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AGGLOMERATION AND DISPERSION  
OF FIRMS UNDER SPATIAL COMPETITION 
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INTRODUCTION 

In search of a solution to the Bertrand paradox, Hotelling proposed to take 

into account the factor of space under the price competition of firms. In 

Hotelling’s linear city model
1
, two firms compete on a segment with a unit 

demand at each point. Firms optimize their prices and location on the segment. 

Transportation delivery costs of goods are borne by consumers. Hotelling 

found that in an equilibrium state, firms would be minimally spatially 

differentiated, since they would be located in the center. This conclusion of the 

model analysis subsequently became a famous “principle of minimal 

differentiation”. 

In further research, the Hotelling model has been developed in the 

following areas: 

 an increase in the number of firms
2, 3

; 

 an increase in the dimension of space
4, 5

; 

 the complexity of the type of transport costs function
6, 7

; 

 consideration of the Cournot competition
8, 9

 and Stackelberg 

competition
10, 11

. 
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Anderson and Neven
12

 restricted the analysis to . Rivas
13

 extended 

the analysis to  allowing for different market configurations. The paper 

identified market patterns where firms compete over the whole market as well 

as patterns where a firm behaves as a monopoly in a market segment. 

In this chapter we are extending the analysis to  and showing that 

firms have location decisions, which provide a full cover of markets. 

 

THE LINEAR CITY MODEL 

Two firms sell homogeneous goods on the unit segment, at each point of 

which is consumer market x ,  x 0,1 . The distance of the firms from zero 

point is equal 
1x  and 

2x  accordingly, and 
1 2x x . Each firm faces linear 

transportation costs of t  to move one good unit per one unit of distance. 

Consumer arbitrage is assumed to be prohibitively costly. 

The linear demand curve on market x : 

     1 2xp x b q q x   , 

where  p x  – the price on market x ,  1q x ,  2q x  – the quantities 

supplied by firms on market x , b  – a minimum price, at which there is no 

demand (reservation price). 

Let us assume that firms supply products to all markets (full coverage): 

 1q 1 0x   ,  1q 1 0x   ,  2q 0 0x   ,  2q 0 0x   . Thus, zero quantities 

supplied are possible only at the boundaries of a unit segment. 

The profits of firms on market x : 

        
 1 1

1 1 1 2 1
,

x x max ,
x q x

F q b q x q x t x x         

        
 2 2

2 2 1 2 2
,

max .
x q x

F x q x b q x q x t x x         
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The competitive game consists of two stages. In the first stage, the firms 

simultaneously select their locations. In the second stage, at the given location 

decisions, the firms simultaneously choose their supplied quantities. The 

equilibrium of the model is solved by backward induction. 

 

THE COURNOT COMPETITION 

According to the backward induction method we begin with the second 

stage. Let us assume that firms optimize supplied volumes under Cournot 

competition. Solving the first-order conditions yields the reaction curves of the 

firms: 

 
 2 1

1
2

b q x t x x
q x

   
 ,    

 1 2

2
2

b q x t x x
q x

   
 . 

The equilibrium supply volumes of firms to market x : 

 * 1 2

1

2
q

3

b t x x t x x
x

      
 ,                                (1) 

 * 2 1

2

2
q

3

b t x x t x x
x

      
 .                                (2) 

Let us define the feasible region locations of firms. 

From previous studies
14, 15

 we know that the equilibrium in this model is 

symmetrical about the center: 

1 2x x 1e e  , 1x 1 2e  , 2x 1 2e  .                                (3) 

In the center of line segment the firms minimize a total distance of traffic, 

therefore full coverage of markets is possible with the highest transport tariff. 

Substituting into (1) values 
1x 1 2 , 

2x 1 2 , x 1  or into (2) values  

1x 1 2 , 
2x 1 2 , x 0 , we find that at any locations of firms the coverage of 

all markets is possible only at t 2 b  . 

