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Abstract. The content of the spherical approximation is to map the 
points of the ellipsoid with geodetic coordinates to points on the sphere, the 
spherical coordinates of which are taken as coordinates of the points on the 
ellipsoid. Moreover, the values of the first order and the members of higher 
orders are neglected. The described transformation of geodetic coordinates 
into spherical coordinates is not the only way of establishing correspond-
ence between the reference ellipsoid and the auxiliary sphere. You can also 
compare the spherical coordinates to the ellipsoidal coordinates in the form 
of the given latitude and longitude. The use of the latter leads to simpler 
formulas, but the use of geodetic coordinates has greater advantages from 
a practical point of view, since it is difficult to convert the geodetic coordi-
nates into the given ones for a large number of points.

It is necessary to find the same reflection by numerically comparing the 
geodetic coordinates on the ellipsoid and sphere, but with the preservation 
of the values of the first order. Therefore, it is logical to say that ellipsoidal 
corrections should be considered in order to obtain higher accuracy in cal-
culating the components of the Earth’s anomalous gravitational field.

The methodology of such a scientific study is that some arbitrary ele-
ment F of the anomalous gravitational field (disturbing potential, height 
of the geoid, anomaly of gravity, etc.) is arranged in a series by a small 
parameter characterizing the deviation of the reference ellipsoid from 
the sphere. The height of the geoid, the deflection is heavy, the anomaly 
of gravity and other similar elements of some function F0 on the sphere 
are uniquely determined by the basic function of the disturbing potential 
T0 by means of spherical relations. The corresponding functions F will 
be the values of the elements on the ellipsoid and are also uniquely re-
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lated to T=T0 by some ellipsoidal formulas. Accordingly, you can define 
functions F1.

Based on the studies of the components of the Earth’s anomalous grav-
itational field, we can summarize the following. The ellipsoidal correction 
e2∆g1

1 cannot be taken into account when calculating the Earth’s force field, 
since the anomaly of gravity is almost independent of the offset of the refer-
ence coordinate system. But the anomaly of gravity strongly depends on the 
harmonics of the second degree, in particular, on the second zonal harmonic 
coefficient C20, and so on the compression f of the reference ellipsoid. The 
value of the ellipsoidal correction e2∆g1

2 obtained by us is of the same order 
of magnitude as the current high-precision gravimetric satellite data, so it 
must be taken into account when determining the Earth’s force field. The 
results of the calculations performed in a spherical approximation showed 
that there is a strong dependence of the height of the geoid on the displace-
ment of the reference coordinate system. Ellipsoidal corrections e N2 1

1 , e N2 2
1  

and e N2 3
1  also need to be taken into account, since their values are of the 

same order of magnitude as modern high-precision altimeter-gravimetric 
calculations of the Earth’s anomalous gravitational field.

Thus, the novelty and relevance of such scientific solutions lies in the 
expediency of taking into account ellipsoidal corrections in determining the 
anomalous terrestrial field of gravity, since the neglect of these corrections 
on the average for the territory of Ukraine gives an error in the accuracy of 
modern gravimetric satellite data and altimeter-gravimetric calculations of 
the Earth’s anomalous gravitational field.

1. Introduction
Spherical approximation is the basis for almost all formulas of physical 

geodesy. It gives the error that is neglected in most practical applications. 
The problem of calculating the anomalous gravitational field or the per-
turbing potential of the Earth does not apply to this case, since the present 
gravimetric satellite data have now increased their accuracy by an order of 
magnitude in comparison with the recent past. Once such an error was an 
order of magnitude less than the accuracy provided by gravimetric satellite 
data of that time [3].

Therefore, it is logical to claim that ellipsoidal corrections should be 
taken into account in order to obtain higher accuracy in calculating the com-
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ponents of the anomalous terrestrial gravity field, as the difference between 
the values of the real and normal potential of the gravity force [7].

The methodology of such scientific research is that some arbitrary ele-
ment F of the anomalous gravitational field (disturbing potential, height of the 
geoid, anomaly of gravity, etc.) is arranged in a series by a small parameter 
ε  characterizing the deviation of the reference ellipsoid from the sphere [6]:

F F F F F= + + + +0 1 2 2 3 3ε ε ε ...  .                          (1)
This parameter ε  can be compression f or any other parameter of the 

ellipsoid, such as the square of the first eccentricity

ε = =
−

e
a b
a

2
2 2

2
.                                         (2)

Due to the small values of the above values, squares and higher degrees 
ε  can be neglected. As a result, this series can be written

F F e F= +0 2 1 .                                          (3)
Let us try to represent each element of an anomalous gravitational field 

in this form. It depends on the position of the point in space, which is ex-
pressed, for example, by geodetic coordinates φ  (latitude) and λ  (longi-
tude). In this case, this line can be written in a more concrete way

