
180

Andriy Dudnik, Tetiana Domkiv

1 Doctor of Technical Sciences, Associate Professor,
Associate Professor, Department of Network and Internet Technologies,
Taras Shevchenko National University of Kyiv, Ukraine
2 Graduate Student in the Department of Software Engineering,
National Aviation University, Ukraine

© Andriy Dudnik, Tetiana Domkiv

CHAPTER «ENGINEERING SCIENCES»

CUDA ARCHITECTURE ANALYSIS AS THE DRIVING FORCE
OF PARALLEL CALCULATION ORGANIZATION

Andriy Dudnik1

Tetiana Domkiv2

DOI: https://doi.org/10.30525/978-9934-588-38-9-59

Abstract. Advancements in the Internet and cloud computing have led
to a wealth of multimedia data, and processing of these data has become
more complex and computationally intensive. With the advent of scalable
low-cost GPUs with very high computing power, processing such big data
has become less expensive and efficient. Rapid developments are also tak-
ing place in the field of programming languages and various programming
and debugging tools, which simplify GPU programming. However, effi-
cient and complete use of GPU resources remains a challenge. The purpose
of this article is to provide a brief overview of the NVIDIA CUDA architec-
ture and to consider the various programming and optimization strategies
adopted by researchers to accelerate GPU computing. The purpose of this
study is to provide researchers with knowledge about the various program-
ming methods and optimizations in GPU programming and to motivate
them to create highly efficient parallel algorithms by removing the max-
imum available graphics processor capabilities. Graphics Processing Unit
(GPU) has entered the General Purpose Computing Domain (GPGPU) for
over a decade now. The growth of frequencies of universal processors is
stopped by physical limitations and high power consumption, and their per-
formance is increasing more and more often due to the placement of several
cores in one chip. Each core works separately from the others, following

181

Chapter «Engineering sciences»

different instructions for different processes. Specialized vector capabili-
ties (SSЕ2 and SSЕ3) for four-component (single precision floating-point
calculations) and two-component (double precision) vectors appeared in
universal processors due to the increased demand for graphic applications
in the first place. That is why the use of GPU is more profitable for certain
tasks, because they have been made for this. For example, in Nvidia video
chips, the main unit is a multiprocessor with eight to ten cores and hun-
dreds of ALUs in general, several thousand registers and a small amount
of shared memory. In addition, the video card contains fast global memory
with access to all multiprocessors, local memory in each multiprocessor, as
well as special memory for constants. CPU cores are designed to execute a
single stream of consecutive instructions with maximum performance, and
GPUs are designed to quickly execute a large number of parallel threads
of instructions. Universal processors are optimized to achieve high perfor-
mance of a single instruction stream, processing both integers and floating
point numbers. At the same time, access to memory is random.

1. Introduction
GPU differs from CPU also in terms of access to memory. In GPU, it is

connected and easily predictable: if a texel of texture is read from memory,
then after a while the time will come for neighboring texels. And the same
thing when recording: the pixel is written to the framebuffer, and after a few
ticks the one located next to it will be recorded. Therefore, the organization
of memory is different from that used in CPU. And the video chip, unlike
universal processors, just does not need a large cache, and for textures you
need only a few (up to 128-256 in the current GPU) kilobytes.

And the work with memory in GPU and CPU itself is somewhat differ-
ent. Not all central processors have built-in memory controllers, but in all
GPUs there are usually several controllers. In addition, faster open memory
is used, and as a result of the video chip, memory bandwidth is several times
more available, which is also very important for parallel calculations that
operate with huge data streams [1, p. 56; 5, p. 30].

About the differences in caching. Generic CPUs use cache memory to
increase performance by reducing memory access latency, while GPUs use
cache or shared memory to increase throughput. CPUs reduce memory
access delays with large cache sizes, as well as code branch prediction.

182

Andriy Dudnik, Tetiana Domkiv

These hardware parts occupy most of the chip area and consume a lot of
energy. Video chips circumvent the problem of memory access delays by
simultaneously executing thousands of threads: while one of the threads is
waiting for data from memory, the video chip can perform calculations of
another thread without waiting and delays [2, p. 146; 6, p. 315].

There are many differences in supporting multithreading. The CPU
performs 1-2 calculation threads per processor core, and video chips can
support up to 1024 threads per multiprocessor, of which there are several
pieces in the chip. And if switching from one stream to another for a CPU
costs hundreds of clock cycles, then the GPU switches several threads in
one clock cycle [3, p. 76; 7, p. 480].

As a result of all the differences described above, the theoretical perfor-
mance of video chips is significantly superior to the performance of CPUs.

2. GPU Architecture
The Fermi architecture is considered to be the first complete NVIDIA

GPU (Patterson, 2009; Wittenbrink et al., 2011) because it provides vir-
tually all the features required for the most demanding high-performance
computing applications. This was the most significant step forward since
the G80 architecture.

