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Abstract. A method for integrating inhomogeneous systems of differential 
equilibrium equations for transversely isotropic plates of arbitrary thickness 
under the action of various transverse loads, which can be intermittent or 
concentrated, is proposed. These systems are of high order. Such systems 
of inhomogeneous equations are obtained on the basis of a developed 
variant of mathematical theory, which is built on the following provisions: 
1) the components of the stress-strain state are considered functions of three 
coordinates; 2) the components of the displacements are represented in the form 
of infinite mathematical Fourier-Legendre series in the transverse coordinate; 
3) the remaining components of the stress-strain state (SSS) using the three-
dimensional equilibrium equations of the theory of elasticity and the Reissner 
variational principle are also depicted in the form of infinite mathematical series 
using Legendre polynomials; 4) differential equations of equilibrium in displace-
ments and boundary conditions on the lateral surface are derived from the 
variational Reissner equation. It should be noted that the boundary conditions on 
the flat faces of the plates are satisfied exactly. Boundary problems based on this 
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variant of mathematical theory are solved taking into account a certain number 
of members in the mathematical series for SSS components. As the number 
of terms increases, the order of the systems of differential equations increases, 
but the accuracy also increases. The direct analytical solution of systems of 
high-order equilibrium equations is associated with rather great mathematical 
difficulties, especially when finding partial solutions. If the load that acts on 
the plate is intermittent or local, then additional difficulties arise. The subject 
of the study is the inhomogeneous systems of high-order partial differential 
equations for various right-hand sides and a method for solving them. The 
purpose of the work is to build an effective method for solving such systems 
in order to find their partial and general solutions. The research methodology 
and conclusions are as follows. 1). By means of algebraic and differential 
transformations, systems of high-order equilibrium equations are reduced to 
convenient defining systems of inhomogeneous differential equations of the 
same order with respect to new unknown functions. 2). Each inhomogeneous 
differential equation of higher order is reduced by the method of decreasing the 
order to inhomogeneous differential equations of the second and fourth orders. 
3). Partial solutions of higher-order inhomogeneous equations of defining 
systems are represented as a differential operator from a linear combination of 
partial solutions of second-order and fourth-order inhomogeneous equations. 
4). In the future, it is recommended to apply mathematical methods of solution 
to equations of low order, including methods of integral transformations.

5) The general solution of the defining inhomogeneous system of high-
order differential equations is presented through the general and partial 
solutions of the second-order and fourth-order inhomogeneous equations.  
6) General solutions of the original systems of differential equations of high-
order equilibrium are found by inverse transformations through general 
and partial solutions of inhomogeneous equations of the second and fourth 
orders. The forms of general solutions of inhomogeneous systems of high-
order differential equations of equilibrium in displacements are obtained. 
Using the proposed method, a general solution to the inhomogeneous system 
of eighth-order governing equations of axisymmetric problems of bending 
transversely isotropic circular and annular plates of arbitrary thickness under 
intermittent and local loads, which are expressed through the Dirac delta 
function, is obtained. To find partial solutions, the Hankel integral transform 
was used. Proposed method significantly simplifies the finding of partial 
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and general solutions of inhomogeneous systems of high-order differential 
equations, especially in cases where the right-hand sides of the equations are 
discontinuous or local functions that correspond to discontinuous or local 
loads. The developed technique for solving boundary-value problems can 
also be applied to plate theories that use physical and geometric hypotheses.