F F e Fφ λ φ λ φ λ, , ,( ) = ( ) + ( )0 2 1 .                         (4)
Since the function F 0 φ λ,( )  corresponds e = 0 , it can be considered as a 

function in a certain defined sphere, for example, in the middle earth sphere 
with radius

R a b= =23 6371 km .                                  (5)
Moreover, the coordinates φ  and λ  are spherical coordinates in this 

sphere. Thus, it is possible to set a one-to-one mapping of the reference 
ellipsoid to a sphere with radius R by designing a point with geodetic coor-
dinates φ λ,( )  on the ellipsoid to a point with spherical coordinates φ λ,( )  on 
the sphere (values φ  and λ  the same for both points).

Thus, the novelty and relevance of scientific solutions is the expediency 
of taking into account ellipsoidal corrections in determining the anomalies 
of gravity ∆g and heights of geoid N, since the neglect of these corrections 
on the average for the territory of Ukraine gives an erroneous order of ac-
curacy for modern gravimetric satellite data and altimeter-gravimetric com-
putations of the anomalous gravitational field of the Earth.
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2. Disturbing potential
The reflections described above connect the corresponding points on 

both surfaces. Now let us set the function display. Let the function F 0 φ λ,( ) 
on the sphere corresponds to the function F φ λ,( )  on the ellipsoid and that 
both functions are related by relation (4).

Functions F 1 φ λ,( )  are defined as follows. Assuming that for disturbing 
potential [6]

T 1 0φ λ,( ) = ,                                        (6)
we get the basic mapping equation

T T0 φ λ φ λ, ,( ) = ( ) .                                    (7)
The height of the geoid, the weight line deviations, the anomaly of grav-

ity and other similar elements F 0 φ λ,( )  in the sphere are uniquely deter-
mined through the main function T 0 φ λ,( )  by means of spherical relations. 
The corresponding functions F φ λ,( )  will be the values of the elements on 
the ellipsoid and also uniquely related to the T Tφ λ φ λ, ,( ) = ( )0  by some 
ellipsoidal formulas. Accordingly, functions F 1 φ λ,( )  can be defined.

Therefore, the content of the spherical approximation is to map the points 
of the ellipsoid with geodetic coordinates φ λ,( )  to points on the sphere, the 
spherical coordinates of which are taken as coordinates φ λ,( )  of the points 
on the ellipsoid. Moreover, the values of the first order e F2 1  and the higher 
order terms are neglected [3].

It is necessary to find the same reflection by numerically comparing the 
geodetic coordinates on the ellipsoid and sphere, but with the preservation 
of the values of the first order.

It should be noted that the described transformation of geodetic coordi-
nates into spherical ones is not the only way of establishing correspondence 
between the reference ellipsoid and the auxiliary sphere. You can also map 
the spherical coordinates to the ellipsoidal coordinates in the form of the 
given latitude b  and longitude λ . The use of b  and λ  leads to simpler for-
mulas, but the use of φ  and λ  has greater advantages from a practical point 
of view, since it is difficult to convert for many points geodetic coordinates 
φ  into b  the above.

Note that M. Molodensky [5] transformed geocentric coordinates on 
an ellipsoid (geocentric latitude and longitude) into spherical coordinates 
when solving ellipsoidal boundary problems.
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Geographic (geodetic) coordinates were used by D. Lelgemann [11] and 
H. Moritz [6].

3. Spherical functions
In the study of the disturbing potential of the Earth, the method of de-

composing the potential into a series of spherical functions is properly used. 
The same method of image potential proved to be quite convenient for stud-
ying the figure and the anomalous gravitational field of the Earth by the 
perturbations in motion of artificial satellites of the Earth [12; 13].

This method makes it possible to represent the potential of gravity, 
which is given on a spherical Earth, in the form of the sum of harmonics, 
and the higher the harmonic order number, the smaller the wavelength. De-
fining the coefficients of such a trigonometric series is quite convenient for 
all kinds of calculations.

Researches to determine the size and shape of the Earth by the meth-
od of decomposition of gravitational potential into a series of spherical 
functions were dealt with in detail by B. Hoffmann-Wellenhof [1], P. Dvu-
lit [2], D. Zagrebin [3], H. Moritz [6], Yu. Neuman, W. Heiskanen [10],  
D. Lelgemann [11].

The problem of the convergence of series by spherical functions is al-
ready a question of increased complexity. It is not elementary, as it seems at 
first glance, and has not been fully resolved yet from a theoretical point of 
view. The solution of this problem, which is suitable for practical purposes, 
is given by the well-known Runge’s theorem [6;10].