From (1) it follows that for firm 1 the minimum volume of deliveries is 

reaching on market x 1 . Therefore a condition of coverage of markets for 

firm 1: 

                                                           
14
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     *

1 1 2q 1 0 2 1 1 0.x b t x t x          
                   (4) 

For firm 2 the minimum volume of deliveries is reaching on market x 0 . 
Therefore a condition of coverage of markets for firm 2: 

 *

2 2 1q 0 0 2 0x b t x t x         .                         (5)   

Solving the system of equations (4)–(5) yields 

cov

1

1 2

2 6

b t
x

t

 
 


,                                          (6) 

cov

2

1 2

2 6

b t
x

t

 
 


.                                          (7) 

Thus, the feasible region locations are (Fig.1): 

1

cov

1 1

2

cov

2 2

0 1 2 0 2,

1 2 0 2,

1 2 1 0 2,

1 2 2 2 .

x t b

x x t b

x t b

x x b t

for

for

for

for b

   


   


   
     

    

    

    

    

                         (8) 

 

 

Fig. 1. The feasible region locations 

 
The equilibrium profits of firms on market x : 

 
 

  

 
 

  

2

21 2* *

1 1

2

22 1* *

2 2

2
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9
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9
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b t x x t x x
x q x
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In the first stage each firm selects a profit-maximizing location at a given 

location of the rival. 

So, let us start with firm 1. The total profit of firm 1 in all markets: 

       
1 2

1 2

x x1 1

* * * *

1 1 1 1 1

0 0 x x

F F x F x F x F xdx dx dx dx       , 

    

    

    

1

2

1

2

x
2

1 1 2

0

x
2

1 2

x

1
2

1 2

x

9 F 2

2

2 .

b t x x t x x dx

b t x x t x x dx

b t x x t x x dx

         

        

       







                      (10) 

After integrating and identical transformations (10), we obtain: 

     

     

3 3

1 1 2 1 2

3 3

1 2 1 2

81 t F 4 2 2

3 2 3 2 1 .

b t x x b t x x

b t x x b t x x

             

            
 

The optimal location is defined by the necessary condition: 

       
21

1 2 1 2 1 2

1

9 F
t 2 2 2 1 2 0.

4 t
x x b x x b t x x

x


               

   (11) 

The sufficient condition for the existence of profit maximum for firm 1: 

   
2

1
2 12

1

9 F
t x x 0

8 t
b t

x


       

 
. 

The necessary condition for the existence of the equilibrium location for 

firm 1 is the nonnegativity of the discriminant of square equation (11):  

     
2

1 2D 4 4 2 1 2 0b t t b t x           .                 (12) 

It is easy to make sure that 
1D 0  at 

2x 1 2 . Therefore, due to condition 

(3), in the equilibrium state discriminant (12) is always nonnegative. 

The roots of square equation (11) are: 
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 * 1

1 21

D
x x

t 2 t

b t
  


,     * 1

1 22

D
x

t 2 t

b t
x


  


. 

Root  *

1 2
x  does not satisfy the basic conditions of the model and therefore 

is not further analyzed. The total profit of firm 2 in all markets: 

       
1 2

1 2

x x1 1

* * * *

2 2 2 2 2

0 0 x x

F F x F x F x F xdx dx dx dx       . 

    

    

    

1

2

1

2

x
2

2 2 1

0

x
2

2 1

x

1
2

2 1

x

9 F 2

2

2 .

b t x x t x x dx

b t x x t x x dx

b t x x t x x dx

         

        

       







                         (13) 

After integrating and identical transformations (13), we obtain: 

     

     

3 3

2 2 1 2 1

3 3

2 1 2 1

81 t F 4 2 2

3 2 3 2 1 .

b t x x b t x x

b t x x b t x x

             

            
 

The optimal location is defined by the necessary condition: 

   

   

22
2 1 2 1

2

2 1

9 F
2

4 t

2 2 1 2 0.

b x x t x x
x

b t x x


        

 

       

                      (14) 

The sufficient condition for the existence of profit maximum for firm 2: 

   
2

2
2 12

2

9 F
0

8 t
t x x b t

x


       

 
. 

The necessary condition for the existence of the equilibrium location for 

firm 2 is the nonnegativity of the discriminant of square equation (14): 

     
2

2 1D 4 4 2 1 2 0b t t b t x           .                    (15) 
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It is easy to make sure that 
2D 0  at 

1x 1 2 . Therefore, due to 

condition (3), in the equilibrium state, discriminant (15) is always nonnegative. 
The roots of square equation (14) are: 

 * 2

2 11

D
x x

t 2 t

b t
  


,     * 2

2 12

D
x

t 2 t

b t
x


  


. 