Figure 1a shows a high-level block diagram of a first Fermi chip. As
shown in the figure, the Fermi architecture consists of 512 accelerator cores
called CUDA cores. Each core contains a fully pipelined integer arithmetic
and floating-point unit that perform one integer or floating-point operation
for impact. Each CUDA core is organized into 16 streaming multiproces-
sors (SM), each with 32 CUDA cores.

The second layer, 768 KB, is used by all 16 Multiprocessors and 384-bit
GDDR5 DRAM. The host interface shown in Figure 1a is used to connect
the GPU to the processor via the PCI-Express bus.

The global Giga Thread scheduler then distributes the flow blocks across
the multiprocessor flow schedulers. Figure 1b shows one SM consisting of
32 nuclei, each of which can execute a single floating-point command or
integer instruction per clock cycle. Each SM also has 16 storage operations
for memory operations, four special function modules, a 4K word register
file, and 64K local SRAM split between cache and local memory [4, p. 185;
9, p. 646].

183

Chapter «Engineering sciences»

Special Function Blocks (SFUs) are used to perform instructions such as
sine, cosine, square root, and interpolation. Threads are divided into groups
of 32 parallel threads, which are called oblique. There are two strain plan-
ners and two command sending blocks, as shown in Figure 1b.

This allows you to perform two deformations and display them simul-
taneously. In addition, there are 64 KB of internal memory that can be con-
figured as 48 KB of shared memory and 16 KB of L1 cache or vice versa
(Patterson, 2009; Wittenbrink et al., 2011; Brodtkorb et al., 2013) (Figure 1)
[8, p. 22; 10, p. 175].

3. GPU Programming Model
Programs executed by the GPU are called kernels. The execution of

these cores is assigned by the programmer to one or more computing units
(for example, in the figure there are two blocks: (0, 0) and (1, 0)).

Blocks are distributed by hardware among the available SMs, and
depending on the amount of resources required, each SM may be able to
execute multiple blocks simultaneously due to multithreading.

Each block consists of a certain number of threads, for example, in the
figure there are only two threads per block: stream (0, 0) and stream (1, 0).
Threads are executed by hardware in small groups called strains (starting
from the first GPUs with CUDA support, each strain consists of 32 threads).
All flows within a given deformation share the same program counter; there-
fore, in the case of a conditional code or a disagreement between cycles,
operations are serialized [11, p. 5].

Each thread is associated with a certain number of private registers and
local memory. Local memory is also private for each thread and is used to
store dynamically addressed arrays of registers or data that do not fit into
registers. Despite its name, it is physically located in global memory, so it is
relatively slow. Shared memory is common to each block and can be used
to exchange data streams.

Internally, collective memory is divided into banks, and when several
threads from the same deformation try to simultaneously access different
cells of shared memory stored in the same bank, a conflict arises between
banks and access is serialized. At the last level of the hierarchy, threads can
only read from constants and texture memory, but they have read / write
access to global memory. It is also possible to exchange stream data in

184

Andriy Dudnik, Tetiana Domkiv

(a)

(b)

Figure 1. (a) Fermi Architecture consisting
of 16 Streaming Multiprocessors (SMs);

(b) Single SM (Patterson, 2009; Wittenbrink et al., 2011)

185

Chapter «Engineering sciences»

global memory, but only with a fraction of the speed compared to memory,
especially if atomic instructions are used [12, p. 169].

Execution can be synchronized in each block through barriers, however, the
only way to perform global synchronization between all blocks is to complete
kernel execution and start a new one. To increase efficiency, global access to
memory is done in small segments, not at the word level. To achieve optimal
performance, threads must follow a series of merge rules (which depend on the
hardware capabilities) to avoid generating multiple memory requests, thereby
reducing the maximum achievable throughput. CUDA applications are writ-
ten in «C for CUDA», which is a subset of C with extensions to perform
functions in parallel. The programs are compiled using NVCC, the NVIDIA
CUDA compiler. The CUDA program calls parallel kernels that run in parallel
in a set of parallel threads. A programmer or compiler organizes these threads
into thread blocks and grid blocks of threads. The kernel program is created on
the GPU as a grid of parallel streaming blocks. Each thread in a thread block
executes a kernel instance and has a thread ID in its thread block, program
counter, registers, private memory for each thread, inputs, and output.

A flow unit is a collection of simultaneously running threads that can
interact with each other through barrier synchronization and shared mem-
ory. Each stream block has a unique block ID in its grid.

A grid is an array of flow blocks that execute the same kernel, read
input from global memory, write results to global memory, and synchronize
between different kernel calls. For each stream in the CUDA concurrent pro-
gramming model, there is a separate memory area for each stream that is used
to populate registers, function calls, and C variables for the automatic array.
Each flow block has a shared memory space for each block used to commu-
nicate between streams, share data, and share results in parallel algorithms.
Stream block grids share results in global memory after global kernel syn-
chronization. The CUDA grid concept is shown in Figure 2. The figure shows
a two-dimensional hierarchy of blocks and flows, commonly used for image
processing. The programmer determines the required number of flow blocks,
and it is the GPU that decides which flow blocks will be executed on any
SM. This abstraction is one of CUDA’s greatest strengths because hardware
can operate independently and efficiently. CUDA ensures that all flows in a
block are executed on the same SM at the same time and that all kernel blocks
complete execution before executing the next kernel (Figure 2) [13, p. 18].