That is, the series of spherical functions for the external gravitational 
potential is convergent for all points beyond some sphere σ , which is the 
smallest sphere into which the body τ  can be inscribed.

Therefore, for the convergence of a series of spherical functions, it is 
sufficient that the point P, in which the potential V is measured, lies out-
side the sphere σ. Although there are simple examples of convergent series 
on spherical functions, for which the convergence domain successfully ex-
tends into the middle of the sphere σ  [6; 10].

In this case, if the sphere σ  lies in the middle of some ellipsoid, then 
for an ellipsoid with a small compression (for example, as a compression 
of the Earth) it is safe to assume that the series is convergent over the entire 
surface of such ellipsoid.
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We denote by the smallest sphere σ0  beyond which the external poten-
tial is regular, that is, it represents a harmonic function in the form of the 
Laplace’s equation ∆V = 0 . It is clear that such a sphere exists. Let us call 
it the boundary sphere. If the external potential cannot be analytically ex-
tended into the middle of the Earth, then the sphere σ0  coincides with the 
sphere σ , otherwise, it lies inside the sphere σ . Therefore, the distribution 
of gravitational potential by spherical functions will be convergent at all 
points outside the sphere σ0 .

It is clear that the boundary sphere σ0  can be defined as the smallest 
sphere, which has all the singularities of the analytic extension of the po-
tential inside or out. It is an analogy with the circle of convergence in the 
theory of analytic functions of a complex variable. Such a circle of con-
vergence divides the regions of convergence and divergence of a complex 
power series by analogy with the spatial row by spherical functions: conver-
gence occurs everywhere within this circle, and divergence is everywhere 
beyond it [6; 10].

On the basis of the above statements, we can assume that a similar situ-
ation applies to the three-dimensional case: the boundary sphere σ0  (sphere 
of convergence) divides the regions of convergence outside the sphere σ0  
and the differences within the sphere σ0 .

Therefore, for spherical functions in space, the convergence surface is 
usually a sphere. Although there may be convergence surfaces other than 
the sphere, such as a cylinder or a torus. In particular, for zonal harmonics 
(Legendre polynomials) such a surface of convergence must be a sphere.

Thus, we see that the problem of convergence of a series of spherical 
functions of the external gravitational potential on the Earth’s surface re-
mains open for two reasons: 1) the properties of the analytic extension of 
the external potential into the middle of the Earth are not uniquely known; 
2) the exact form of the convergence surface for series on spherical func-
tions representing the Earth’s potential is not known.

4. Height of the geoid
The height of the geoid N is related to the disturbing potential T ratio [6]

N
T

=
γ

 ,                                                 (8)
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where γ  is the normal gravity on the ellipsoid.
The approximate formula for calculating normal gravity γ  can be  

written [6; 10]
γ γ φ= +( )e f1 2* sin  ,                                    (9)

where γe  is the normal value of the acceleration of the gravity at the 
equator;

f f m* = − +
5
2

 .                                      (10)
For the same approximation

f e=
1
2

2  .                                           (11)

Numerical values [10] show that it is approximate

m e=
1
2

2  .                                           (12)

Therefore, formula (9) takes the form

γ γ φ= +





e e1

3
4

2 2sin  .                                 (13)

Introducing Legendre polynomial

P2
23

2
1
2

sin sinφ φ( ) = −  ,                                (14)

we have
γ γ φ= + + ( )





e e e P1
1
4

1
2

2 2
2 sin  .                         (15)

Since the mean P2 sin φ( )  on the sphere is zero, the mean γ  on the sphere 
will be equal

γ γ0 21
1
4

= +





e e  ,                                  (16)

so that formula (15) can be written as

γ γ φ= + ( )





0 2
21

1
2
e P sin                                (17)

or taking into account the polynomial (14)

γ γ φ= − +







0 2 2 21
1
4

3
4

e e sin  .                         (18)

Accordingly, relation (8) will have the form
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N
T

e e= + −





γ

φ
0

2 2 21
1
4

3
4

sin  .                        (19)

Given a constant spherical value γ0  that corresponds to an ellipsoidal 
value γ , we obtain the value of the height of the geoid in the spherical 
approximation

N
T T0

0

0 0
= =
γ γ

 .                                        (20)
So

N N e N= +0 2 1 ,                                       (21)
where N 0  is the zero term of the decomposition that can be obtained 

from the spherical approximation; e N2 1  is the so-called ellipsoidal correc-
tion or decomposition member characterizing the deviation of the reference 
ellipsoid from the sphere.

