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Abstract. Advancements in the Internet and cloud computing have led 
to a wealth of multimedia data, and processing of these data has become 
more complex and computationally intensive. With the advent of scalable 
low-cost GPUs with very high computing power, processing such big data 
has become less expensive and efficient. Rapid developments are also tak-
ing place in the field of programming languages and various programming 
and debugging tools, which simplify GPU programming. However, effi-
cient and complete use of GPU resources remains a challenge. The purpose 
of this article is to provide a brief overview of the NVIDIA CUDA architec-
ture and to consider the various programming and optimization strategies 
adopted by researchers to accelerate GPU computing. The purpose of this 
study is to provide researchers with knowledge about the various program-
ming methods and optimizations in GPU programming and to motivate 
them to create highly efficient parallel algorithms by removing the max-
imum available graphics processor capabilities. Graphics Processing Unit 
(GPU) has entered the General Purpose Computing Domain (GPGPU) for 
over a decade now. The growth of frequencies of universal processors is 
stopped by physical limitations and high power consumption, and their per-
formance is increasing more and more often due to the placement of several 
cores in one chip. Each core works separately from the others, following 
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different instructions for different processes. Specialized vector capabili-
ties (SSЕ2 and SSЕ3) for four-component (single precision floating-point 
calculations) and two-component (double precision) vectors appeared in 
universal processors due to the increased demand for graphic applications 
in the first place. That is why the use of GPU is more profitable for certain 
tasks, because they have been made for this. For example, in Nvidia video 
chips, the main unit is a multiprocessor with eight to ten cores and hun-
dreds of ALUs in general, several thousand registers and a small amount 
of shared memory. In addition, the video card contains fast global memory 
with access to all multiprocessors, local memory in each multiprocessor, as 
well as special memory for constants. CPU cores are designed to execute a 
single stream of consecutive instructions with maximum performance, and 
GPUs are designed to quickly execute a large number of parallel threads 
of instructions. Universal processors are optimized to achieve high perfor-
mance of a single instruction stream, processing both integers and floating 
point numbers. At the same time, access to memory is random.

1. Introduction
GPU differs from CPU also in terms of access to memory. In GPU, it is 

connected and easily predictable: if a texel of texture is read from memory, 
then after a while the time will come for neighboring texels. And the same 
thing when recording: the pixel is written to the framebuffer, and after a few 
ticks the one located next to it will be recorded. Therefore, the organization 
of memory is different from that used in CPU. And the video chip, unlike 
universal processors, just does not need a large cache, and for textures you 
need only a few (up to 128-256 in the current GPU) kilobytes.

And the work with memory in GPU and CPU itself is somewhat differ-
ent. Not all central processors have built-in memory controllers, but in all 
GPUs there are usually several controllers. In addition, faster open memory 
is used, and as a result of the video chip, memory bandwidth is several times 
more available, which is also very important for parallel calculations that 
operate with huge data streams [1, p. 56; 5, p. 30].

About the differences in caching. Generic CPUs use cache memory to 
increase performance by reducing memory access latency, while GPUs use 
cache or shared memory to increase throughput. CPUs reduce memory 
access delays with large cache sizes, as well as code branch prediction. 
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These hardware parts occupy most of the chip area and consume a lot of 
energy. Video chips circumvent the problem of memory access delays by 
simultaneously executing thousands of threads: while one of the threads is 
waiting for data from memory, the video chip can perform calculations of 
another thread without waiting and delays [2, p. 146; 6, p. 315].

There are many differences in supporting multithreading. The CPU 
performs 1-2 calculation threads per processor core, and video chips can 
support up to 1024 threads per multiprocessor, of which there are several 
pieces in the chip. And if switching from one stream to another for a CPU 
costs hundreds of clock cycles, then the GPU switches several threads in 
one clock cycle [3, p. 76; 7, p. 480].

As a result of all the differences described above, the theoretical perfor-
mance of video chips is significantly superior to the performance of CPUs.

2. GPU Architecture
The Fermi architecture is considered to be the first complete NVIDIA 

GPU (Patterson, 2009; Wittenbrink et al., 2011) because it provides vir-
tually all the features required for the most demanding high-performance 
computing applications. This was the most significant step forward since 
the G80 architecture. 