186

Andriy Dudnik, Tetiana Domkiv

Figure 2. CUDA concept of a grid of blocks

4. CUDA memory model
The memory model in CUDA is distinguished by the possibility of byte-

by-address addressing, support for both ga-tera and sca-tera. A fairly large
number of registers is available for each stream processor, up to 1024 pieces.
Access to them is very fast, you can store 32-bit integers or floating-point
numbers in them. Each thread has access to the following types of memory
[14, p. 76] (Figure 3):

Global memory is the largest amount of memory available for all multi-
processors on a video chip, the size is from 256 megabytes to 1.5 gigabytes
on current solutions (and up to 4 GB on Tesla).

It has high bandwidth, more than 100 gigabytes / s for top NVIDIA
solutions, but very large delays of several hundred clock cycles. It is NOT
cached, it supports generalized instructions LOAD and STORE, and the
usual indications of memory. Local memory is a small amount of memory

187

Chapter «Engineering sciences»

that only one stream processor has access to. It is relatively slow: the same
as the global one.

Shared memory is a 16-kilobyte shared memory block for all stream
processors in a multiprocessor. This memory is fast enough, the same as
registers. It provides interaction of flows, is controlled directly by the devel-
oper and has low delays. The advantages of shared memory: the use of a
first level cache managed by a programmer, reducing delays in accessing
executive units (ALUs) to data, reducing the number of accesses to global
memory [15, p. 640].

Figure 3. CUDA memory model

188

Andriy Dudnik, Tetiana Domkiv

Constant memory is a 64 kilobyte memory area that is read-only by all mul-
tiprocessors. It caches 8 kilobytes per multiprocessor. It is slow enough: a delay
of several hundred cycles in the absence of the necessary data in the cache.

Texture memory is a block readable by all multiprocessors. Data is sam-
pled using the texture units of the video chip, so linear data interpolation
options are provided at no additional cost. 8 kilobytes per multiprocessor
are cached. It is slow as global: hundreds of latency cycles when there is no
data in the cache.

Naturally, global, local, texture, and constant memory are physically
the same memory, known as local video memory of a video card. Their
differences in different caching algorithms and access models. The central
processor can update and ask only external memory: global, constant and
texture [16, p. 25].

From what has been written above, it is clear that CUDA provides for
a special approach to development, which is not quite the same as that
adopted in programs for CPU. You need to remember about different types
of memory, that local and global memory are not cached and the delays in
accessing it are much higher than in register memory, since it is physically
located in separate microcircuits.

The hardware and software architecture presented by Nvidia for computing
on CUDA video chips is well suited for solving a wide range of tasks with
high parallelism. CUDA runs on a large number of NVIDIA video chips, and
improves the GPU programming model, greatly simplifying it and adding a
large number of features, such as resolution memory, the ability to synchronize
streams, double-precision calculations, and integer operations [17, p. 230].

CUDA is a technology available to every software developer, it can be used
by any programmer who knows the C language, but one of the drawbacks of
CUDA is its binding to specific GPU models, because this architecture works
only on video chips from this company, and not even at all, but starting from the
series GeForce 8 and 9 and the corresponding Quadro and Tesla.

5. Advantages and Limitations
From a programmer’s point of view, a graphics pipeline is a set of pro-

cessing steps. The geometry block generates triangles, and the rasterization
block generates pixels displayed on the monitor. The traditional GPGPU
programming model is depicted in Figure 4:

189

Chapter «Engineering sciences»

To transfer the calculations to the GPU within the framework of such
a model, a special approach is needed. Even the element-wise addition of
two vectors will require drawing the figure on the screen or in an off-screen
buffer. The figure is rasterized, the color of each pixel is calculated accord-
ing to a given program (pixel shader). The program reads the input data
from the textures for each pixel, adds them and writes them to the output
buffer. All these numerous operations in a common programming language
are written by a single operator. Therefore, the use of GPGPU for gener-
al-purpose computing has a limitation in the form of too much complexity
for training developers. A very specific model of memory and execution is
of particular note [18, p. 298].

The hardware-software architecture for computing on GPUs from
Nvidia differs from previous GPGPU models in that it allows you to write
programs for GPUs in the real C language with standard syntax, pointers,
and the need for a minimum of extensions to access the computing resources
of video chips. CUDA is independent of the graphics APIs and has some
features designed specifically for general-purpose computing.