1. Introduction
It is known that classical theories [27, p. 3; 32, p. 22; 33, p. 84; 36, p. 51; 

37, p. 69; 38, p. 64; 39, p. 99; 52, p. 569; 53, p. 84; 54, p. 63; 55, p. 67; 56, p. 127; 
57, p. 54; 60, p. 21] unsatisfactorily describe the stress-strain state (SSS) of 
plates and shells under the action of local, discontinuous, rapidly changing loads, 
in the presence of holes and sharp changes in mechanical parameters, with a 
significant thickness of the elements, and in other cases that lead to significant 
changes in the SSS. Tymoshenko-Reisner type theories [41, p. 184; 42, p. 495; 
47, p. 744], in particular [2, p. 1004; 4, p. 486; 11, p. 675; 31, p. 993; 34, p. 195] 
satisfactorily describe SSS of thin plates, if the external load is smooth, and 
the boundary conditions do not lead to the appearance of marginal potential 
effects. Refined theories of plates and shells [3; 5, p. 239; 6, p. 107; 10, p. 49; 
25, p. 663; 26, p. 669; 40], based on various physical and geometric hypotheses, 
do not describe with sufficient accuracy the SSS for a wide class of boundary 
value problems, since qualitative changes in all components of displacements 
and stresses in thickness cannot be depicted objectively in principle. In these 
theories, boundary effects are not always fully taken into account. The resulting 
systems of nonhomogeneous partial differential equations allow for Not all 
edge effects and, as a rule, are of low order. It should be noted that the accuracy 
of the the-ories depends on how accepted the hypotheses adequately reflect the 
qualitative nature of the change in the SSS in the thickness and whether all the 
components of the SSS are taken into account. It should be noted that from this 
point of view, a model of the image of SSS in plates based on the six-parameter 
theory deserves attention [1, p. 242].

Studies [7; 8; 24, p. 238; 48] have important theoretical and applied 
value for studying boundary value problems using refined theories.

Analytical solution of boundary value problems for plates and shells 
based on the three-dimensional theory of elasticity [20; 28], which essentially 
should give the most accurate solution, is associated with significant and often 
insurmountable mathematical difficulties. Only in some special cases [13; 
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30, p. 49] we can obtain analytically accurate solutions of three-dimensional 
differential equations (DE). Hence, the scientific problem arises: on the one 
hand, solutions of applied boundary value problems for plates and shells with 
a sufficiently high accuracy are required, and on the other hand, achieving 
this goal involves great difficulties. The solution to this problem is an actual 
area of research in the mechanics of plates and shells of arbitrary thickness.

The purpose of solving this global problem in the mechanics of deformed 
solids is to construct new variants of the mathematical theory of plates and 
shells of arbitrary thickness, which would take into account all components 
of the SSS with high accuracy; developing effective mathematical methods 
for solving boundary-value problems in accordance with these theories; 
construction of mathematical methods for solving nonuniform DE in high-
order partial derivatives that arise in these boundary-value problems.

The first versions of the theory of plates and shells, in which the expansion 
of SSS components into infinite series along the transverse coordinate was 
used, were proposed, in particular, in studies [9, p. 238; 21; 35, p. 335; 
50, p. 191]. Later, this mathematical approach was developed in publications 
[14, p. 49; 15; 17, p. 83; 18; 19, p. 77; 33, p. 84; 36, p. 51; 37, p. 69; 38, p. 64; 
39, p. 99; 44, p.21; 52, p. 569; 53, p. 84; 54, p. 63; 55, p. 67; 56, p. 127; 
57, p. 54; 62, p. 51; 63, p.164] in which the Legendre polynomials were used.

An overview of the research of models for calculating the SSS of plates 
and shells is presented, in particular, in publications [7; 18; 27; 32, p. 22].