Figure 1a shows a high-level block diagram of a first Fermi chip. As 
shown in the figure, the Fermi architecture consists of 512 accelerator cores 
called CUDA cores. Each core contains a fully pipelined integer arithmetic 
and floating-point unit that perform one integer or floating-point operation 
for impact. Each CUDA core is organized into 16 streaming multiproces-
sors (SM), each with 32 CUDA cores. 

The second layer, 768 KB, is used by all 16 Multiprocessors and 384-bit 
GDDR5 DRAM. The host interface shown in Figure 1a is used to connect 
the GPU to the processor via the PCI-Express bus. 

The global Giga Thread scheduler then distributes the flow blocks across 
the multiprocessor flow schedulers. Figure 1b shows one SM consisting of 
32 nuclei, each of which can execute a single floating-point command or 
integer instruction per clock cycle. Each SM also has 16 storage operations 
for memory operations, four special function modules, a 4K word register 
file, and 64K local SRAM split between cache and local memory [4, p. 185; 
9, p. 646]. 
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Special Function Blocks (SFUs) are used to perform instructions such as 
sine, cosine, square root, and interpolation. Threads are divided into groups 
of 32 parallel threads, which are called oblique. There are two strain plan-
ners and two command sending blocks, as shown in Figure 1b. 

This allows you to perform two deformations and display them simul-
taneously. In addition, there are 64 KB of internal memory that can be con-
figured as 48 KB of shared memory and 16 KB of L1 cache or vice versa 
(Patterson, 2009; Wittenbrink et al., 2011; Brodtkorb et al., 2013) (Figure 1)  
[8, p. 22; 10, p. 175].

3. GPU Programming Model
Programs executed by the GPU are called kernels. The execution of 

these cores is assigned by the programmer to one or more computing units 
(for example, in the figure there are two blocks: (0, 0) and (1, 0)). 

Blocks are distributed by hardware among the available SMs, and 
depending on the amount of resources required, each SM may be able to 
execute multiple blocks simultaneously due to multithreading.

Each block consists of a certain number of threads, for example, in the 
figure there are only two threads per block: stream (0, 0) and stream (1, 0). 
Threads are executed by hardware in small groups called strains (starting 
from the first GPUs with CUDA support, each strain consists of 32 threads). 
All flows within a given deformation share the same program counter; there-
fore, in the case of a conditional code or a disagreement between cycles, 
operations are serialized [11, p. 5].

Each thread is associated with a certain number of private registers and 
local memory. Local memory is also private for each thread and is used to 
store dynamically addressed arrays of registers or data that do not fit into 
registers. Despite its name, it is physically located in global memory, so it is 
relatively slow. Shared memory is common to each block and can be used 
to exchange data streams. 

Internally, collective memory is divided into banks, and when several 
threads from the same deformation try to simultaneously access different 
cells of shared memory stored in the same bank, a conflict arises between 
banks and access is serialized. At the last level of the hierarchy, threads can 
only read from constants and texture memory, but they have read / write 
access to global memory. It is also possible to exchange stream data in 
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(a)

(b)

Figure 1. (a) Fermi Architecture consisting  
of 16 Streaming Multiprocessors (SMs);  

(b) Single SM (Patterson, 2009; Wittenbrink et al., 2011)
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global memory, but only with a fraction of the speed compared to memory, 
especially if atomic instructions are used [12, p. 169].

Execution can be synchronized in each block through barriers, however, the 
only way to perform global synchronization between all blocks is to complete 
kernel execution and start a new one. To increase efficiency, global access to 
memory is done in small segments, not at the word level. To achieve optimal 
performance, threads must follow a series of merge rules (which depend on the 
hardware capabilities) to avoid generating multiple memory requests, thereby 
reducing the maximum achievable throughput. CUDA applications are writ-
ten in «C for CUDA», which is a subset of C with extensions to perform 
functions in parallel. The programs are compiled using NVCC, the NVIDIA 
CUDA compiler. The CUDA program calls parallel kernels that run in parallel 
in a set of parallel threads. A programmer or compiler organizes these threads 
into thread blocks and grid blocks of threads. The kernel program is created on 
the GPU as a grid of parallel streaming blocks. Each thread in a thread block 
executes a kernel instance and has a thread ID in its thread block, program 
counter, registers, private memory for each thread, inputs, and output. 