Advantages of CUDA over the traditional approach to GPGPU
computing:

– the CUDA application programming interface is based on the standard
C programming language with extensions, which simplifies the process of
learning and implementing the CUDA architecture;

Figure 4. GPGPU programming model

190

Andriy Dudnik, Tetiana Domkiv

– CUDA provides access to 16K shared memory between threads on a
multiprocessor, which can be used to organize a cache with a wide band-
width, compared to texture samples;

– more efficient data transfer between system and video memory no
need for graphical APIs with redundancy and overhead;

– linear addressing of memory, and gather and scatter, the ability to
write to arbitrary addresses;

– hardware support for integer and bit operations.
The main limitations of CUDA:
– lack of recursion support for the functions performed;
– minimum block width of 32 threads;
– CUDA closed architecture owned by Nvidia.
The weaknesses of programming using the previous GPGPU methods

are that these methods do not use vertex shader execution units in previous
unified architectures, the data is stored in textures and displayed in an off-
screen buffer, and multi-pass algorithms use pixel shader units. The limita-
tions of GPGPU include: insufficient use of hardware capabilities, memory
bandwidth limitations, lack of scatter operation (only gather), mandatory
use of the graphics API [19, p. 415].

The main advantages of CUDA compared to previous GPGPU methods
stem from the fact that this architecture is designed for the efficient use of
non-graphical computing on the GPU and uses the C programming lan-
guage, without requiring the transfer of algorithms to a form convenient for
the concept of a graphics pipeline. CUDA offers a new way of computing
on the GPU that does not use graphics APIs, offering random access to
memory (scatter or gather). Such architecture is free from the disadvantages
of GPGPU and uses all the execution units, and also expands the possibili-
ties due to integer mathematics and bit shift operations.

In addition, CUDA opens up some hardware features not available from
the graphics APIs, such as shared memory. This is a small memory (16 kilo-
bytes per multiprocessor), to which thread blocks have access. It allows
you to cache the most frequently used data and can provide a higher speed
compared to using texture samples for this task. This, in turn, reduces the
sensitivity to the bandwidth of parallel algorithms in many applications. For
example, it is useful for linear algebra, fast Fourier transform, and image
processing filters.

191

Chapter «Engineering sciences»

Convenient in CUDA and memory access. The program code in the
graphic API displays data in the form of 32 single-precision floating-point
values (RGBA values simultaneously in eight render targets) in predefined
areas, and CUDA supports scatter recording, i.e., an unlimited number of
records at any address. Such advantages make it possible to execute cer-
tain algorithms on the GPU that cannot be effectively implemented using
GPGPU methods based on graphic APIs.

Also, graphic APIs without fail store data in textures, which requires
preliminary packing of large arrays into textures, which complicates the
algorithm and forces the use of special addressing. And CUDA allows you
to read data at any address. Another advantage of CUDA is the optimized
data exchange between the CPU and GPU. And for developers who want
to access a low level (for example, when writing another programming lan-
guage), CUDA offers the possibility of low-level assembly language pro-
gramming.

6. Memory Coalescing
GPUs work best when streams are running in adjacent memory areas,

that is, when memory access is combined. Memory access becomes serial-
ized in the case of improper access, sparse memory access, or inconsistent
memory access, and this will greatly affect performance. The following
code example shows the operations of memory merge (Cornel Virtual Sem-
inar, 2013; Pan-American Institute for Policy Studies, 2011).

__global__ void program_mem(float *g){ float a=3.14;
int i= threadIdx.x; g[i]=a; g [i*2]=a;}.

The most common method adapted to improper memory access is data
reorganization. In (Wu et al., 2013) two algorithms for data reorganization
are proposed. In the fill algorithm, the memory segments are supplemented
with empty slots, which makes the segment access united.

However, since it reorganizes the flows with the data, this method can
affect other links in the kernel. Sharing algorithm works by offsetting all
non-merging access from global memory to shared memory, thereby reduc-
ing data duplication. In (Fauzia et al., 2015), a dynamic tool for analyzing
unrelated memory accesses is proposed, and a structure that redistributes
work between strains in deformation to avoid unrelated memory accesses.

192

Andriy Dudnik, Tetiana Domkiv

7. Streams
It is also possible to improve concurrency in CUDA by running multiple

cores in parallel using CUDA threads. By increasing the number of concur-
rent streams, a higher degree of concurrency can be achieved. Flow is an
orderly queue of operations that involves running the kernel and transfer-
ring memory that will be executed by the GPU. Figure 4 shows n + 1 inde-
pendent thread running in parallel.

Flows are useful when performing heterogeneous computations in
which the CPU and GPU operate simultaneously. While the GPU is busy
running the kernel and transferring memory, the CPU continues to per-
form its own operations and, when completed, synchronizes with the GPU
to obtain results. Thus, along with the data parallelism achieved through
streams and blocks, parallelism can also be achieved when programming
on a GPU using streams.

8. Review on GPU Optimization Strategies
The first step to optimizing CUDA is to identify performance bottle-

necks. Three main optimizations considered by default for a GPU are kernel
optimization, memory optimization, and delay optimization (Cornel Virtual
Seminar, 2013; Pan American Advanced Study Institute, 2011; Patterson,
2009; Wittenbrink et al ., 2011; CUDA Optimization Techniques 2010).