The magnitude N 0  can be calculated from the decomposition into a 
number of spherical functions [4; 6; 10]

N A m B m Pnm nm nm
m

n

n

0

00

1
= +( )

==

∞

∑∑γ λ λ φcos sin (sin ) ,         (22)

where γ  is the normal value of the gravity.
The ellipsoidal term of a series N 1  can be related to a N 0  as follows [4]

N N1 2 01
4

3
4

= −





sin φ .                              (23)

We before find the first term of the series (22). That is, for n = 1 we 
obtain [6; 10]

N A P A B P1
0

10 10 11 11 11

1
= + +( ) γ

φ λ λ φ(sin ) cos sin (sin ) .       (24)

The coefficients A10 , A11 and B11 are related to the corresponding coeffi-
cients C10 , C11 and S11 by the following formulas [7]:

A
fM
R
C B

fM
R
Snm nm nm nm= =; .                       (25)

It is known that the values C10 , C11 and S11 are related to the rectangular co-
ordinates of the offset of the coordinate system by the following relations [4; 8]:

C
z
R

C
x
R

S
y
R10 11 11= − = − = −

∆ ∆ ∆
; ; .                 (26)

Then, substituting (26) into (25), we obtain [4, 8]

A
fM
R

z A
fM
R

x B
fM
R

y10 2 11 2 11 2
= − = − = −∆ ∆ ∆; ; .        (27)
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Using instead of P10(sin )φ  and P11(sin )φ  their values [7]
P P10 11(sin ) sin ; (sin ) cos ,φ φ φ φ= =                  (28)

given formula (27) and accepting fM
R2

= γ , the value N1
0  will look like

N z x y1
0 = + +∆ ∆ ∆sin cos cos sin cosφ λ φ λ φ .             (29)

From formula (29) it is possible to notice the dependence of the 
heights of the geoid on the rectangular coordinates of the displacement 
of the system. To trace the numerical characteristic N1

0 , let us define 
the initial rectangular coordinates of the displacement of the parameters 
of the regional geodetic system (for example, the well-known Europe-
an regional geodetic system European 1950) in the WGS 84 geocentric 
system [6; 8]

∆

∆
∆
∆
∆

a m

x m

y m

z m

=

= ×
= −
= −
= −










−

251

0 14192702 10

87

98

121

4

;

. ;

;

;

.

α





                            (30)

With the corresponding offset coordinates ∆ ∆ ∆x y z, ,( ) , one can find the 
numerical characteristic of the spherical approximation N1

0 . To do this, se-
lect an O point with spherical coordinates φ λ, . It is quite appropriate to 
choose the center of the spheroidal trapezoid, which fits the territory of 
Ukraine, because it (the point) will be located near the geographical center 
of Ukraine with coordinates φ0 48 3= °. , λ0 30 8= °.  [7].

Finally we get
N m1

0 173 4= . .                                      (31)
We now calculate the element of the ellipsoidal correction N1

1 . Accord-
ing to formula (23) for the above point O φ λ0 0,( ) , this value can be written 
as follows:

N N1
1 2

0 1
01

4
3
4

= −





sin φ .                             (32)

Substituting numerical values, we get
N m1

1 29 1= − . .                                    (33)
Then the entire ellipsoidal correction e N2 1

1  will be equal
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e N m2
1
1 0 19= − . .                                          (34)

Let us now investigate the term of the second degree of the decomposi-
tion of the height of the geoid N 0  into a series of spherical functions, that 
is, for n = 2 the series (22) will be written

N A P A B P A B2
0

20 20 21 21 21 22 22

1
2= + +( ) + +

γ
φ λ λ φ λ(sin ) cos sin (sin ) cos ssin (sin )2 22λ φ( ) P

N A P A B P A B2
0

20 20 21 21 21 22 22

1
2= + +( ) + +

γ
φ λ λ φ λ(sin ) cos sin (sin ) cos ssin (sin )2 22λ φ( ) P .                        (35)

Considering that [7]

P P P20
2

21 22

1
2
3 1 3 3(sin ) sin ; (sin ) sin cos ; (sin )φ φ φ φ φ φ= −( ) = =    ccos2 φ (36)

and [7]
C

C S

C S

20
3

21 21

22
6

22

1 082626 10

0 0

1 571 10 9 03 10

= − ×
= =

= × = − ×

−

−

. ;

; ;

. ; . −−







7

             (37)

and finding by the formulas (25) the coefficients [7]

A m s

A B

A m s B m s

20
2 2

21 21

22
2 2

22
2 2

67734 3

0 0

98 56 5

= −
= =

= = −

. / ;

; ;

/ ; . /.3 ,,









           (38)

for point O with coordinates φ0 48 3= °. , λ0 30 8= °.  the zero term of the 
schedule N2