A flow unit is a collection of simultaneously running threads that can 
interact with each other through barrier synchronization and shared mem-
ory. Each stream block has a unique block ID in its grid. 

A grid is an array of flow blocks that execute the same kernel, read 
input from global memory, write results to global memory, and synchronize 
between different kernel calls. For each stream in the CUDA concurrent pro-
gramming model, there is a separate memory area for each stream that is used 
to populate registers, function calls, and C variables for the automatic array. 
Each flow block has a shared memory space for each block used to commu-
nicate between streams, share data, and share results in parallel algorithms. 
Stream block grids share results in global memory after global kernel syn-
chronization. The CUDA grid concept is shown in Figure 2. The figure shows 
a two-dimensional hierarchy of blocks and flows, commonly used for image 
processing. The programmer determines the required number of flow blocks, 
and it is the GPU that decides which flow blocks will be executed on any 
SM. This abstraction is one of CUDA’s greatest strengths because hardware 
can operate independently and efficiently. CUDA ensures that all flows in a 
block are executed on the same SM at the same time and that all kernel blocks 
complete execution before executing the next kernel (Figure 2) [13, p. 18].
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Figure 2. CUDA concept of a grid of blocks 

4. CUDA memory model
The memory model in CUDA is distinguished by the possibility of byte-

by-address addressing, support for both ga-tera and sca-tera. A fairly large 
number of registers is available for each stream processor, up to 1024 pieces. 
Access to them is very fast, you can store 32-bit integers or floating-point 
numbers in them. Each thread has access to the following types of memory 
[14, p. 76] (Figure 3):

Global memory is the largest amount of memory available for all multi-
processors on a video chip, the size is from 256 megabytes to 1.5 gigabytes 
on current solutions (and up to 4 GB on Tesla). 

It has high bandwidth, more than 100 gigabytes / s for top NVIDIA 
solutions, but very large delays of several hundred clock cycles. It is NOT 
cached, it supports generalized instructions LOAD and STORE, and the 
usual indications of memory. Local memory is a small amount of memory 
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that only one stream processor has access to. It is relatively slow: the same 
as the global one.

Shared memory is a 16-kilobyte shared memory block for all stream 
processors in a multiprocessor. This memory is fast enough, the same as 
registers. It provides interaction of flows, is controlled directly by the devel-
oper and has low delays. The advantages of shared memory: the use of a 
first level cache managed by a programmer, reducing delays in accessing 
executive units (ALUs) to data, reducing the number of accesses to global 
memory [15, p. 640].

 

Figure 3. CUDA memory model
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Constant memory is a 64 kilobyte memory area that is read-only by all mul-
tiprocessors. It caches 8 kilobytes per multiprocessor. It is slow enough: a delay 
of several hundred cycles in the absence of the necessary data in the cache.

Texture memory is a block readable by all multiprocessors. Data is sam-
pled using the texture units of the video chip, so linear data interpolation 
options are provided at no additional cost. 8 kilobytes per multiprocessor 
are cached. It is slow as global: hundreds of latency cycles when there is no 
data in the cache.

Naturally, global, local, texture, and constant memory are physically 
the same memory, known as local video memory of a video card. Their 
differences in different caching algorithms and access models. The central 
processor can update and ask only external memory: global, constant and 
texture [16, p. 25].

From what has been written above, it is clear that CUDA provides for 
a special approach to development, which is not quite the same as that 
adopted in programs for CPU. You need to remember about different types 
of memory, that local and global memory are not cached and the delays in 
accessing it are much higher than in register memory, since it is physically 
located in separate microcircuits.

