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INTRODUCTION 
The volumes of the sea freight traffic in spite of crisis phenomena in the 

world economics continue their growth. First of all, it concerns cools for power 
engineering and big shipping containers. Between the main regions of 
economics development, the considerable cargo traffic is established. In such 
conditions when the full charging of ships of any freight capacity can be 
guaranteed, economics requirements force to put in exploitation the more and 
more big ships. Now gigantic ships are capable of carrying 200 000 t of bulk 
cargo and 16 000 standard containers (TEU) become a dominant type of ships 
in the structure of the world merchant fleet. 

In cargo handling of such ships, the berth reloaders with traditional 
construction scheme are used. The reloading comprises a high portal with fixed 
to it cantilever horizontal beam along which a trolley with cargo (a grab or a 
container) suspended to it with help of wire ropes travels. Geometrical 
parameters of the reloader are set in dependence of ship dimensions. 

To minimize expenses connected with demurrage of ship user loading 
operation, the manufacturers, for instance, grab encoder the designers are 
trying to increase till 2000 t/h by increasing nominal velocities of the trolley of 
a modern reloader may be equal to 300 m/s with acceleration equal to 1,4 m/s

2
. 

With such parameters, the time of working cycle can be shortened to 45s. 
The work of such reloader operators is very stressed. This includes making 

many mistakes such as not optimal combination of working movements, 
ineffective dampening of cargo oscillations etc. The quantity of such mistakes 
are increasing due to fatigue of crane driver and lead to decline of his average 
productivity almost by 20 %. The driver working on the limit of his 
possibilities become, as it is said, “physiological barrier” on the way to 
increasing the crane productivity. One of the means to surmount that barrier is 
automation of reloading machines which permits to essentially improve and 
“humanize” conditions of operator works and optimize working regime of 
machine and provide its work with constant high productivity independently 
from qualification of a driver, state of his health and other conditions.

1
 

                                                           
1
 Chernousjko F. L. Upravlenie. Moskva : Nauka, 1980. 384 p. 
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In present time practically all new grab and many container reloaders are 

equipped with “electronic” systems of the automatic control. One of the tasks 

of such systems is dampening cargo oscillations. 

The main element of such a system is an in-board computer. Dampening 

the trolley control is calculated previously and then allocated in memory of the 

computer, which provides realization of that law. 

 

SIMULATION MODEL OF LIGHT BRIDGE CRANE 

TRANSPORTED LOAD ON THE ROPE WITH VARYING LANE 
The aim of the proposed investigation is working out methods of 

calculation of time optimal or near to its laws of the control of the reloading 

cargo trolley, which transfers cargo suspended on the rope with the varying 

length at present distance (with simultaneous dampening of cargo oscillations). 

The main method of investigation is mathematical simulation of the trolley 

movement. For definition of parameters of required controls the methods of the 

theory of the optimal control of movement of mechanical systems known as a 

“principle of maximum by Pontryagin” were used. 

During such a research, the set of equations describing movement of the 

trolley with suspended cargo is used as a simulation model; the calculation 

scheme of the equivalent system under consideration is shown in Fig. 1. 

 

 

Fig. 1 

 

The scheme comprises of point of suspension, which moves horizontally in 

accordance with definite law s (t) and connected cargo with mass m to it by 

weightless inextensible thread. In majority of cases work conditions of crane 
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permit to set the length of thread as some time function l(t). Oscillations of 

cargo are induced by stationary potential force (force of gravity). 

The system has one degree of freedom with generalized coordinate ϕ 

(angle of rope declination from vertical). 

For derivation of equation of movement of such system, the equation of 

Lagrange can be used: 

                                        (1) 

where L-function of Lagrange is equal to difference between kinetic T and 

potential П energy of the system. 