Based on the Prusakov approach [36, p. 51], variants of the mathematical 
theory of plates and shallow shells of arbitrary thickness under the action 
of arbitrary transverse loads using interrelated equations were developed 
[52, p. 569; 53, p. 84; 54, p. 63; 55, p. 67; 56, p. 127; 57, p. 54; 58, p. 154; 
59, p. 60; 60, p. 21; 61, p. 496; 62, p. 51]. In many other works of the author, 
new variants of the mathematical theory of single-layer and multilayer, linear 
and nonlinear elastic plates and shells of arbitrary thickness were constructed. 
The main dependences and systems of DE in different approximations were 
obtained. Methods for their solution were developed, and numerical results 
were obtained. In the future, we will apply our variant of mathematical theory 
(MT). The method of obtaining the basic equations includes the following 
steps: 1) representation of components of displacements, strains and stresses 
in the form of infinite mathematical series along the transverse coordinate 
using Legendre polynomials; 2) integration of three-dimensional differential 
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equilibrium equations; 3) the use of the Reissner variational principle 
[43, p. 90]; 4) obtaining interrelated equations, which in the decompositions 
of the components of the displacement simultaneously take into account a 
certain number of members of the serie. It should be noted that the components 
of the SSS in the considered variant of MT are functions of three coordinates. 
Taking into account the interconnected equations, in contrast to the energy-
asymptotic method [33, p. 84; 39, p. 99], we can immediately solve the 
boundary-value problem using several members of each mathematical series. 
This increases the order of the system of DE, but also increases the accuracy 
of the solution [57, p. 54].

We also emphasize that in our variant of the MT, the boundary conditions 
on the upper and lower faces of the plates (upper and lower boundary surfaces 
of the shells) are exactly satisfied, unlike many other theories. In combination 
with the use of the Reissner variational principle, additional studies have shown 
that this increases the efficiency of SSS determination in comparison with other 
approaches [57, p. 54; 60, p. 21], especially for thick plates and shells.

It is a priori clear that the accuracy of any theory is determined by the 
number of unknown independent functions of the three coordinates that 
characterize the SSS of the plate and the shell of arbitrary thickness, subject 
to adequate assumptions about the change of all components of the SSS in 
the plate (shell). These functions can be called theory parameters, or degrees 
of freedom of theory. With an increase in the number of sought functions, 
the accuracy of solving boundary value problems increases. However, at 
the same time, the order of the systems of differential equilibrium equations 
and the mathematical complexity of solving these systems also increase.

A variant of the MT makes it possible to determine with any accuracy all the 
components of the SSS, which include the components of the internal SSS and 
the components of the SSS determined by vortex and potential boundary effects. 
The internal stress-strain state is caused by normal and tangential stresses that 
are applied to the lateral surface and do not self-balance in thickness. Vortex 
and potential boundary effects arise from the action of normal and tangential 
stresses, which are applied to the lateral surface and self-equilibrium in 
thickness. The SSS, which depends on the vortex boundary effects, is caused by 
tangential stresses parallel to the median plane and self-balanced in thickness. 
The SSS, which depends on the potential boundary effects, is caused by normal 
and transverse tangent stresses, self-balanced in thickness.
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Timoshenko-Reissner type theory takes into account the vortex boundary 
effect and the internal SSS in the first approximation and does not account 
for the potential boundary effect.

A variant of MT contains in infinite mathematical series for the components 
of tangential displacements U x y z V x y z( , , ), ( , , )  (formulas (2.3a)) members 
of the form P z h u x y P z h v x yk k k k( / ) ( , ), ( / ) ( , )2 2 , where k = 0 1, ,... . Infinite 
mathematical series for transverse displacements of W x y z( , , )  (formulas 
(2.3b)) contain members of the form P z h w x yk k( / ) ( , ),2  where k = 1 2, ,... .  
If in tangential displacements (2.3) we take into account additives 
with indices 0, 1, 2,…, N, where n is an odd integer, then we call this 
approximation the approximation K0-N; if we consider only terms with 
indexes 1, 3, then we will call this approximation the approximation K13.

In approximation K1, three unknown functions are taken into account 
in the mathematical seriess (2.3a), (2.3b): u x y v x y w x y1 1 1( , ), ( , ), ( , ).  
The system of differential equilibrium equations is of the sixth order. 
The approximation of K01 takes into account five unknown functions: 
u x y u x y v x y v x y w x y0 1 0 1 1( , ), ( , ), ( , ), ( , ), ( , ) . The system of DE of equilibrium 
has the tenth order.