0  will be equal
N m2

0 2324 1= − . .                                     (39)
The results of (39) show a strong dependence of the height of the geoid, 

in particular, on the second zonal harmonic coefficient С20 .
Let us now research the ellipsoidal correction e N2 2

1  . Applying formula 
(23) to the above point O φ λ0 0,( ) , we write first the value N2

1 . That is

N N2
1 2

0 2
01

4
3
4

= −





sin φ .                              (40)

Substituting numerical values, we get
N m2

1 390 7= . .                                     (41)
Then the entire ellipsoidal correction e N2 2

1  will be equal
e N m2

2
1 2 6= . .                                             (42)
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Since the results of calculations (42) indicate that the ellipsoidal cor-
rection is large enough in absolute value e N2 2

1 , it is advisable to carry out 
further studies. We now find a member of the third degree of the decom-
position of the height of the geoid N 0  into a series of spherical functions, 
when n = 3, the series (22) is written

N
A P A B P

A B
3
0 30 30 31 31 31

32 3

1

2
=

+ +( ) +

+ +γ

φ λ λ φ

λ

(sin ) cos sin (sin )

cos 22 32 33 33 332 3 3sin (sin ) cos sin (sin )λ φ λ λ φ( ) + +( )










P A B P
. (43)

Considering that [6, 10]

P P30
3

31
2 21

2
5 3

3
2
5 1 1(sin ) sin sin ; (sin ) sin sinφ φ φ φ φ= −( ) = − −( ) −  φφ

φ φ φ φ φ

( )
= −( ) = − −( )

1 2

32
2

33
2 3

15 1 15 1

;

(sin ) sin sin ; (sin ) sinP P  
22









 (44)

and
C

C S

C

30
6

31
6

31
7

32
7

2 535 10

2 192 10 2 72 10

8 93 10

= ×

= × = ×

= ×

−

− −

−

. ;

. ; . ;

. ; SS

C S
32

7

33
7

33
6

6 23 10

7 00 10 1 412 10

= − ×

= × = ×













−

− −

. ;

. ; .

          (45)

and finding by (25) the coefficients
A m s

A m s B m s

A m s

30
2 2

31
2 2

31
2 2

32
2 2

158 6

137 1 17 0

=

= =

=

. / ;

. / ; . / ;

/ ;55.9 BB m s

A m s B m s
32

2 2

33
2 2

33
2 2

39 0

88 3

= −

= =













. / ;

/ ; . / ,43.8

           (46)

for point O with coordinates φ0 48 3= °. , λ0 30 8= °.  the zero term of the 
schedule N3

0  will be equal
N m3

0 67 0= − . .                                      (47)
Let us now investigate the ellipsoidal correction e N2 3

1 . Applying formu-
la (23) to the above point O φ λ0 0,( ) , we write first the value N3

1  . That is

N N3
1 2

0 3
01

4
3
4

= −





sin φ .                              (48)

Substituting numerical values, we get
N m3

1 11 3= . .                                       (49)
Then the entire ellipsoidal correction e N2 3

1  will be equal
e N m cm2

3
1 0 076 7 6= =. . .                                    (50)
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From the results of calculations (50) it is safe to say: the error for 
the heights of the geoid N due to neglect of the ellipsoidal correction 
e N2 3

1  on the average for the territory of Ukraine gives a value of ± 7.6 
cm, which has the same order of accuracy, which is provided by modern 
altimeter-gravimetric calculations of the anomalous gravitational field of 
the Earth.

5. Weight line deviations
The components of the deviation are severely determined by the  

formulas [6]
ξ η

φ λ

= −
∂
∂

= −
∂
∂

N
s

N
s

; ,                                     (51)

where the differentiation of the height of the geoid N is carried out along 
the meridian and along the parallel respectively. The full differential of arc 
length on the rotation ellipsoid has the form [6; 10]

ds d d2 2 2 2 2 2= +µ φ ν φ λcos ,                               (52)
where ∝  and ν  are the principal radii of curvature of an ellipsoid, which 

are defined by formulas
µ =

c
V 3

 ,                                              (53)

ν =
c
V

 .                                               (54)

The designation here is accepted
V e= + ′( )1 2 2

1
2cos φ                                       (55)

and the formulas used [6; 10]

c
a
b

=
2

 ,                                              (56)

′ =
−

e
e

e
2

2

21
 ,                                           (57)

where c is the polar radius of curvature; ′e 2  is the second eccentricity.
Since [10]

ds d

ds d
φ µ φ

λ ν φ λ

=

=







;

cos ,
                                      (58)

then expressions (51) can be rewritten as
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ξ
µ φ