Horizontal Xc and vertical Xc coordinates of cargo are defined by 

expressions: 

                                       (2) 

Equations for horizontal and vertical velocities of cargo are 

                               (3) 

Potential energy of the system is: 

                             (4) 

For kinetic energy after simple conversions: 

    (5) 

The function of Lagrange 

 (6) 

Partial derivative of L by generalized velocity y’: 

                                    (7) 
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Its derivative in time 

       (8) 

Partial derivative of Lagrange function by generalized coordinate φ: 

                    (9) 

After putting found expressions in equation (1) of Lagrange, and cutting of 

similar ones, we can receive: 

            (10) 

From that expression 

                       (11) 

In received equation, which describes the movement of the point of 

suspension and cargo, the generalized coordinate φ is used. But very often at 

investigation of cranes movement utilization of generalized coordinate X 

instead of φ is more convenient. Let us derive X for definition of the state of 

the system (2) 

Coordinates X and φ are connected by the expression 

                                                 (12) 

Let us differentiate by time twice expression (12): 

 

                (13)
 

It is possible with help of received equation (13) to express derivative φ  

and φ  through new generalized coordinate X and its derivative. After 

substitution in equation (11), the equation of Lagrange can be received in the 
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                      (14) 

Omitting infinitesimal elements and taking into account that, due to the 

small angles of rope slopes, cosφ = 1 can be considered, the acceleration x  can 

be expressed in the following form: 

                                     (15) 

Thus, acceleration x  of cargo in relation to point of suspension is defined 

by acceleration s  of the point of suspension and absolute horizontal 

acceleration of cargo evoked by a horizontal component of the force in the 

rope. That force as can be seen from equation (15) in its turn depends on cargo 

weight, force of inertia caused by variation of the rope length with acceleration 

l  and centrifugal force called forth by acceleration  . 

The obtained equation (15) can be used as a simulation mathematical 

model of the crane for determining rational (optimal or quasi optimal) controls 

of crane mechanisms. 

Search of wanted controls for big cranes are connected with serious 

difficulties. At first, it is expedite to elaborate methods of determination of 

control for small hoisting machines such as light overhead (bridge) cranes 

which are often included in automatic systems performing various 

technological processes. 

The control of such cranes is fulfilled with help of inboard or external 

computers. 

Parameters of required controls are previously calculated in dependence of 

geometrical conditions of a duty cycle and thence are placed in the computer 

memory, which monitors realization of the calculated control in the automatic 

regime. 

Light bridge cranes can be regarded as physical models of more powerful 

machines such as widely used in ports ship-to-shore quay and yard grab or 

container cranes. 
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Methods of calculation and automatic realization of controls thoroughly 

tested on small cranes can be used for automation and optimization of work of 

large machines and permit to increase their productivity and provide noticeable 

economical effect. 

Setting the task 

Oscillations of load on the rope, caused by the trolley movement, create 

additional difficulties in realization of the control and increase time of crane 

duty cycle. 

The calculated control must provide dampening such oscillations at 

approach of the trolley to the target point of its way. 

Methods of calculations of time optimal or near to it by effective kinds of 

the control for transportation of load on the rope with the fixed length are 

worked out deep by enough
2
. 

In real conditions for decreasing time of a duty cycle, crane operators 

combine horizontal movement of load with its hoisting (lowering). But 

questions of optimization of the crane control for transportation of load 

hanging on the rope with the varying length are investigated insufficiently 

(some aspects of that problem are regarded in works
3

, 
4
. 

The proposed materials are dedicated to elaboration of methods of 

calculation of time optimal or near to it by effective kinds of the control for 

light bridge cranes during transportation of load hanging on the rope with the 

varying length. 

Content and results of the investigation 

The calculation scheme for such a crane can be represented by mechanical 

system shown in fig. 1. 

The characteristic feature of the motor practically immediately begins to 

move with a set velocity and at switching off stops instantly without further 

motion. That feature permits to utilize velocity V (t) of the trolley as its control 

parameter. 

To avoid excessive dynamic stresses and increase fatigue life it is desirable 

not to change a sign of velocity (i.e. permit movement only in one direction to 

the target point). Taking it into account, restriction on the control parameter 

can be written in the next form:  

0 ≤ V(t) ≤ Vmax                                                 (16) 

                                                           
2
 Strel’tsov P. M. Gashenie kolebaniy gruza pri ego peremeshchenii na podvese 

peremennoy dliny. Visnyk ONMU. 2012. № 35. Pp. 179–189. 
3
 Verschov T. Cranes-Design,Practise and Maintenance (Chapter 6. Sway and Swiny; 

Automation the trolley travelling mechanism). Professional Engineering Publishing. 2002. 