Six functions are taken into account in the 
K13 approximation: u x y1 ( , ), u x y v x y v x y w x y w x y3 1 3 1 3( , ), ( , ), ( , ), ( , ), ( , ) .  
The system of DE of equilibrium has a twelfth order. In the 
K0-3 approximation, eleven functions are taken into account: 
u x y u x y u x y v x y v x y v x y w0 1 3 0 1 3 1( , ), ( , ), ..., ( , ), ( , ), ( , ), ..., ( , ), (( , ), ( , ),x y w x y2

w x y3 ( , ) . The system of DE of equilibrium has a twenty-second order.
In the K135 approximation, nine functions are taken into account:

u x y u x y u x y v x y v x y1 3 5 1 3( , ), ( , ), ( , ), ( , ), ( , ),v x y w x y w x y5 1 3( , ), ( , ), ( , ),
w x y5 ( , ). The system of DE of equilibrium has an eighteenth order. 
Seventeen functions are taken into account in the approximation of K0-5: 
u x y u x y u x y v x y v x y v x y0 1 5 0 1 5( , ), ( , ), ..., ( , ), ( , ), ( , ), ..., ( , ),w x y1 ( , ), ...,w x y5 ( , ).  
The system of DE of equi-librium has the thirty-fourth order.

Currently, in the publications of Western publications, research is 
usually carried out on the basis of theories such as Timoshenko-Reissner 
or their modifications [2, p. 1004; 5, p. 239; 6, p. 107; 10, p. 49; 11, p. 675; 
31, p. 993; 34, p.195]. These theories essentially correspond to the partial 
case of our variant of theorie namely, the K01 approximation. The solution 
of boundary value problems in the second and higher approximations leads 
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to the necessity of finding particular and general solutions of systems of 
nonhomogeneous partial differential equations of high order. This is due 
to fairly large mathematical difficulties. In our opinion, this is one of 
the reasons that prevents many researchers from analytically developing 
the direction in the mechanics of plates and shells, associated with the 
construction of new variants of MT, which makes it possible to determine 
the SSS of plates and shells of arbitrary thickness with high accuracy.

Advantages of the mathematical theory variant are the ability to solve 
boundary value problems for plates and shells with any high accuracy. As 
the number of additives taken into account in these series increases, the 
accuracy of finding the SSS components in the plates (shells) increases. 
This increases the accuracy of determining the components of the internal 
SSS and components of eddy and potential boundary effects.

The novelty of the work is to construct an effective method for solving 
inhomogeneous systems of high order equilibrium differential equations, 
which take place in the boundary value problems of a variant of mathematical 
theory of arbitrary thickness plates.

2. Physical and mathematical formulation  
of boundary problems for plates of arbitrary thickness

2.1. Physical statement of boundary problems. From the standpoint 
of the three-dimensional theory of elasticity, we consider a transtropic plate 
of arbitrary constant thickness h in a rectangular coordinate system x y z, , .  
The axes x y,  lie in the median plane, the z  axis is perpendicular to it 
and directed upwards − ≤ ≤h z h/ /2 2 ). On the horizontal faces of the plate 
are applied static transverse loads q x y1( , )  and q x y2( , ) , which are directed 
downwards. All SSS components are functions of three coordinates. 
Boundary conditions on the face planes of the plate:

σz z h q x y( / ) ( , )= = −2 1 ; σz z h q x y( / ) ( , )= − =2 2 ;         (2.1a) 
σ σxz yzz h z h( / ) ( / )= ± = = ± =2 2 0 .                  (2.1b)   

The transverse load on the horizontal faces is represented by the sum of 
the skew symmetric q / 2  and symmetric p / 2  loads relative to the median 
plane. Then:

σz z h q x y p x y( / ) ( ( , ) ( , ) ) /= ± = −2 2 , p x y q x y q x y( , ) ( , ) ( , )= −1 2 ,
q x y q x y q x y( , ) ( , ) ( , )= +1 2 .
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The boundary conditions on the face planes of the plate under oblique 
symmetry loading relative to the median plane according to (2.1a) and 
(2.1b) shall be written as follows:

σz z h q x y( / ) ( , ) /= ± =2 2 , σ σxz yzz h z h( / ) ( / )= ± = = ± =2 2 0 . (2.2)
The conditions on the side surface of the plate may be static, kinematic 

or mixed. The stresses, deformations and displacements in the plate are 
unknown functions of the three coordinates.