9. Kernel Optimization
The CUDA visual profiling tool can be used to identify bottlenecks in the

CUDA core. The first step is to check with Visual Profiles, whether the ker-
nel is bound to the bandwidth or to the computation. For cores with limited
bandwidth, some optimizations should be considered to avoid global memory
pooling, to use partitioned memory as a programmer-developed cache when-
ever possible, considering the use of array structure structures data.

For computed bound kernels that are less likely, some reduction in com-
mand strength can be made, for example, replacing a multiplication oper-
ation by a shift or addition operation, or by replacing a division operation
by a reverse multiplication operation. Reducing the total number of trans-
actions can also help.

Expensive conversion can be reduced by pre-calculating and storing val-
ues in temporary variables. In addition, kernels should be made as large as

193

Chapter «Engineering sciences»

possible so that the maximum amount of work can be performed with lim-
ited kernel calls, and kernel startup overhead can be reduced. Restrictions on
shared memory and the use of registers in the kernel can also be attempted,
thus increasing kernel occupancy. In (Lee et al., 2012) some effective kernel
optimization strategies for neuroimaging algorithms are proposed.

They optimized compute-related kernels by reducing the use of regis-
ters and increasing data throughput by increasing workloads of threads. For
memory-related cores, the data is reorganized into stand-alone structures,
and a multi-pass approach is used for efficient optimization.

The kernel startup configuration can also be optimized by adjusting the
number of blocks and the number of threads in each block so that the device
is used to its maximum. There should be enough independent threads to
hide the delays of instructions and memory. Avoiding thread divergence is
also an important technique used to optimize the kernel.

10. Memory Optimization
When optimizing memory, there are two main factors to consider:

memory access templates and the number of concurrent memory requests.
Unlike processors that are designed in such a way that slightly irregular
memory access templates do not affect performance, in GPUs the same
access templates can greatly affect performance. Using this special GPU
address space, such as memory of constants and textures, which is based on
spatial and temporal localization, this limitation can be eliminated.

For very commonly used data, you can also use shared memory, which
is a bit limited in size. Memory pooling is another method to consider when
using global memory.

However, there are advantages to minimizing the use of global memory
and maximizing the use of shared memory without conflicts of banking
where possible. Another important consideration when optimizing memory
is to reduce the overhead of transferring memory between the host and the
device. Programmers should remember that maximum computing is per-
formed on the device so that frequent memory transfers between CPU and
GPU can be reduced.

Programmers should also remember that CUDA memory management
operations, which are cudaMalloc and cudaFree, are expensive operations
compared to their C malloc counters and free.

194

Andriy Dudnik, Tetiana Domkiv

(a

)

(b

)
Fi

gu
re

 5
. (

a)
. L

ef
t:

 li
ne

ar
 a

dd
re

ss
in

g
w

ith
 st

ri
de

 o
f o

ne
 3

2
bi

t w
or

d
(n

o
ba

nk
 c

on
fli

ct
),

M
id

dl
e

:
lin

ea
r

ad
dr

es
si

ng
 w

ith
 st

ri
de

 o
f t

w
o

32
 b

it
w

or
d

(2
 w

ay
 b

an
k

co
nfl

ic
t)

, R
ig

ht
: l

in
ea

r
ad

dr
es

si
ng

w

ith
 st

ri
de

 o
f t

hr
ee

 3
2

bi
t w

or
d

(n
o

ba
nk

 c
on

fli
ct

);
 (b

).
L

ef
t:

 c
on

fli
ct

 fr
ee

 a
cc

es
s v

ia
 r

an
do

m

pe
rm

ut
at

io
ns

, M
id

dl
e:

 c
on

fli
ct

 fr
ee

 a
cc

es
s s

in
ce

 th
re

ad
s 3

,4
,6

,7
 a

nd
 9

 a
cc

es
s t

he
 sa

m
e

w
or

d
w

ith
in

ba

nk
 5

, R
ig

ht
: c

on
fli

ct
 fr

ee
 b

ro
ad

ca
st

 a
cc

es
s (

al
l t

hr
ea

ds
 a

cc
es

s t
he

 sa
m

e
w

or
d)

 (W
en

-M
ei

, 2
01

1)

195

Chapter «Engineering sciences»

Therefore, to reduce the use of these operations, it is always advanta-
geous to allocate memory once at the beginning of the operation and to
continue to use memory for each kernel call. Threads, which are a sequence
of operations performed in the issuing order, can be used to override mem-
ory operations, and the kernel is started to provide additional asynchrony,
thereby improving performance (Figure 5).

Figure 6. CUDA streams

In (Li et al., 2016), the problem of memory efficiency in deep clotting
neural networks (CNNs) in GPUs is studied. The memory access pat-
terns of various memory-related CNN levels are analyzed and effectively
optimized to reduce off-chip memory access and core communication.
The authors (Siegel et al., 2011) proposed a method of optimizing memory
layout in their parallel version of the real Gravit application. They divide
large memory structures into smaller substructures and consistently align
them in global memory. The performance improvement was 50% compared
to the non-optimized application layout.