The hardware and software architecture presented by Nvidia for computing 
on CUDA video chips is well suited for solving a wide range of tasks with 
high parallelism. CUDA runs on a large number of NVIDIA video chips, and 
improves the GPU programming model, greatly simplifying it and adding a 
large number of features, such as resolution memory, the ability to synchronize 
streams, double-precision calculations, and integer operations [17, p. 230].

CUDA is a technology available to every software developer, it can be used 
by any programmer who knows the C language, but one of the drawbacks of 
CUDA is its binding to specific GPU models, because this architecture works 
only on video chips from this company, and not even at all, but starting from the 
series GeForce 8 and 9 and the corresponding Quadro and Tesla.

5. Advantages and Limitations
From a programmer’s point of view, a graphics pipeline is a set of pro-

cessing steps. The geometry block generates triangles, and the rasterization 
block generates pixels displayed on the monitor. The traditional GPGPU 
programming model is depicted in Figure 4:
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To transfer the calculations to the GPU within the framework of such 
a model, a special approach is needed. Even the element-wise addition of 
two vectors will require drawing the figure on the screen or in an off-screen 
buffer. The figure is rasterized, the color of each pixel is calculated accord-
ing to a given program (pixel shader). The program reads the input data 
from the textures for each pixel, adds them and writes them to the output 
buffer. All these numerous operations in a common programming language 
are written by a single operator. Therefore, the use of GPGPU for gener-
al-purpose computing has a limitation in the form of too much complexity 
for training developers. A very specific model of memory and execution is 
of particular note [18, p. 298].

The hardware-software architecture for computing on GPUs from 
Nvidia differs from previous GPGPU models in that it allows you to write 
programs for GPUs in the real C language with standard syntax, pointers, 
and the need for a minimum of extensions to access the computing resources 
of video chips. CUDA is independent of the graphics APIs and has some 
features designed specifically for general-purpose computing.

Advantages of CUDA over the traditional approach to GPGPU  
computing:

– the CUDA application programming interface is based on the standard 
C programming language with extensions, which simplifies the process of 
learning and implementing the CUDA architecture;

 
Figure 4. GPGPU programming model
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– CUDA provides access to 16K shared memory between threads on a 
multiprocessor, which can be used to organize a cache with a wide band-
width, compared to texture samples;

– more efficient data transfer between system and video memory no 
need for graphical APIs with redundancy and overhead;

– linear addressing of memory, and gather and scatter, the ability to 
write to arbitrary addresses;

– hardware support for integer and bit operations.
The main limitations of CUDA:
– lack of recursion support for the functions performed;
– minimum block width of 32 threads;
– CUDA closed architecture owned by Nvidia.
The weaknesses of programming using the previous GPGPU methods 

are that these methods do not use vertex shader execution units in previous 
unified architectures, the data is stored in textures and displayed in an off-
screen buffer, and multi-pass algorithms use pixel shader units. The limita-
tions of GPGPU include: insufficient use of hardware capabilities, memory 
bandwidth limitations, lack of scatter operation (only gather), mandatory 
use of the graphics API [19, p. 415].

The main advantages of CUDA compared to previous GPGPU methods 
stem from the fact that this architecture is designed for the efficient use of 
non-graphical computing on the GPU and uses the C programming lan-
guage, without requiring the transfer of algorithms to a form convenient for 
the concept of a graphics pipeline. CUDA offers a new way of computing 
on the GPU that does not use graphics APIs, offering random access to 
memory (scatter or gather). Such architecture is free from the disadvantages 
of GPGPU and uses all the execution units, and also expands the possibili-
ties due to integer mathematics and bit shift operations.

In addition, CUDA opens up some hardware features not available from 
the graphics APIs, such as shared memory. This is a small memory (16 kilo-
bytes per multiprocessor), to which thread blocks have access. It allows 
you to cache the most frequently used data and can provide a higher speed 
compared to using texture samples for this task. This, in turn, reduces the 
sensitivity to the bandwidth of parallel algorithms in many applications. For 
example, it is useful for linear algebra, fast Fourier transform, and image 
processing filters.
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Convenient in CUDA and memory access. The program code in the 
graphic API displays data in the form of 32 single-precision floating-point 
values (RGBA values simultaneously in eight render targets) in predefined 
areas, and CUDA supports scatter recording, i.e., an unlimited number of 
records at any address. Such advantages make it possible to execute cer-
tain algorithms on the GPU that cannot be effectively implemented using 
GPGPU methods based on graphic APIs.