η
ν φ λ

= −
∂
∂

= −
∂
∂

1 1N N
;

cos
.                             (59)

In spherical approximation

ξ
φ

η
φ λ

0
0

0
01 1

= −
∂
∂

= −
∂
∂R

N
R

N
;

cos
.                         (60)

We take advantage of the series in which members are held in order e2 ,  
that is

R a b a e= = −







23 21
1
6

,                                (61)

c a b a e R e= = +





 = +








2 2 21
1
2

1
2
3

,                      (62)

V e e e= + = + −1
1
2

1
1
2

1
2

2 2 2 2 2cos sinφ φ ,                 (63)

1 1
1

5
6

3
2

2 2 2

µ
φ= + −






R

e e sin ,                         (64)

1 1
1

1
6

1
2

2 2 2

ν
φ= − −






R

e e sin .                         (65)

Further, according to expressions (21) and (23), we obtain
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

+ −






∂
∂

−
N N

e
N N

e
N

e
φ φ φ φ

φ
φ

φ
0

2
1 0

2 2
0

21
4

3
4

3
2

sin sin coos φN 0  (66)

and similarly
∂
∂

=
∂
∂

+ −






∂
∂

N N
e

N
λ λ

φ
λ

0
2 2

01
4

3
4
sin .                    (67)

Substituting these expressions together with expressions (64) and (65) 
in (59) and considering formulas (60), we finally obtain

ξ ξ ξ

η η η

= +

= +







0 2 1

0 2 1

e

e

;

,
                                     (68)

where
ξ φ ξ φ φ1 2 0

013
12

9
4

3
2

= −





 +sin sin cos

N
R

,                (69)

η φ η1 2 01
12

5
4

= −





sin .                               (70)

Since the quantities e2 1ξ  and e2 1η  are very small, then for ξ0 , η0 , N 0 , 
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which are necessary for the calculation ξ1  and η1 , any approximate values can 
be used, for example, obtained from a finite arrangement of spherical functions.

6. Anomalies of gravity
The anomaly of gravity ∆g can be represented in the form suggested by 

Moritz in [6] or [10], that is
∆ ∆ ∆g g e g= +0 2 1 ,                                      (71)

where
∆g

n
R

P A m B mnm nm nm
m

n

n

0

00

1
=

−
+( )

==

∞

∑∑ (sin ) cos sinφ λ λ ;        (72)

∆g
R

P G m H mnm nm nm
m

n

n

1

00

1
= +( )

==

∞

∑∑ (sin ) cos sinφ λ λ           (73)

with G A A A

H B
nm n m nm n m n m n m n m

nm n m nm n

= + +

= +
+ + + + +

+ +

χ λ µ

χ λ
2 2 2 2 4

2 2

, , , , ,

,

;

,, , , ,m n m n m n mB B+ + ++





2 2 4µ
                  (74)

and
χ

λ

nm

nm

n n m n m
n n

n m n n m

= −
− − − −

− −

=
− − − −

3 3 1
2 2 3 2 1

3 9 6 13 2 2 2

( )( )( )
( )( )

;

00 9
3 2 3 2 1

3 5 2 1
2 2 5 2 3

n
n n

n n m n m
n nnm

+
+ −

= −
+ + + + +

+ +

( )( )
;

( )( )( )
( )( )

.µ















                    (75)

Let us write down the first member of the schedule ∆g, that is [7]
∆ ∆ ∆g g e g1 1

0 2
1
1= + .                                   (76)

It is easy to note from formula (72) that since n = 1, then
∆g1

0 0= .                                         (77)
Since the spherical approximation ∆g0

1 is zero, we should investigate 
the element of the ellipsoidal correction ∆g1

1 that is written [7]

∆g
R
P G P G H1

1
10 10 11 11 11

1
= + +( ) (sin ) (sin ) cos sinφ φ λ λ .      (78)

It is known [4; 7] that
P P10 11(sin ) sin ; (sin ) cos ,φ φ φ φ= =                   (79)

Substituting the corresponding values from expression (75) into formula 
(74), we obtain [6; 7]
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G A A A

G A A A

H B

10 30 10 30 30 30 50

11 31 11 31 31 31 51

11 31

= + +
= + +
=

χ λ µ
χ λ µ
χ

;

;

111 31 31 31 51+ +







λ µB B .

                        (80)

Having formulas (78) – (80), one can find the numerical characteris-
tic of the ellipsoidal correction element ∆g1

1 . To do this, select a point O 
with spherical coordinates φ λ,  (see formula (78)). It is quite appropriate for 
point O φ λ,( )  to choose the center of the spheroidal trapezoid, which fits the 
territory of Ukraine, since it (point) will be located near the geographical 
center of Ukraine with coordinates φ0 48 3= °. , λ0 30 8= °.  [7].