Pp. 167–173. 
4
 Boltyanskiy V. G. Matematicheskie metody optimal’nogo upravleniya. Moskva : 

Nauka, 1969. Pp. 408. 
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The movement of load is defined by the pull force in the inclined rope. As 

it can be seen from equation (15) the movement of regarded material system 

“trolley-load” can be written in the next form: 

                                   (17) 

where XТ –coordinate of the trolley; Xc – coordinate of cargo. 

Introduction of new variables X1=XТ; X2=XC; X3=XC
 
permits to write 

equations (17) in the normal form as a system of three differential equations of 

the first degree: 

                                 (18) 

Represented equations can be regarded as a mathematical (simulation) 

model of the investigated mechanical system. That model can be utilized for 

determination of laws of changing the velocity V (t) of the trolley, which 

provides desirable character of movement of the system “trolley-load”. 

Let us suppose that movement of the trolley begins from the state of rest, 

defined by the next coordinates. 

                                   (19) 

The trolley will come after transference at distance S to the target position 

of rest with next coordinates: 

                                 (20) 

The problem for search of optimal V*(t) for such transition can be set in 

the next form. 

It is necessary to determine control V*(t) which provides transition of a 

mechanical system described by equations (18) from the beginning state (19) 

to the set end state (20) by the shortest time under observance of restrictions 

(16) for control parameter V(t). 

To ascertain the character of the time optimal control, the mathematical 

theory of the optimal control known as a “principle of maximum by 

Pontryagin” may be used
5
. In accordance with that theory the function H of 

                                                           
5
 Vasil’ev F. P. Chislennye metody resheniya ekstremal’nykh zadach. Moskva : Nauka, 

1988–545 pp. 
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Hamilton for the investigated mechanical system based on equations of its 

mathematical model must be written. For our case, the function of Hamilton is: 

                (21) 

The auxiliary functions φi, which Hamiltonian H includes, are defined by 

the formula 

                                            (22) 

Therefore we have 

             (23) 

From system (23) for auxiliary function φ, the formula can be received 

                      (24) 

In accordance with the “principle of maximum” the optimal control must 

provide the maximum to Hamiltonian H. As it can be seen from expression 

(21), Hamiltonian will achieve maximum, if at positive meanings of function 

φ1 the control function will take its maximal value (i.e. V=Vmax) and at 

negative φ1 control function V will take its minimal value V=0. 

Thus, optimal control V*(t) is a relay (piecemeal-constant) function and 

takes on intervals of constancy extreme values. The moments of switching off 

the control from one extreme value to another correspond to the points of 

crossing the axis of abscissae by the graph of auxiliary function φ1. 

The quantity and duration of intervals of the optimal control are defined by 

location of the graph of function φ1 relatively to the axis of abscissae. 

Let us consider the methods of determination of the optimal control of the 

trolley at transportation of cargo on the rope with the constant length. In that 

case equation (23) takes form φ1
(3)

+k
2
φ1’=0, (24) where k

2
=g/l 

Solution of that uniform linear differential equation is the following: 

                                     (25) 

where α – beginning phase of function φ1; A – amplitude of function φ1;  

B – vertical displacement of the axis of sinusoid is relatively to the axis of 

abscissae. 
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NUMERICAL METHODS OF CALCULATION OF THE TIME 

OPTIMAL CONTROL OF LIGHT BRIDGE CRANE 

Possible graph of auxiliary function φ1 is shown in fig. 2. As it was found, 

optimal control V*(t) of the investigated material system is a piecemeal 

constant function, which includes some quantity of intervals of constancy.  

At each interval function V*(t) preserves the boundary value (maximal 

V(t)=Vmax or minimal V(t)=0). 

 

 

Fig. 2 

 

The “principle of maximum” permits to define only the general notion 

about the optimal control. But the quantity of intervals and their durations have 

to be defined by special procedure. 

With that aim let us consider the character of cargo oscillation on the rope 

with the constant length at optimal control V*(t). 