Also, graphic APIs without fail store data in textures, which requires 
preliminary packing of large arrays into textures, which complicates the 
algorithm and forces the use of special addressing. And CUDA allows you 
to read data at any address. Another advantage of CUDA is the optimized 
data exchange between the CPU and GPU. And for developers who want 
to access a low level (for example, when writing another programming lan-
guage), CUDA offers the possibility of low-level assembly language pro-
gramming.

6. Memory Coalescing
GPUs work best when streams are running in adjacent memory areas, 

that is, when memory access is combined. Memory access becomes serial-
ized in the case of improper access, sparse memory access, or inconsistent 
memory access, and this will greatly affect performance. The following 
code example shows the operations of memory merge (Cornel Virtual Sem-
inar, 2013; Pan-American Institute for Policy Studies, 2011).

__global__ void program_mem(float *g){ float a=3.14; 
int i= threadIdx.x; g[i]=a; g [i*2]=a;}.

The most common method adapted to improper memory access is data 
reorganization. In (Wu et al., 2013) two algorithms for data reorganization 
are proposed. In the fill algorithm, the memory segments are supplemented 
with empty slots, which makes the segment access united. 

However, since it reorganizes the flows with the data, this method can 
affect other links in the kernel. Sharing algorithm works by offsetting all 
non-merging access from global memory to shared memory, thereby reduc-
ing data duplication. In (Fauzia et al., 2015), a dynamic tool for analyzing 
unrelated memory accesses is proposed, and a structure that redistributes 
work between strains in deformation to avoid unrelated memory accesses.
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7. Streams
It is also possible to improve concurrency in CUDA by running multiple 

cores in parallel using CUDA threads. By increasing the number of concur-
rent streams, a higher degree of concurrency can be achieved. Flow is an 
orderly queue of operations that involves running the kernel and transfer-
ring memory that will be executed by the GPU. Figure 4 shows n + 1 inde-
pendent thread running in parallel. 

Flows are useful when performing heterogeneous computations in 
which the CPU and GPU operate simultaneously. While the GPU is busy 
running the kernel and transferring memory, the CPU continues to per-
form its own operations and, when completed, synchronizes with the GPU 
to obtain results. Thus, along with the data parallelism achieved through 
streams and blocks, parallelism can also be achieved when programming 
on a GPU using streams.

8. Review on GPU Optimization Strategies
The first step to optimizing CUDA is to identify performance bottle-

necks. Three main optimizations considered by default for a GPU are kernel 
optimization, memory optimization, and delay optimization (Cornel Virtual 
Seminar, 2013; Pan American Advanced Study Institute, 2011; Patterson, 
2009; Wittenbrink et al ., 2011; CUDA Optimization Techniques 2010).

9. Kernel Optimization
The CUDA visual profiling tool can be used to identify bottlenecks in the 

CUDA core. The first step is to check with Visual Profiles, whether the ker-
nel is bound to the bandwidth or to the computation. For cores with limited 
bandwidth, some optimizations should be considered to avoid global memory 
pooling, to use partitioned memory as a programmer-developed cache when-
ever possible, considering the use of array structure structures data. 

For computed bound kernels that are less likely, some reduction in com-
mand strength can be made, for example, replacing a multiplication oper-
ation by a shift or addition operation, or by replacing a division operation 
by a reverse multiplication operation. Reducing the total number of trans-
actions can also help. 

Expensive conversion can be reduced by pre-calculating and storing val-
ues in temporary variables. In addition, kernels should be made as large as 
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possible so that the maximum amount of work can be performed with lim-
ited kernel calls, and kernel startup overhead can be reduced. Restrictions on 
shared memory and the use of registers in the kernel can also be attempted, 
thus increasing kernel occupancy. In (Lee et al., 2012) some effective kernel 
optimization strategies for neuroimaging algorithms are proposed. 