196

Andriy Dudnik, Tetiana Domkiv

11. Recent Trends in GPU Computing
The great success of general-purpose GPUs is due to the fact that they

are very inexpensive. Two major GPU manufacturers, NVIDIA and AMD,
are developing mass GPUs for the entertainment industry, and with the
advent of versatile GPUs, they have added additional GPU functionality to
meet this new trend. GPUs are now available in almost everything from cell
phones to supercomputers. GPU parallelization is currently used in virtually
all areas of scientific computing, ranging from image and video processing,
remote sensing, machine learning, operations research, data mining, etc.
on GPUs spanning different areas of research. Google searches for GPU
calculations have resulted in many articles on GPU calculations in various
fields of research. Recently, a great deal of work has been done on GPUs
in the fields of remote sensing, medicine, molecular biology, and artificial
intelligence. In (Ma et al., 2016), a multiple image model based on GPU-
based parallel processing for remote sensing applications was proposed.

In (Ke, et al., 2016), a parallel computing environment for filtering and
smoothing clouds for remote sensing images was proposed. In addition, a
Kepler computing architecture-based graphics processor was used to detect
LANDSAT-7 multi-image oil spills (Bhangale et al. 2017). Most of these
algorithms have achieved significant acceleration compared to their CPU
counterparts. GPU programming is widely used in medicine and molecular
biology. Defining a one-part cryo-EM structure is a new trend that is trans-
forming structural biology. GPUs are used to achieve significant accelera-
tion in image classification and high-resolution refinement steps included
in the cryo-EM structure determination workflow (Kimanius et al., 2016).
Multiple sequence alignment is an extremely intense computational prob-
lem in computational molecular biology, where similar DNA sequences are
aligned, and a prediction of molecular function is made.

In (Chen et al. 2017), a heterogeneous CPU / GPU platform is used to
build such an alignment system. In (Sundfeld et al. 2017), the first GPU solu-
tion was proposed to solve the RNA structural alignment problem based on
the Sankoff algorithm. In (Dubey et al., 2016) GPUs are used to predict the
structure of the protein ab initio, which is a computational prediction of the
structure of proteins on its primary amino acid sequence. This is a very expen-
sive computational algorithm, and the authors have made significant gains
in computational time when used on GPUs. Research in other areas is also

197

Chapter «Engineering sciences»

currently being carried out on GPUs to accelerate intensive computing. One
such work in the field of physics is Feynman’s integral estimation by a sectoral
decomposition approach (FIESTA) (Smirnov, 2016), which is a new algorithm
for improving optical performance in integral estimation. It aims to calculate
with an increased number of sampling points to reduce uncertainty estimates.

GPU-based (Mantas et al., 2016) implements the realization of several
simple numerical examples of equations in private derivatives to give an
idea of how effectively such computationally complex mathematical prob-
lems can be solved on a GPU platform. (Jung and Bae, 2018) proposes to
implement on the GPU a new linear equation solver that can be used to ana-
lyze mechanical systems. (Domínguez et al., 2016) proposes to implement
on the GPU computationally expensive hydrodynamics of smoothed par-
ticles (SPH), a numerical method suitable for describing various complex
flows with a free surface with large breaks.

A parallel implementation of the most widely used Elastic Net machine
learning algorithms and Lasso algorithms is presented in (Zhou et al., 2015).
(Wu et al. 2017) proposes a model called VLogGP to study the behavior of
parallel applications communication and memory access models for heter-
ogeneous CPU / GPU systems. In (Doulgerakis et al. 2017), the implemen-
tation of the restoration of computational parameters in diffusion optical
tomography on GPU is presented. It is believed that this method is very
applicable to systems with continuous wave and frequency domains, and
it has achieved an almost 10x increase in speed when used on GPUs. Cur-
rently, NVIDIA GPUs are also at the forefront of accelerating many deep
neural networks and artificial intelligence applications 10-20 times com-
pared to the processor, reducing training time from weeks to days.

Next, we look at the GPU architectures developed by NVIDIA after the Fermi
architecture and the new functionality added to each of them to improve the effi-
ciency of GPU computing. Fermi’s immediate successor, the Kepler architecture
(NVIDIA Kepler GK110, 2013), has undergone major changes to the organiza-
tion of a streaming multiprocessor (now called SMX) with four multiprocessor
processors, each with 192 CUDA cores (1536 CUDA cores per chip). Also, the
clock frequency was reduced from 1.5 GHz to 1 GHz. All of this was aimed at
improving performance by increasing the number of cores running at a reduced
clock speed. Compared to Fermi, L2 cache throughput has also been increased
to 512KB for servicing applications that use a large amount of L2 cache.