As acceleration of point of suspension is equal to zero , the third 

equation of mathematical model (17) can be rewritten in the next form: 

                                 (26) 

with new designations, equation (26) will be the 

following: 
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The solution of that uniform linear differential equation is the following: 

                                  (28) 

                                 (29) 

As the movement of the system starts from the state of rest when load 

declination from vertical is y (0) =0 and the velocity of declination is y
’
(0)=-

Vmax for constants A and B of integration we shall receive 

A=0; B=-Vmax/k . 

The movement of load relatively to the point of suspension will be 

described by equations: 

                                      (30) 

i.e. at the movement of the point of suspension with constant velocity Vmax 

the load will fulfil harmonic oscillation relatively to the vertical line which 

crosses the point of suspension (state of equilibrium). The period of 

oscillations is: 

 

amplitude of declination  

Function φ1 (fig.2) is a sinusoid with the period equal to the period of load 

oscillations  

Each time when the graph of sinusoid crosses the axis of time, the 

switching off control function V*(t) is fulfilled. 

So, the quantity of switching off the optimal control depends on duration T 

of displacement of the system. If T≤ε, the graph of φ1 will be a partial wave of 

the sinusoid which crosses the axis of time only in two points. And optimal 

control V*(t) will have only three intervals. If τ≤T≤2τ graph of φ1 will include 

the whole wave of the sinusoid and cross axis of time in four points, so the 

control will consist of five intervals. At 2τ≤T≤3τ, the control will have seven 

intervals and so on. 

Below the method of definition of time parameters (quality and duration of 

intervals) of the control is considered for the next geometrical conditions: 

‒ the length of rope t= 4 t; 

‒ the period of oscillation τ= 4 s; 

‒ the maximal velocity of the trolley Vmax= 0,3 t/s; 

‒ the distance of load displacement S= 1,8 m. 
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In that case the total duration of intervals, at which the movement of the 

trolley is fulfilled, is equal S/V=1,8/0,3=6 s. 

Hence, the time of displacement T τ≤T≤2τ, in that case, as was proved 

above, the graph of function φ1 will cross axis of time in four points and 

quality of intervals will be equal to five. 

As the beginning and end conditions of movement are symmetrical, graphs 

of optimal control V*(t) and function φ1 will be symmetrical in relation to their 

middle (as shown at fig.2) 

If to mark durations of the first and second intervals as t1 and t2, the 

duration of the third (middle) will be t3=τ-t2; fourth and fifth (last) will be t4=t2, 

t5=t1. 

As the displacement of the trolley is fulfilled only at odd intervals, their 

total duration must be equal to 6s: 

                 (31) 

hence                                                                                          (32) 

For material systems similar to investigated ones, the movement of which 

is described by linear differential equation, the principle of superposition can 

be used. In accordance with its oscillation, the load is a sum of oscillations, 

which arise at the moments of switching off the control parameter. 

In the end point, the moving system has to be in a state of rest, i.e. 

deflection of load and velocity y’ of its changing must be equal to zero. 

It is possible in accordance with a principle of superposition for load 

deflection at moment T of movement ending for deflection y to write (taking 

into account expression (32)): 

               (33) 

For velocity y’ of changing the deflection at moment T after 

differentiation, it is possible to receive: 

                 (34) 

1 2 3 1 2 1 max/ 6 ,t t t t t t S V s       

2 12 2t t 

max 1 2 1 2

1 1 2 1

1 1 1 1

1 1 1

1

( ) / sin (2 ) sin ( )

sin ( ) sin ( ) sin sin 0

sin (4 2) sin (3 2) sin sin(3 2)

sin sin 0 sin (4 2) 2sin (3 2)

2sin sin 0 0

y T k V k t t k t t

k t k t t kt k

k t k t kt t

kt k k t k t

kt k

 



       

       

        

        

   

'

max 1 1

1

( ) / cos (4 2) 2cos (3 2)

2cos cos 0 0

y T V k t k t

kt k

     

   



128 

For the solution of received trigonometric equations it is possible to use a 

simple enough numerical method. Algorithm of method requires changing 

from “0” of value of t1 with definite rational step. At each step meaning of 

sums (33) and (34) are calculated. As solution must be taken, value of t1, at 

which both sums simultaneously come near enough to “0”. The performed 

calculation shows that such condition is fulfilled at t1=1,25 s. 