They optimized compute-related kernels by reducing the use of regis-
ters and increasing data throughput by increasing workloads of threads. For 
memory-related cores, the data is reorganized into stand-alone structures, 
and a multi-pass approach is used for efficient optimization. 

The kernel startup configuration can also be optimized by adjusting the 
number of blocks and the number of threads in each block so that the device 
is used to its maximum. There should be enough independent threads to 
hide the delays of instructions and memory. Avoiding thread divergence is 
also an important technique used to optimize the kernel.

10. Memory Optimization
When optimizing memory, there are two main factors to consider: 

memory access templates and the number of concurrent memory requests. 
Unlike processors that are designed in such a way that slightly irregular 
memory access templates do not affect performance, in GPUs the same 
access templates can greatly affect performance. Using this special GPU 
address space, such as memory of constants and textures, which is based on 
spatial and temporal localization, this limitation can be eliminated. 

For very commonly used data, you can also use shared memory, which 
is a bit limited in size. Memory pooling is another method to consider when 
using global memory.

However, there are advantages to minimizing the use of global memory 
and maximizing the use of shared memory without conflicts of banking 
where possible. Another important consideration when optimizing memory 
is to reduce the overhead of transferring memory between the host and the 
device. Programmers should remember that maximum computing is per-
formed on the device so that frequent memory transfers between CPU and 
GPU can be reduced. 

Programmers should also remember that CUDA memory management 
operations, which are cudaMalloc and cudaFree, are expensive operations 
compared to their C malloc counters and free. 
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Therefore, to reduce the use of these operations, it is always advanta-
geous to allocate memory once at the beginning of the operation and to 
continue to use memory for each kernel call. Threads, which are a sequence 
of operations performed in the issuing order, can be used to override mem-
ory operations, and the kernel is started to provide additional asynchrony, 
thereby improving performance (Figure 5).

 

Figure 6. CUDA streams

In (Li et al., 2016), the problem of memory efficiency in deep clotting 
neural networks (CNNs) in GPUs is studied. The memory access pat-
terns of various memory-related CNN levels are analyzed and effectively 
optimized to reduce off-chip memory access and core communication.  
The authors (Siegel et al., 2011) proposed a method of optimizing memory 
layout in their parallel version of the real Gravit application. They divide 
large memory structures into smaller substructures and consistently align 
them in global memory. The performance improvement was 50% compared 
to the non-optimized application layout.
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11. Recent Trends in GPU Computing
The great success of general-purpose GPUs is due to the fact that they 

are very inexpensive. Two major GPU manufacturers, NVIDIA and AMD, 
are developing mass GPUs for the entertainment industry, and with the 
advent of versatile GPUs, they have added additional GPU functionality to 
meet this new trend. GPUs are now available in almost everything from cell 
phones to supercomputers. GPU parallelization is currently used in virtually 
all areas of scientific computing, ranging from image and video processing, 
remote sensing, machine learning, operations research, data mining, etc. 
on GPUs spanning different areas of research. Google searches for GPU 
calculations have resulted in many articles on GPU calculations in various 
fields of research. Recently, a great deal of work has been done on GPUs 
in the fields of remote sensing, medicine, molecular biology, and artificial 
intelligence. In (Ma et al., 2016), a multiple image model based on GPU-
based parallel processing for remote sensing applications was proposed.

In (Ke, et al., 2016), a parallel computing environment for filtering and 
smoothing clouds for remote sensing images was proposed. In addition, a 
Kepler computing architecture-based graphics processor was used to detect 
LANDSAT-7 multi-image oil spills (Bhangale et al. 2017). Most of these 
algorithms have achieved significant acceleration compared to their CPU 
counterparts. GPU programming is widely used in medicine and molecular 
biology. Defining a one-part cryo-EM structure is a new trend that is trans-
forming structural biology. GPUs are used to achieve significant accelera-
tion in image classification and high-resolution refinement steps included 
in the cryo-EM structure determination workflow (Kimanius et al., 2016). 
Multiple sequence alignment is an extremely intense computational prob-
lem in computational molecular biology, where similar DNA sequences are 
aligned, and a prediction of molecular function is made.