Root  *

2 2
x  does not satisfy the basic conditions of the model and therefore 

is not further analyzed. Thus, we received the reaction curves of firms: 

     
2

2

1 2

2 1 2
x

t

b t t b t xb t
x

t

      
   ,                 (16) 

     
2

1

2 1

2 1 2
x

t

b t t b t xb t
x

t

      
   .                (17) 

Substituting (16) into (17), we are obtaining symmetry condition (3). Using 
symmetry condition (3), we find solutions of system (16)-(17): 

agg

1 2x 1 2aggx   ,                                        (18) 

1

3 2 b
1 2

4

dis t
x

t

  
 


,                                    (19) 

2

3 2
1 2

4

dis t b
x

t

  
 


.                                   (20) 

So, we have obtained two equilibrium location strategies for firms: central 
agglomeration and symmetric dispersion. For t 2 3b  , solutions (18) and 

(19)-(20) coincide. From the location condition, 
1 2x x , it follows that firms 

can apply the dispersion strategy only when t 2 3b  . 

 
THE ANALYSIS OF THE STABILITY OF EQUILIBRIUM 
Let us analyze a stability of solutions (18)–(20). For this we consider a 

two-dimensional map: 

   
      

   
      

2

2

1 2

2

1

2 1

2 1 2
x n 1 ,

t

2 1 2
x 1 ,

t

b t t b t x nb t
x n

t

b t t b t x nb t
n x n

t

      
   

      
   

      (21) 

where n  is a time moment, n 0,1, 2, ...,   1x 0 0 ,  2x 0 1 .  
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The nature of the stability of fixed points is determined by their multipliers. 

The multipliers are eigenvalues of the Jacobian matrix in a fixed point, and 

their number is equal to the dimension of map. 

The Jacobian matrix of map (21) in the fixed point (18): 

 

 

0
2

J

0
2

t

b t

t

b t

 
  

 
 
 

  

.                                (22) 

From (22) we obtain two real multipliers: 

 1,2
2

t

b t
  

 
.                                      (23) 

For 
1,2 1   the fixed point is stable, for 

1,2 1   the fixed point is 

unstable, for 
1,2 1   the bifurcation occurs. From (23) it follows that the fixed 

point (18) is stable when t 2 3b   and is unstable when t 2 3b  . The loss of 

stability occurs at the bifurcation point: t 2 3b  . 

The Jacobian matrix of map (21) in fixed point (19)–(20): 

 

 

2
0

J
2

0

b t

t

b t

t

  
 

 
  

 
 

.                             (24) 

From (24) we obtain two real multipliers: 

 
1,2

2 b t

t

 
   .                                                   (25) 

From (25) it follows that fixed point (19)-(20) is unstable when t 2 3b   

and is stable when t 2 3b  . The acquisition of stability occurs at the 

bifurcation point: t 2 3b  . 

So we can summarize results in 

Proposition 1. At the value of the transport tariff t 2 3b   occurs a 

transcritical bifurcation, in which the spatial strategies exchange stabilities.  

The transcritical bifurcation diagram for b 1  is depicted in Fig. 2. The 

dynamics of the total profit of firm 1 at crossing of the bifurcation point for 

b 1  is depicted in Figure 3. 
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Fig. 2. Transcritical bifurcation diagram of map (21) 

 

 

Fig. 3. Dynamics of the total profit of firm 1 

 

In Fig.3 we see that in the case of multiple equilibria (18)–(20), exactly the 

stable solution provides a large profit (Fig. 3). The Fig. 3 illustrates the effects 

that affect spatial strategies of firms. Before bifurcation point the effect of 

minimizing transport costs is dominate
16

. Firms choose the central 

agglomeration strategy to minimize a total distance of transportation. The 

growth of the transport tariff leads to a decrease in the total profit. In the 

bifurcation point the effect of market segmentation begins to dominate. Firms 

choose a dispersed strategy to monopolize adjacent markets. The growth of the 

transport tariff leads to an increase in total profits. The growth of total profit 

with growth of the transport tariff is due to the fact that at dispersion strategy, 

the firms supply more to adjoining markets and less to distant markets. 

Note that the equilibrium profits of firms (4) are squares of supply volumes 

and, thus, “ignore” their negative values. For this reason, dispersion strategies 

                                                           
16

 Scrimitore, M. (2011). Spatial discrimination, product substitutability and welfare. 

Bulletin of Economic Research, 63, 231–244. doi: 10.1111/j.1467-8586.2010.00351.x 
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(19)–(20) do not take into account restrictions on full market coverage (4)–(5). 

Solving the systems of equations (4) and (19), (5) and (20), we find that 

dispersion strategies (19)-(20) are defined only for 10 11t b  . 