For the basic fundamental parameters of the Earth take the following 
values [1; 2; 9]:

R m fM m s= = ×6371000 398600 5 109 3 2; . / .            (81)
Dimensionless harmonic coefficients Cnm  and Snm  (for example, the 

GEM 10 model) have the following values [12, 13]:

C C

C C
30

6
50

7

31
6

51
8

2 535 10 2 29 10

2 192 10 4 4 10

= × = ×

= × = − ×

− −

− −

. ; . ;

. ; . ;

SS S31
7

51
82 72 10 8 0 10= × = − ×










− −. ; . .

               (82)

Then the values of formulas (75) will be equal [7]

χ λ µ

χ λ µ

30 30 30

31 31 31

0
5
9

140
99

0
29
45

70
33

= = − = −

= = − = −










; ; ;

; ; .
                  (83)

Since it is known [9; 11] that

A
fM
R
C B

fM
R
Snm nm nm nm= =; ,                     (84)

then [7]
A m s A m s

A m s A m s
30

2 2
50

2 2

31
2 2

51
2 2

158 6 14

137 1 2

= =

= = −

. / ; / ;

. / ; / ;

.3

.7

BB m s B m s31
2 2

51
2 217 0 5= = −







. / ; / ..0

             (85)

Substituting these values into formula (80), we obtain [7]
G m s

G m s

H m s

10
2 2

11
2 2

11
2 2

108 3

82 6

0 3

= −

= −

= −









. / ;

. / ;

. / .

                          (86)
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Then, substituting the above values into formula (78), we find [7]
∆g m s1

1 5 22 0 10= − × −. /                          (87)
or [7]

∆g mGal1
1 2 0= − . .                                     (88)

The value of ∆g1 (see formula (6)) will then be equal [7]
∆g mGal1 0 01= − . .                                   (89)

It is well known that a member of the first degree ∆g1 of decomposition 
of anomalies of gravity ∆g, as transformants of perturbing gravitational po-
tential, in a number of spherical functions indicates a shift of the coordi-
nate system (see, for example, works [4; 5; 8]). That is, the linear term ∆g1 
causes an effect on the anomaly of gravity due to the displacement of the 
reference coordinate system.

Now let us consider the influence of a member of the second degree ∆g2 of 
decomposition into a number of spherical functions, taking into account its el-
lipsoidal correction on the anomaly of gravity. Then formula (71) is written [7]

∆ ∆ ∆g g e g2 2
0 2

2
1= + ,                                    (90)

where
∆g

R
P A P A B P A2

0
20 20 21 21 21 22 2

1
= + +( ) +(sin ) (sin ) cos sin (sin )φ φ λ λ φ 22 222 2cos sinλ λ+( ) B

∆g
R
P A P A B P A2

0
20 20 21 21 21 22 2

1
= + +( ) +(sin ) (sin ) cos sin (sin )φ φ λ λ φ 22 222 2cos sinλ λ+( ) B ;                       (91)

∆g
R
P G P G H P G2

1
20 20 21 21 21 22 2

1
= + +( ) +(sin ) (sin ) cos sin (sin )φ φ λ λ φ 22 222 2cos sinλ λ+( ) H

∆g
R
P G P G H P G2

1
20 20 21 21 21 22 2

1
= + +( ) +(sin ) (sin ) cos sin (sin )φ φ λ λ φ 22 222 2cos sinλ λ+( ) H .                     (92)

Believing that [7, 9]
P P P20

2
21 22

1
2
3 1 3 3(sin ) sin ; (sin ) sin cos ; (sin )φ φ φ φ φ φ= −( ) = =    ccos2 φ  (93)

and [7; 9]
C

C S

C S

20
3

21 21

22
6

22

1 082626 10

0 0

1 571 10 9 03 10

= − ×
= =

= × = − ×

−

−

. ;

; ;

. ; . −−







7

               (94)

and having found by the formulas (84) the coefficients [7]
A m s

A B

A m s B m s

20
2 2

21 21

22
2 2

22
2 2

67734 3

0 0

98 56 5

= −
= =

= = −

. / ;

; ;

/ ; . /.3









             (95)
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for point O with coordinates φ0 48 3= °.  and λ0 30 8= °. , we compute the 
zero term of the schedule ∆g0

2. It will be equal [7]
∆g mGal2

0 350= − .                                      (96)
The results of (96) show a strong dependence of the anomaly of gravity, 

in particular, on the second zonal harmonic coefficient С20 .
Let us now investigate the ellipsoidal correction e2∆g1

2. We first find the 
coefficients Gnm  and Hnm  those contained in formula (92), that is [7]

G A A A

G A A A H B
20 40 20 40 40 40 60

21 41 21 41 41 41 61 21 41

= + +

= + + =

χ λ µ

χ λ µ χ

;

; 221 41 41 41 61

22 42 22 42 42 42 62 22 42 22 42

+ +

= + + = +

λ µ

χ λ µ χ λ

B B

G A A A H B B

;

; 442 42 62+







µ B .