Durations of following intervals are: 

‒ second interval t2 = 0,5 s; 

‒ third (middle) t3 = 3,5 s; 

‒ fourth t4 = 0,5 s; 

‒ fifth (east) t5 = 1,25 s. 

By results of calculations graphs of auxiliary function φ1 and optimal 

control V*(t) has been built (see fig. 2). 

For definition of position of function φ1 relatively to time axis, another 

method, which has more general character, can be used. 

That method can be used for calculations of the optimal control in cases 

when function φ1 is described by nonlinear differential equations (for instance 

in cases of crane movement with the varying rope length). 

In that case, time parameters of the optimal control are defined by 

equation (24). 

After introduction of new variables 

                                   (35) 

equation (9) can be re-written in a normal form as a system of three 

differential equations of the first degree 

                                  (36) 

It is necessary for digital integration of system (36) to present initial values 

of functions f1,f2,f3 . For that aim let us investigate small enough initial section 

of the trajectory of the mechanical system “trolley-load” (18) for which the 

length of the rope can be regarded as fixed. 

Equation (36) for that section can be written in the following form 
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The solution of that linear differential equation has the following form: 

 

where φ-initial phase of function φ1; 
B-distance between the axis of function φ1 and the axis of abscissae 
A-amplitude of function φ1. 
As it can be shown from equation (10) initial values of functions 

 are connected with parameters α, A and B by expressions 

 

Thus, location of the graph of function φ1 (hence, character of the optimal 
control) is defined by choice of parameter α, A and B. 

It is expedient to choose as a criterion of optimality for such choice the 
value of energy E of residual sway defined by the formula (aim function): 

 

Here the first item is proportional to the kinetic energy and the second is 

proportional to the potential energy of swaying load. 

The calculations of values of aim function E are connected with 

complicated enough procedure, which includes numerical integration of 

equations of mathematical model (3) under the set control from the initial one 

to the target point of the trolley way. 

In case, when the set control is optimal, the energy of residual sway will be 

equal to zero. 

Thus, the task about the search of the function of control V*/t which 

provides the minimal time of the load transportation is reduced to the task 

about determination of such values of only three parameters (α, A and B) 

which provide minimization of aim function E. 

To solve that task a special algorithm is proposed. According to the 

algorithm, it is necessary to fulfil the next steps: 

1) to set values of parameters α, A and B; 

2) to determine initial values of function φ1 and its derivatives; 

3) to carry out digital integration of equation (36), and then determine 

function φ1 and corresponding to its control V (t); 

4) to fulfill the integration of equation (18) of the mathematical model of 

the trolley under determined control V (t) and calculate the value of aim 

function E at the end of the trolley way; 
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5) if E is too big, to change values of parameters α, A and B; 

6) to fulfill described above the procedure with new values α, A and B. 

The iteration process described above must be continued till determination 

of such control V*(t) at which aim function E will become equal (or near 

enough) to zero. 

On the base of that algorithm the program for numerical calculation of time 

optimal control V*(t), which provides damping of load sway at the end of set 

distance, was worked out. 

To confirm the effectiveness of the method and successful work of 

program graphs of movement parameters of the system “trolley-load” built by 

results of computer calculations of the optimal control are presented in fig. 2. 

General sequence of the proposed solution of the considered problem 

corresponds to the numerical method of optimal problems solution known as 

the method of coordinate-by-coordinate descend. In accordance to that method, 

described for instance in
6
, the program of definition of optimal control V*(t) of 

the investigated system was worked out with help of program calculations of 

auxiliary function φ1 of the optimal control and parameters of the movement of 

the material system (17) fulfilled for the same geometrical conditions as in the 

previous case. 

It was turned out that the iteration process of searching aim function E 

extremum is converged soon enough. 

It was worth noting that the proposed method (which has broader sphere of 

utilization) is difficult enough; requires utilization of complicated programs 

and big volumes of calculation. All that can evoke doubts in received results. 

To prove the reality of results the new method must be carefully tested for 

instance by comparing its results with solutions received by other methods 

thoroughly tested and reliable. 