In (Chen et al. 2017), a heterogeneous CPU / GPU platform is used to 
build such an alignment system. In (Sundfeld et al. 2017), the first GPU solu-
tion was proposed to solve the RNA structural alignment problem based on 
the Sankoff algorithm. In (Dubey et al., 2016) GPUs are used to predict the 
structure of the protein ab initio, which is a computational prediction of the 
structure of proteins on its primary amino acid sequence. This is a very expen-
sive computational algorithm, and the authors have made significant gains 
in computational time when used on GPUs. Research in other areas is also 
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currently being carried out on GPUs to accelerate intensive computing. One 
such work in the field of physics is Feynman’s integral estimation by a sectoral 
decomposition approach (FIESTA) (Smirnov, 2016), which is a new algorithm 
for improving optical performance in integral estimation. It aims to calculate 
with an increased number of sampling points to reduce uncertainty estimates.

GPU-based (Mantas et al., 2016) implements the realization of several 
simple numerical examples of equations in private derivatives to give an 
idea of how effectively such computationally complex mathematical prob-
lems can be solved on a GPU platform. (Jung and Bae, 2018) proposes to 
implement on the GPU a new linear equation solver that can be used to ana-
lyze mechanical systems. (Domínguez et al., 2016) proposes to implement 
on the GPU computationally expensive hydrodynamics of smoothed par-
ticles (SPH), a numerical method suitable for describing various complex 
flows with a free surface with large breaks.

A parallel implementation of the most widely used Elastic Net machine 
learning algorithms and Lasso algorithms is presented in (Zhou et al., 2015). 
(Wu et al. 2017) proposes a model called VLogGP to study the behavior of 
parallel applications communication and memory access models for heter-
ogeneous CPU / GPU systems. In (Doulgerakis et al. 2017), the implemen-
tation of the restoration of computational parameters in diffusion optical 
tomography on GPU is presented. It is believed that this method is very 
applicable to systems with continuous wave and frequency domains, and 
it has achieved an almost 10x increase in speed when used on GPUs. Cur-
rently, NVIDIA GPUs are also at the forefront of accelerating many deep 
neural networks and artificial intelligence applications 10-20 times com-
pared to the processor, reducing training time from weeks to days. 

Next, we look at the GPU architectures developed by NVIDIA after the Fermi 
architecture and the new functionality added to each of them to improve the effi-
ciency of GPU computing. Fermi’s immediate successor, the Kepler architecture 
(NVIDIA Kepler GK110, 2013), has undergone major changes to the organiza-
tion of a streaming multiprocessor (now called SMX) with four multiprocessor 
processors, each with 192 CUDA cores (1536 CUDA cores per chip). Also, the 
clock frequency was reduced from 1.5 GHz to 1 GHz. All of this was aimed at 
improving performance by increasing the number of cores running at a reduced 
clock speed. Compared to Fermi, L2 cache throughput has also been increased 
to 512KB for servicing applications that use a large amount of L2 cache.
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Each SMX in Kepler is equipped with four deformation planners and 
eight command scheduling modules, allowing four deformations to be exe-
cuted and output from 32 parallel streams simultaneously. The number of 
registers per stream was quadrupled to 255. The memory configuration is 
like Fermi, with additional partitioning for 64 KB total memory up to 32 KB 
each between shared memory and L1 cache. Kepler has also introduced a 
new feature called dynamic concurrency, which allows the GPU to gener-
ate new work for itself without the processor. The Maxwell architecture 
(NVIDIA Maxwell GM204 Architecture, 2016), the successor to Kepler, 
has provided a great leap in energy efficiency and productivity compared 
to previous generations. It also provides twice the performance per watt 
compared to Kepler products. The Maxwell architecture consists of 16SM 
(now called SMM) with 128 CUDA cores (2048 CUDA cores per chip) and 
128 texture blocks. The memory bandwidth was increased from 192 GB/s 
Kepler to 224 GB/s, and the L2 cache size was increased to 2048 KB. 