 (97)

The corresponding harmonic coefficients Cnm  and Snm  have the follow-
ing meanings [7]:

C C

C C
40

7
60

7

41
7

61
8

5 39 10 1 48 10

5 33 10 8 1 10

= × = − ×

= − × = − ×

− −

− −

. ; . ;

. ; . ;

CC C

S S

S

42
7

62
8

41
7

61
8

4

3 47 10 5 2 10

4 75 10 2 4 10

= × = ×

= − × = ×

− −

− −

. ; . ;

. ; . ;

22
7

62
76 64 10 3 75 10= × = − ×













− −. ; . ,S

                  (98)

and we take the values of coefficients C C C20 21 22, ,  and S S21 22,  from for-
mulas (94).

Then the values of formulas (75) after the calculations will be equal [7]

χ λ µ

χ λ µ

40 40 40

41 41 41

36
70

111
231

510
286

18
70

129
231

7

= = − =

= = − =

; ; ;

; ;
114
286

6
70

183
231

952
28642 42 42

;

; ; .χ λ µ= = − =















                   (99)

Using formulas (84), we calculate the coefficients Anm  and Bnm  with the 
corresponding indices, we obtain [7]

A m s A m s

A m s A m s

A

40
2 2

60
2 2

41
2 2

61
2 2

33 7

33 3

= = −

= − = −

. / ; / ;

. / ; / ;

9.2

5.1

442
2 2

62
2 2

41
2 2

61
2 2

42

21 7

29 7

= =

= − =

. / ; / ;

. / ; / ;

m s A m s

B m s B m s

B

3.2

1.5

== = −













41 5 2 2

62
2 2. / ; / ,m s B m s23.5

             (100)
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and we take the values of coefficients A A A20 21 22, ,  and B B21 22,  from for-
mulas (95).

Substituting these values into formula (97), we obtain [7]
G m s

G m s H m s

G m s

20
2 2

21
2 2

21
2 2

22
2 2

34867 4

5 9 20 3

1 9

= −

= =

=

. / ;

. / ; . / ;

. / ; HH m s22
2 2115 9= −







. / .

            (101)

Using formulas (92), (93) and the results of calculations (101), for a 
point O with coordinates φ0 48 3= °.  and λ0 30 8= °. , we find the numerical 
characteristic of the ellipsoidal correction element ∆g1

2. Obtain the value [7]
∆g m s2

1 3 21 857 10= − × −. /                          (102)
or [7]

∆g mGal2
1 185 7= − . .                             (103)

Then all the ellipsoidal correction e2∆g1
2 according to formula (90) will 

take the following value [7]:
e g mGal2

2
1 1 24∆ = − . .                            (104)

From the results of calculations (104) it is safe to say that the error for 
anomalies of gravity ∆g due to neglect of the ellipsoidal correction e2∆g1

2 
on the average for the territory of Ukraine gives a value of ± 1.24 mGal, 
which has the same order of accuracy as is provided by modern gravimetric 
satellite data.

7. Conclusions
Thus, based on the performed studies of the components of the Earth’s 

anomalous gravitational field, we can summarize the following:
1.	There is a strong dependence of the height of the geoid on the dis-

placement of the reference coordinate system, which is shown by the results 
of calculations in a spherical approximation (31).

2.	With respect to ellipsoidal corrections e N2 1
1 , e N2 2

1  and e N2 3
1 , they 

should also be taken into account, since their values, presented in the form 
of results (34), (42) and (50), respectively, have values of the same order 
as modern high-precision altimeter-gravimetric calculations of the Earth’s 
anomalous gravitational field.

3.	The gravity anomaly ∆g is almost independent of the offset of the ref-
erence coordinate system. This is clearly demonstrated by (77) and (89), so 
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ellipsoidal correction e2∆g1
1 cannot be taken into account when calculating 

the Earth’s anomalous gravitational field.
4.	The gravity anomaly depends strongly on the second-degree harmon-

ics, in particular, on the second zonal harmonic coefficient С20, and there-
fore on the compression f of the reference ellipsoid.

5.	With respect to ellipsoidal correction e2∆g1
2, it must be taken into account, 

since its value, represented in the form of results (104), is of the same order of 
magnitude as the current high-precision gravimetric satellite data.
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