Graphs of movement parameters of designations correspond: 1– optimal 

control V*(t) of the trolley (its velocity); 2 – absolute velocity of load; 3 – 

deflexion of load from the state of equilibrium; 4 – length of rope; 5 – trolley 

transference; 6 – load transference;7 – auxiliary function φ1 of Hamiltonian. 

For convenience, the graphs of trolley and load velocities and deflexion (18) of 

load are presented on a large scale. 

As can be seen in fig.2 and 3 results of calculations of durations of 

individual intervals of the optimal control received by both methods (previous 

and described now) coincide. 

 

                                                           
1
 Nebesnov V. I. (1965) Voprosy sovmestnoy raboty dvigateley vintov i korpusa sudna 

[Issues of joint work of propeller engines and hull]. L.: Shipbuilding, 1965. 247 p. 
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Fig. 3 

 

Hence, the new method, which does not require linearity of mathematical 

model equations, permits to receive reliable enough results and can be used in 

more complicated cases. The calculations were fulfilled for the next 

conditions: 

‒ the distance of the trolley and load movement S 

‒ the maximal velocity of the trolley Vmax = 0,3 m/s 

‒ the rate of the rope varying (hoist) l(t)’ 

Let us consider the utilization of the new method for definition of the 

optimal control of the trolley at transference of load on the rope with the 

varying length (when equations of function φ1 are non-linear, and the first of 

considered methods is not suitable), at the next geometric parameters of the 

movement: 

‒ the set distance of the trolley S = 1,8 m; 

‒ the limitation on control parameter V (the velocity of the trolley) 

0 ≤ V(t) ≤ Vmax ; 

‒ the initial rope length l(0) = 4 m; 

‒ the length of the rope is changing from the initial value with constant 

velocity and can be presented as a function of time l(t) = 4 – 0,2t. 
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In our case at defining the situation of the graph of function φ1 a new 

member, which reflects the character of the rope length changing, are to be 

included in equations (23). That equation after inclusion of new variables in 

normal form (35) will have the next form 

 

Initial values of functions can be calculated with help of 

equations (37), where . 

The same algorithm and the same program corrected with taking in account 

the character of the rope length changing were utilized for definition of the 

optimal control at shown above geometrical conditions. 

The graphs of parameters of movement at the optimal control and the 

varying rope length built on the base of calculations with help of worked out 

program are presented in fig. 4. 

 

 

Fig. 4 

The graphs confirm effectiveness of considered method and worked out the 

program, which permits to find controls of the material system (a trolley with 

load on the rope with the varying length), which corresponds to the necessary 

“time optimality condition” required by the “principle of maximum”. 
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As can be seen from the figure, auxiliary function φ1 has oscillative 

character and can cross axis of time many times. The quantity of crossing 

points and hence quantities of intervals and points of switching off the control 

is increasing with increase of duration of transference and can be considerable 

enough, that can create difficulties at realization. In our case, the quantity of 

intervals in accordance with calculation occurred also to be equal to the fifth. 

Unlike the previous case, the even intervals do not have equal durations. The 

general duration of movement is equal to 6,66 s. 

The transference of the trolley is accompanied with intensive swaying of 

load with maximal amplitude equal to 0,2 m. 

Another kind of the control being more simple and convenient for 

realization can be proposed. 

To avoid sways at the main part of the trolley way its movement can be 

organized in three stages. 

At the first stage acceleration of load to horizontal velocity Vmax must be 

fulfilled in such a way that rope would have a vertical position at the end of 

acceleration. 

At the second stage, the movement of the trolley must be continued with 

velocity Vmax, which will move synchronously with the trolley. At that period, 

the changes of the rope length do not exert any influence on horizontal 

movement of load. 

At the third stage, the horizontal velocity of load must be reduced to zero 

in such a way when the rope would be hanging vertically under the motionless 

trolley. 

It is desirable that all stages have minimal durations. To achieve it, the 

character of the control on the stages of the transient movement must 

correspond to the “principle of maximum”, i.e. to be defined by forms of 

Hamiltonian H (l) and auxiliary function φ1 (9). Hence, the time optimal 

control of the trolley at these stages must be also relay-functions which are 

taken at intervals of constancy values V=Vmax, when φ1>0, and V=0 when 

φ1 < 0. 