198

Andriy Dudnik, Tetiana Domkiv

Each SMX in Kepler is equipped with four deformation planners and
eight command scheduling modules, allowing four deformations to be exe-
cuted and output from 32 parallel streams simultaneously. The number of
registers per stream was quadrupled to 255. The memory configuration is
like Fermi, with additional partitioning for 64 KB total memory up to 32 KB
each between shared memory and L1 cache. Kepler has also introduced a
new feature called dynamic concurrency, which allows the GPU to gener-
ate new work for itself without the processor. The Maxwell architecture
(NVIDIA Maxwell GM204 Architecture, 2016), the successor to Kepler,
has provided a great leap in energy efficiency and productivity compared
to previous generations. It also provides twice the performance per watt
compared to Kepler products. The Maxwell architecture consists of 16SM
(now called SMM) with 128 CUDA cores (2048 CUDA cores per chip) and
128 texture blocks. The memory bandwidth was increased from 192 GB/s
Kepler to 224 GB/s, and the L2 cache size was increased to 2048 KB.

Each Maxwell SMM contains four strain planners capable of sending
two stroke instructions. Compared to Kepler, the memory hierarchy has also
changed due to the use of a dedicated memory of 96k, while the L1 cache is
combined with the texture cache function. Each Maxwell CUDA core with
more dedicated shared memory and large cache can provide about 1.4 times
greater performance per kernel compared to Kepler. In addition to increas-
ing power and computing performance, Maxwell also provides some other
features, such as NVIDIA Voxel Global Illumination (VXGI), multi-frame
sampling smoothing (MFAA), dynamic superresolution, conservative ras-
terization, multicast, and sparse text.

The Tesla P100 (NVIDIA Tesla P100 Technical Document, 2016), Max-
well’s successor to the Pascal architecture, is the world’s fastest GPU with
15.3 billion transistors. The most important feature of this GPU is the new
high-speed NVLink interface, which provides data transfer between the GPU
at up to 160 GB / s. It provides a single, single VAP for CPU and GPU memory,
greatly simplifying GPU programming. Subtraction computing is an important
feature in Pascal architecture, which allows commands to be subtracted with
command-level granularity rather than granularity of flow blocks, as in ear-
lier architectures. The GP100 SM ISA also provides new arithmetic operations
that can perform FP16 operations on a single-core CUDA very quickly, and
allows two FP16 values to be stored in 32-bit GP100 registers. This allows

199

Chapter «Engineering sciences»

you to quickly and efficiently train and deploy large neural networks with
deep learning. The GP100 also provides improved atomic operations. A com-
parison between the three NVIDIA GPU architectures is shown in Table 1.
The next-generation NVIDIA GPU should be launched in early 2018.

Table 1
Comparison between three Tesla GPU architectures

(NVIDIA Parallel Forall, 2014)

GPU Kepler
GK110

Maxwell
GM200 Pascal GP100

Compute capability 3.5 5.2 6.0
Threads per warp 32 32 32
Max warp per multiprocessor 64 64 64
Max threads per multiprocessor 2048 2048 2048
Max thread blocks/
multiprocessor 16 32 32

Max 32 bit registers per SM 65536 65536 65536
Max registers per block 65536 32768 65536
Max registers per thread 255 255 255
Max thread block size 1024 1024 1024
CUDA cores per SM 192 128 64
Number of SMs 8 16 60
Total CUDA cores 1536 2048 3840
Shared memory size/
SM configurations 16K/32K/48K 96K

(dedicated) 64KB (dedicated)

L1 cache/SM 64KB 64KB (split) 24KB (dedicated)
L2 cache 512KB 2048KB 4096KB

12. Conclusion
Key to performance improvement in CUDA applications is to reduce

the global memory latency by providing massive multithreading so that the
cores have enough amount of work to perform.

Though porting any algorithms to the GPU is fairly easy fine tuning the
programs to exploit the maximum capacity of the GPU is a major challenge.

The GPU code has to be largely optimized to attain the maximum effi-
ciency of the GPU being used. In this paper we have reviewed with exam-
ples some common programming strategies adopted by the GPU program-
mers to take maximum advantage of the GPU programming.

200

Andriy Dudnik, Tetiana Domkiv

We have also reviewed some common optimization techniques like ker-
nel optimization, memory optimization, register optimization adopted by
the GPU programmers to fine tune the GPU applications.

Our future work includes parallelization of some powerful image
retrieval algorithms using the latest CUDA architecture and fine tune the
application using the different programming and optimization strategies
discussed. However, achieving peak achievable performance for a particu-
lar architecture rather than getting stuck in the local maximum of perfor-
mance is a big challenge.

Performing calculations on GPU shows excellent results in algorithms
that use parallel data processing. That is, when the same sequence of math-
ematical operations is applied to a large amount of data.

A flow unit is a collection of simultaneously running threads that can
interact with each other through barrier synchronization and shared mem-
ory. Each stream block has a unique block ID in its grid.

Moreover, the best results are achieved if the ratio of the number of
arithmetic instructions to the number of memory accesses is large enough.

These places less demands on execution control (flоwcontrol), and the
high density of mathematics and the large amount of data eliminate the need
for large caches, like on CPU.

References:
1. Kvasnikov, V. P., Dudnik, A. S., Pysarchuk, O. O., & Domkiv, T. S. (2020).