Each Maxwell SMM contains four strain planners capable of sending 
two stroke instructions. Compared to Kepler, the memory hierarchy has also 
changed due to the use of a dedicated memory of 96k, while the L1 cache is 
combined with the texture cache function. Each Maxwell CUDA core with 
more dedicated shared memory and large cache can provide about 1.4 times 
greater performance per kernel compared to Kepler. In addition to increas-
ing power and computing performance, Maxwell also provides some other 
features, such as NVIDIA Voxel Global Illumination (VXGI), multi-frame 
sampling smoothing (MFAA), dynamic superresolution, conservative ras-
terization, multicast, and sparse text. 

The Tesla P100 (NVIDIA Tesla P100 Technical Document, 2016), Max-
well’s successor to the Pascal architecture, is the world’s fastest GPU with 
15.3 billion transistors. The most important feature of this GPU is the new 
high-speed NVLink interface, which provides data transfer between the GPU 
at up to 160 GB / s. It provides a single, single VAP for CPU and GPU memory, 
greatly simplifying GPU programming. Subtraction computing is an important 
feature in Pascal architecture, which allows commands to be subtracted with 
command-level granularity rather than granularity of flow blocks, as in ear-
lier architectures. The GP100 SM ISA also provides new arithmetic operations 
that can perform FP16 operations on a single-core CUDA very quickly, and 
allows two FP16 values to be stored in 32-bit GP100 registers. This allows 
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you to quickly and efficiently train and deploy large neural networks with 
deep learning. The GP100 also provides improved atomic operations. A com-
parison between the three NVIDIA GPU architectures is shown in Table 1.  
The next-generation NVIDIA GPU should be launched in early 2018.

Table 1
Comparison between three Tesla GPU architectures  

(NVIDIA Parallel Forall, 2014)

GPU Kepler 
GK110 

Maxwell 
GM200 Pascal GP100 

Compute capability 3.5 5.2 6.0 
Threads per warp 32 32 32 
Max warp per multiprocessor 64 64 64 
Max threads per multiprocessor 2048 2048 2048 
Max thread blocks/
multiprocessor 16 32 32 

Max 32 bit registers per SM 65536 65536 65536 
Max registers per block 65536 32768 65536 
Max registers per thread 255 255 255 
Max thread block size 1024 1024 1024 
CUDA cores per SM 192 128 64 
Number of SMs 8 16 60 
Total CUDA cores 1536 2048 3840 
Shared memory size/ 
SM configurations 16K/32K/48K 96K 

(dedicated) 64KB (dedicated) 

L1 cache/SM 64KB 64KB (split) 24KB (dedicated) 
L2 cache 512KB 2048KB 4096KB 

12. Conclusion
Key to performance improvement in CUDA applications is to reduce 

the global memory latency by providing massive multithreading so that the 
cores have enough amount of work to perform. 

Though porting any algorithms to the GPU is fairly easy fine tuning the 
programs to exploit the maximum capacity of the GPU is a major challenge. 

The GPU code has to be largely optimized to attain the maximum effi-
ciency of the GPU being used. In this paper we have reviewed with exam-
ples some common programming strategies adopted by the GPU program-
mers to take maximum advantage of the GPU programming. 
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We have also reviewed some common optimization techniques like ker-
nel optimization, memory optimization, register optimization adopted by 
the GPU programmers to fine tune the GPU applications. 

Our future work includes parallelization of some powerful image 
retrieval algorithms using the latest CUDA architecture and fine tune the 
application using the different programming and optimization strategies 
discussed. However, achieving peak achievable performance for a particu-
lar architecture rather than getting stuck in the local maximum of perfor-
mance is a big challenge. 

Performing calculations on GPU shows excellent results in algorithms 
that use parallel data processing. That is, when the same sequence of math-
ematical operations is applied to a large amount of data. 

A flow unit is a collection of simultaneously running threads that can 
interact with each other through barrier synchronization and shared mem-
ory. Each stream block has a unique block ID in its grid. 

Moreover, the best results are achieved if the ratio of the number of 
arithmetic instructions to the number of memory accesses is large enough. 

These places less demands on execution control (flоwcontrol), and the 
high density of mathematics and the large amount of data eliminate the need 
for large caches, like on CPU.
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