𝜙 < 1, and the initial epoch 𝑇0 

may be chosen arbitrarily (e.g. the beginning of the measurements 𝑡1). 
Obviously, the data are repeated with a period 1, in this scale, so, formally, e.g. 

𝜙 = −2.3, 123.7 correspond to the same phase 𝜙 = +0.7 “in the main 

interval” from 0 to 1. 

                                                                                                                                                                                  
32
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Then the methods may be split into two groups” the “point-point”  

(or “non-parametrical”) ones (see a comparative review of most popular 

methods)
36, and “point-curve” (“parametrical”) ones

15, 16, 12
. The first method 

was implemented in VSCalc
37, 38

. 

Some methods are included in the software MCV
39, 40

, particularly, the 

unique algorithm of the periodogram analysis, where multi-harmonic 

variations superimposed onto a trend (polynomial of order 𝑠0) are taken into 

account: 

 𝑥𝐶(𝑡) = 𝐶1 + ∑ 𝐶𝛼+1 · �̃�
𝛼𝑠0

𝛼=1                                 (34) 

where 𝑧 = 𝜔 · �̃�, �̃� = 𝑡 − 𝑡mean. 
We recommend to subtract a sample mean time 𝑡mean to decrease the 

degeneracy characteristic of the matrix of normal equations for further 

differential corrections, when 𝜔 is corrected using differential corrections and 

thus becomes a “non-linear” parameter 𝐶1+𝑠0+𝑠. 

The test function used for this type of the periodogram analysis is similar 

to that in Eq. (20): 

𝑆(𝑓)  = 1 −
𝛷1+𝑠0+2𝑠

𝛷1+𝑠0
                                         (35) 

For a pure Gaussian noise, it has a Beta distribution with the numbers of 

degrees of freedom 2𝑠 and (𝑛 − 1 − 𝑠0 + 2𝑠). The statistically optimal value 

of frequency 𝑓 corresponds to the highest maximum of 𝑆(𝑓). 
It is important to note, that the coefficients describing the trend, are also 

functions of frequency. This is significantly different from the “detrending”, 

when the trend is removed from the data before the periodogram analysis. This 

is especially important, if the duration of measurements is comparable to the 

period of the signal, e.g. the superhumps in the SU UMa-type stars. 
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The fastest periodogram analysis is based on the cosine approximation 

without any trend, so 𝑠0 = 0,  𝑠 = 1. However, for signals with highly a-

sinusoidal shape, one has to increase 𝑠. The algorithm and program making it 

(with correction of the frequency), was described in
15

. For the fixed 𝑠, the 

correction may be done in the MCV. 

Also it is possible to apply a model of multi-harmonic variations with 1, 2 or 

3 periods, also generally superimposed onto a polynomial trend. The accuracy of 

the coefficients and the approximation are available in the output files. 

In this software, there is also a possibility are many methods oriented on 

data analysis of variable stars. However, it may be used also at minimum 

efficiency – as the default viewer of (multi-column) data files with automatic 

scaling. 

Special shapes (patterns, templates, profiles) 

Even for periodic signals, the shape may be very a-sinusodal, with intervals 

of significant changes. This is a typical situation, e.g., for the Algol-type stars, 

which show distinct eclipses in an addition to low-amplitude smooth variations 

outside eclipses. The interval of data then should be split into few parts. 

Often, the interval is split, if using polynomial splines and their 

improvements
41

. This method allowed determining best periods and 

approximations of the light curve, as well as to check for possible period changes. 

The concept of polynomial splines with alternating order was proposed by 

Andronov
16

, with sequences of 2-0-2-0 for eclipsing binary stars (with two 

eclipses) and 2-3 for pulsating RR Lyr-type stars (with sharp rise and slow 

fall). This was applied for automatic classification of 863 newly discovered 

variable stars from the Hipparcos-Tycho space observations
42

. 

The improved accuracy of observations for new variable stars needed 

elaboration of models with better quality of approximation. This leads to 

increase of the number of parameters 𝑚, which, obviously, should be smaller 

than that for the trigonometric polynomial. Andronov
43

 proposed the “New 

Algol Variable” (NAV) algorithm, which combined the trigonometric 

polynomial of second order (which fits the possible effects of ellipticity, 

reflection and spots) and “shapes” of eclipses. For a given initial epoch and a 

period, there are 𝑚 = 7 “linear” parameters and 3 “non-linear” parameters, but 
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the initial epoch and a period may be added. A total number of parameters 

𝐿 = 12 corresponds to a trigonometric polynomial of degree 𝑠 = 5, which is 

rather good for the smooth curves of EW and EB=type variables. For EA-type 

(Algols), the number of parameters for a trigonometric polynomial fit may be 

almost 50, making much worse accuracy of the approximation. 

The NAV algorithm is effective for all three types of eclipsing variables
44

. 

In a case of multi-color observations, and additional statistical dependencies, 

phenomenological modeling allows estimating of physical parameters
45

. In the 

case of observations in one filter only, the approximation in a physical model 

may be of almost the same quality not for a single set of parameters, but for 

some region in the parameter space
46

. 