Using Cuda and Blockchain Technologies to Recover an Encrypted Pdf File
Password. Metrology and Instruments, (6), 54–60. doi: https://doi.org/10.33955/
2307-2180(6)2019.54-60

2. Rokochinskiy, A., Volk, P., Kuzmych, L., Turcheniuk, V., Volk, L.,&
Dudnik, A. (2019, December). Mathematical model of meteorological software for
systematic flood control in the carpathian region. In 2019 International Conference
on Advanced Trends in Information Theory (ATIT), pp. 143–148. IEEE.

3. Skuratovskyj, R. V., Dudnyk, A. S., & Kvashuk, D. M. Vlastyvosti skruche-
noyi kryvoyi edvarsa, podilnist yiyi tochky navpil i yix zastosuvannya v krypto-
grafiyi. Problemy informatyzaciyi ta upravlinnya, 4(60), 71–78.

4. Dudnik, A. S., Cholishkina, O. G., & Lutsky, M. G. (2018). Analysis of the
technology of blocking application between network internet technology for pro-
cessing and storage of results of measurements. Molodyi vchenyi, 57(5), 183.

5. Bhangale, U., Durbha, S. S., King, R. L., Younan, N. H., & Vatsavai, R. (2017).
High performance GPU computing based approaches for oil spill detection from mul-
ti-temporal remote sensing data. Remote Sensing of Environment, 202, 28–44.

201

Chapter «Engineering sciences»

6. Chen, X., Wang, C., Tang, S., Yu, C., & Zou, Q. (2017). CMSA: a hetero-
geneous CPU/GPU computing system for multiple similar RNA/DNA sequence
alignment. BMC Bioinformatics, 18(1), 315.

7. Domínguez, J. M., Barreiro, A.J.C. Crespo, O. García-Feal, & Gómez-
Gesteira, M. (2016). Parallel CPU/GPU Computing for smoothed particle hydro-
dynamics models. In Recent Advances in Fluid Dynamics with Environmental
Applications, pp. 477–491. Springer International Publishing.

8. Doulgerakis, M., Eggebrecht, A., Wojtkiewicz, S., Culver, J., & Dehghani,
H. (2017). Toward real-time diffuse optical tomography: accelerating light prop-
agation modeling employing parallel computing on GPU and CPU. Journal of
Biomedical Optics, 22(12), 125001.

9. Dubey, S. P., Kini, N. G., Kumar, M. S., & Balaji, S. (2016). Ab initio protein
structure prediction using GPU computing. Perspectives in Science, 8, 645–647.

10. Jung, J., & Bae, D. (2018). Accelerating implicit integration in multi-body
dynamics using GPU computing. Multibody System Dynamics, 42(2), 169–195.

11. Ke, J., Sowmya, A., Guo, Y., Bednarz, T., & Buckley, M. (2016, November).
Efficient GPU computing framework of cloud filtering in remotely sensed image
processing. In Digital Image Computing: Techniques and Applications (DICTA),
2016 International Conference on, pp. 1–8. IEEE.

12. Kim, K., Lee, S., Yoon, M. K., Koo, G., Ro, W. W., & Annavaram, M.
(2016, March). Warped-preexecution: A GPU pre-execution approach for improv-
ing latency hiding. In High Performance Computer Architecture (HPCA), 2016
IEEE International Symposium on, pp. 163–175. IEEE.

13. Kimanius, D., Forsberg, B. O., Scheres, S. H., & Lindahl, E. (2016).
Accelerated cryo-EM structure determination with parallelisation using GPUs in
RELION-2. Elife, 5, e18722.

14. Kirk, D. B., & Wen-Mei, W. H. (2016). Programming massively parallel pro-
cessors: a hands-on approach. Morgan Kaufmann. ISBN: 9780123914187, Elsevier.

15. Li, C., Yang, Y., Feng, M., Chakradhar, S., & Zhou, H. (2016, November).
Optimizing memory efficiency for deep convolutional neural networks on GPUs.
In High Performance Computing, Networking, Storage and Analysis, SC16:
International Conference for, pp. 633–644. IEEE.

16. Ma, Y., Chen, L., Liu, P., & Lu, K. (2016). Parallel programming templates
for remote sensing image processing on GPU architectures: design and implemen-
tation. Computing, 98(1-2), 7–33.

17. Mantas, J. M., De la Asunción, M., & Castro, M. J. (2016). An introduction
to GPU computing for numerical simulation. In Numerical Simulation in Physics
and Engineering, pp. 219–251. Springer International Publishing.

18. Sundfeld, D., Havgaard, J. H., Gorodkin, J., & De Melo, A. C. (2017, March).
CUDA-Sankoff: using GPU to accelerate the pairwise structural RNA alignment.
In 2017 25th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 295–302. IEEE.

19. Wu, Y., Song, J., Ren, K., & Li, X. (2017). Research on Log GP based
parallel computing model for CPU/GPU cluster. In Information Technology and
Intelligent Transportation Systems, pp. 409–420. Springer International Publishing.