It is possible to prove that durations of stages of transient movement do not 

exceed the time of the half-cycle of load oscillation. 

During that period function φ1 can cross the axis of abscissae only once. 

The optimal control at such stages will have only two intervals (with total 

quantity of intervals equal to five). 

To define durations of these intervals the same program, which was used 

for calculation of the optimal control with five intervals can be used again after 

some insignificant additions. With help of such corrected program the new 

kind of control V5(t) which provides damping of load sway on transient stages 

and contain five intervals, was calculated for the same geometrical conditions 

as in previous cases. 



134 

By results of calculation with help of program the graphs of parameters of 

the movement “trolley-load” system were built (see fig. 5). The designations in 

fig. 5 are the same as in fig. 3. 

 

 

Fig. 5 

 

As can be seen from the figure at such control the movement of the trolley 

comprises three stages. At the first stage that consists of two intervals (start 

and stop) the run of load to set horizontal velocity Vmax is fulfilled. The 

duration of the first stage is equal to 1,3 s. The maximal deflection of load 

from vertical is 0,16 m. 

As the second stage the trolley and load move with equal velocity without 

the sway of load. The load continues its vertical movement. 

At the third stage a maneuver is carried out, which also includes two 

intervals and provides full extinction of the sway to the moment of coming to 

the end point. The duration of stage is 1,0s. The maximal deflection of load is 

equal to 0,12 m. The total duration of load transference is equal to 7,2 s. 

So, such quasi-optimal control at its separate stages has a simple structure, 

which permits more convenient realization. One more advantage of such 

control is low intensiveness of the sway and small connected with its dynamic 

loads on mechanisms (what promote increasing of its lasting). 

But by the main index-quick-action the quasi-optimal control mutably 

gives in to strictly optimal (so the duration of cargo transference at the optimal 

control is equal to 6,66 s and at quasi-optimal – 7,2 s or for 8 % more). 
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CONCLUSIONS 
Three methods of calculation of the time optimal control of light bridge 

cranes at transference of load on the flexible rope suspension are considered. 
The first method is intended for calculation of load transference on the rope 

with the constant length. In that case, the simulation model of the crane can be 
presented by the system of linear differential equations, which permits to 
evaluate analytically general character of the optimal control and permits to 
define its structure (quantity and durations of intervals) by the comparatively 
simple numerical method. 

The second method, which does not require linearity of the simulation model 
equations, is based on a very complex procedure of simultaneous integration of 
equations of auxiliary function φ1 of Hamilton and non-linear equations of the 
simulation model. The results received by two methods coincide. 

It gives possibility to affirm that the second method in spite of its 
complexity is reliable enough. 

The third method is the modification of the second one, connected with 
taking into account combination of working movements of the crane. The 
method is intended for utilization at definition of the time-optimal control of 
the trolley at transference of load on the rope with the varying length. 

The same methods and programs can be used for calculations of near to 
optimal by effective kinds of the control with only five intervals, when 
oscillations of load are damped at the transient stages (horizontal acceleration 
and deceleration) and must be a part of its way, the load on varying rope is 
moving synchronously with the trolley without a sway (fig.4). But at such 
kinds of control V5(t) the total time of transference becomes noticeably greater 
(almost by 10 % in dependence of distance) than at the optimal control. The 
simplicity of such control makes it convenient for utilization but the decline of 
productivity may be decisive at choice of the control for automatic realization. 

 
SUMMARY 
Three methods of calculation of the time optimal control of light bridge 

cranes are considered. 
The first method is intended for calculation of load transference on the rope 

with the constant length. In that case, the simulation model of the crane can be 
presented by the system of linear differential equations. The second method, 
which does not require linearity of simulation model equations, is based on very 
complex procedure of simultaneous integration of equations of auxiliary function 
φ1 of Hamilton and non-linear equations of the simulation model. The third 
method is intended for utilization at definition of the time-optimal control of the 
trolley at the transference of load on the rope with the varying length. The third 
method is modification of the second one. The same methods and programs can 
be used for calculations of near to optimal by effective kinds of the control with 
only five intervals. These are the methods of calculation of the time optimal 
control of light bridge cranes. 
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