Appoximations in separate intervals near specific points 

In some signals, there are parts of constant values, which are interrupted by 

intervals of activity. These may be transitions between some levels, outbursts 

or eclipses. In these cases, there is no need for all-time monitoring, and the 

observations are planned either after the “outburst alert” by someone observing 

many objects rarely (one of many objects will be at an outburst with a high 

probability), or before and after a predicted time of event (minimum or 

maximum). Even for “almost periodic” signals, there may be observed 

additional mechanisms of variability, e.g. “O-C” variability in eclipsing 

variables – due to a presence of a third body, apsidal motion, mass and angular 

momentum transfer. There are special observational programs to “catch the 

minimum”, and the corresponding tables are published in papers and on-line 

catalogues. A large compilation of such times of minima (ToM) was recently 

published, e.g. by D. Tvardovskyi
47

, and analyzed, with a special interest to 

stellar-mass third bodies at elliptic orbits
48

. 
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A set of functions for determination of the times of minima with the best 

accuracy was reviewed
49

. The accuracy may be significantly different for the 

same data and same number of parameters. Special shapes are important, but 

they are applied separately to the short data, thus decreasing the number of 

parameters. 

The classical approach is to use polynomials with a degree, which provides 

the best accuracy of ToM. As an example, there is a compilation of 6509 ToM 

for 147 semi-regular stars
50

. Another method was a spline with alternating 

degrees 1–2–1, i.e. the method of “asymptotic parabola”
51, 52

. For more 

extended intervals up to “from previous to next extremum”, the approximation 

may be changed to 3-interval cubic spline
25

. For complete eclipses, the 

approximating functions were compared
53

. For shorter intervals, covering the 

bottom of eclipse, and only a part of the ascending/descending branches, the 

“wall-supported” functions were proposed
54

. 

For determination of the moment 𝑡𝐿 of crossing of some limiting value 𝑥𝐿, 
one may either solve the equation 𝑥𝐶(𝑡𝐿) = 𝑥𝐿, or to make an inverse 

approximation 𝑡𝐶(𝑥) and then compute 𝑡𝐶(𝑥𝐿). 
The simplest approximation – the line – was used for determination of 

moments in a case of very abrupt changes of brightness in the object V808 

Aur
55

. 
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MULTI-COMPONENT VARIABILITY OF PULSATING STARS 

A review on semi-regular pulsating variable stars was published recently
56

. 

For other group of pulsating variable stars with multi-component 

variability – RV Tau-type stars – the classification based on complexity of the 

periodograms is discussed. Periodograms are previously classified by their 

shape into three groups according to the presence or absence of certain 

structures: two peaks in a 2:1 ratio, the presence of satellites of these peaks 

indicating the result of beats
57

. 

For the large-amplitude pulsating variables, in an addition to 

approximation using trigonometric polynomial of statistically optimal order 𝑠, 
an atlas of the phase plane diagrams “𝑑𝑥𝐶(𝜙)/𝑑𝜙 vs 𝑥𝐶(𝜙)” was compiled and 

analyzed
58, 59

. 

The relation between optical variability and maser emission was studied in 

the articles
60, 61, 62

. 

 

MAGNETIC CATACLYSMIC VARIABLES 

Cataclysmic variables are close binary systems usually consisting of a 

white dwarf and a red dwarf filling the Roche lobe. Depending in the degree of 

influence of the magnetic field of the white dwarf onto accretion, the rotation 

may be synchronous (AM Her-type), “idling” (BY Cam-type) or “fast” (DQ 

Her-type). 

We regularly obtain photometric data within the collaboration with 

Observatory and Planetarium of M. R. Stefanik in Hlohovec and Vihorlat 
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Astronomical Observatory (Slovakia), Fort Skala Astronomical Observatory of 

the Jagiellonian University (Poland) and other institutions worldwide, 

including time series from international databases. 

The rotational evolution of white dwarf is analyzed using the O-C 

diagrams. For determination of the moments of minima of orbital variability 

and (simultaneously) maxima of the spin variability, the two-period model is 

used, which implemented in the software MCV. 

Complicated variations of different types were found in V405 Aur
63

 in FO 

Aqr
64

. Fast spin-down was detected in V2306 Cyg
65

, MU Cam
66

 and EX Hya
67

. 

In MU Cam, we have investigated the periodic modulation of the spin 

phases with the orbital phase
68

. As a possible source of the unexpected scatter 

on this figure we have investigated the dependency of spin maxima timings on 

orbital phase described by Kim et al.
69

. 

The preliminary value of the period
70

 of the intermediate polar V1323 Aql 

was improved
66

. 

The idling of the magnetic white dwarf in the asynchronous polar BY Cam 

was studied during the international observational campaign “Noah-2”
71

.
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CONCLUSIONS 

In this review, we present some advanced algorithms and programs used in 

our scientific school with short description of types of astrophysical systems, 

which we study. These are variable stars of different types, with a special 

attention to complicated systems, which exhibit various mechanisms of 

variability: pulsating variable stars, eclipsing, cataclysmic and symbiotic 

binary systems. 

As an example of relations to engineering, one may refer to vibrations, 

stability of mechanisms
72, 73, 74

. Many mathematical equations are common in 

Science, Technics and Humanities. 

The majority of observational results have been obtained in a close 

collaboration with astronomers in the Universities and astronomical 

observatories in Odessa, as well as in Korea, Slovakia, Poland, USA, Greece 

and other countries. 

However, we discuss mainly mathematical methods, which may be applied 

to analysis of signal of any nature – in computer science, engineering, 

economics, social studies, decision making etc. A variety of types of signals 

need a diversity of adequate complementary specific methods, in an addition to 

common algorithms. 
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