A value of 
cov 10 11t b   was first obtained in

17
. At point 

cov 10 11t b  , 

the potential for further differentiation of firms is exhausted. For 

10 11 2b t b     several solutions are possible. Rivas
18

 considered a case 

when each firm monopolizes a segment on the boundaries of the market and 

competes with the rival firm in the rest choosing separated locations. Firms 

symmetrically refuse to cover all markets and this seems like an implicit 

collusion. In the future such pattern may lead to separation of the unit interval 

on the two monopoly segments. It is subject to continued coverage of all 

markets in proposed central agglomeration
19

. However, there is a better 

solution presented in   

Proposition 2. For 10 11 2b t b     the equilibrium spatial strategies lie 

on the boundary of the feasible region locations. 

To provide full cover of markets when 10 11 2b t b    , firms optimize 

location based on condition (8), i.e. seek the conditional profit maximum. 

The equilibrium spatial strategies and total profits of firms for 0 2t b    

and 1b   depicted in Fig.5 and Fig.6. In Fig.6 we see that for 

10 11 2b t b     the central agglomeration is the worst decision.   

 

 

Fig. 4. Equilibrium spatial strategies of firms 
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Fig. 5. Total profit 

 

CONCLUSIONS 

We generalize Rivas
20

, Anderson and Neven’s analysis
21

 by considering a 

broader interval of the transport tariff. The solution says that when 

0 10 11t b    we still replicate the previous results. For 0 2 3t b   , firms 

locate at the center, for 2 3 10 11b t b     there are multiple equilibria: a 

dispersed equilibrium together with the agglomerated one obtained before. 

Subject to continued coverage of all markets for 10 11 2b t b    , the 

equilibrium spatial strategies lie on the boundary of the feasible region locations. 

In the process of the analysis of equilibrium stability, it is proved that the 

transport tariff is a bifurcation parameter for firms. It has shown that a change in 

the central agglomeration strategy to the dispersion strategy occurs at the point of 

transcritical bifurcation. The different effects come into play. Before bifurcation 

point the effect of minimizing transport costs is dominate. Firms choose the 

central agglomeration strategy to minimize a total distance of transportation. The 

growth of the transport tariff leads to a decrease in the total profit. In the 

bifurcation point the effect of market segmentation begins to dominate. Firms 

choose a dispersed strategy to monopolize adjacent markets. The growth of the 

transport tariff leads to an increase in total profits. The growth of total profit with 

growth of the transport tariff is due to the fact that at dispersion strategy, the firms 

supply more to adjoining markets and less to distant markets. 

The purpose of further research is to analyze the competitive interaction of 

firms in the Hotelling’s linear city model under the conditions of other 

equilibrium types. 
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SUMMARY 

A lot of works suggest that Cournot oligopolists competing in a spatial model, 

with a uniform distribution of consumers, agglomerate in the center of the market. 

In this paper some results from paper
22

 are revisited, where showed that Cournot-

type oligopolists, which discriminate over space, will tend to agglomerate. The 

paper
23

 considers the spatial model used to study firms’ decisions on locations 

without restricting the consumers’ reservation price. This paper extends the 

analysis of the standard model of spatial discrimination with Cournot competition 

along the linear city for a high enough transport tariff. It was obtained that for a 

high enough transport tariff the firms have a decision, which lies on the boundary 

of the feasible region locations. We show that a change in the central 

agglomeration strategy to the dispersion strategy occurs at the point of transcritical 

bifurcation. The different effects come into play. Before bifurcation point the effect 

of minimizing transport costs is dominate. Firms choose the central agglomeration 

strategy to minimize a total distance of transportation. The growth of the transport 

tariff leads to a decrease in the total profit. In the bifurcation point the effect of 

market segmentation begins to dominate. Firms choose a dispersed strategy to 

monopolize adjacent markets. The growth of the transport tariff leads to an increase 

in total profits. The growth of total profit with growth of the transport tariff is due 

to the fact that at dispersion strategy, the firms supply more to adjoining markets 

and less to distant markets. In the case of multiple equilibria, it is shown that 

exactly the stable solution provides a large profit. The conditions for full coverage 

of the markets for both strategies are defined. In this paper we show that firms 

under Cournot competition will tend to dispersion. Thus, the article extends the 

analysis of the standard Hotelling spatial competition model. The results allow a 

deeper look at the causes of agglomeration and dispersion of firms. The analysis of 

equilibrium stability shows that the transport tariff is a bifurcation parameter for 

firms when choosing a spatial strategy.  
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