2.2. Mathematical statement of boundary problems. We present the 
basic mathematical equations and relations that are necessary for solving 
the boundary value problems of transversal isotropic plates of arbitrary 
constant thickness.

2.2.1. Displacement in the plate. In the considered variant of the MT of 
elastic transversely isotropic plates of arbitrary thickness, the components 
of the displacement are presented in the form of Fourier–Legendre series:

U x y z P z h u x yk k
k

( , , ) ( / ) ( , ),=
=

∞

∑ 2
0

 (U V u vk k, ; , ) ;          (2.3а)

W x y z P z h w x yk k
k

( , , ) ( / ) ( , ) .= −
=

∞

∑ 1
1

2                    (2.3b)

In dependencies (2.3a), (2.3b) P z hk ( / )2 –Legendre polynomials; 
U V W, , –components of displacements (tangential and transverse). 
Members with odd indices in displacement components correspond to skew 
symmetric deformation and members with even indices are symmetric.

2.2.2. Components of stresses in the plate. Here are the general 
structural formulas of the stress components that follow from the DE system 
of the theory of spatial elasticity and the Reisner variational equation:

σ σ σxz i x i
i

y z i y i
i

z i zx y z P t x y z P t x y z P s( , , ) ; ( , , ) ; ( , , )= = =
=

∞

=

∞

∑ ∑
0 0

ii
i

;
=

∞

∑
0

  (2.4)

σ σ σ σx i x i x
i

y x i y i y x i y x i
i

x y z P s s s x y z P t( , , ) , ( ; ); ( , , ) ,= → → =
=

∞

=
∑
0 0

∞∞

∑
where t tx i y x i, ..., –functions that depend on the displacements of 

u x y v x y w x yk k k( , ), ( , ), ( , )  and mechanical-geometric parameters (MGP).
2.2.3. Displacement and stresses in the K0-N approximation. The 

displacement components are determined according to (2.3a), (2.3b):

U x y z P z h u x yk k
k

N

( , , ) ( / ) ( , ),=
=
∑ 2
0

 (U V u vk k, ; , ) ;         (2. 5а)
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W x y z P z h w x yk k
k

N

( , , ) ( / ) ( , ) .= −
=
∑ 1
1

2                  (2. 5b)

The stress components according to (2.4):

σ σx z i x i
i

N

y z i y i
i

N

x y z P t x y z P t( , , ) ; ( , , ) ;= =
=

+

=

+

∑ ∑
0

1

0

1

                (2.6)

σ σz i z i
i

N

x i x i
i

N

x y z P s x y z P s( , , ) ; ( , , ) ;= =
=

+

=

+

∑ ∑
0

2

0

2

σ σy i y i
i

N

x y i y x i
i

N

x y z P s x y z P t( , , ) ; ( , , ) .= =
=

+

=
∑ ∑
0

2

0

Transverse normal and shear stresses exactly satisfy conditions (2.1a), 
(2.1b). For the approximations K0-3 and K0-5 in formulas (2.6), we must 
take N N= =3 5; , respectively; expressions for these functions are given 
in [53, p. 84; 56, p. 127].

2.2.4. Differential equilibrium equations. The system of equilibrium 
equations is inhomogeneous with partial derivatives with respect to the 
sought components in displacements. The resulting system is divided into 
two independent. One system describes the SSS of the plate in symmetrical 
deformation relative to the median plane. Another system describes the SSS 
at skew symmetry (with purely bending deformation without transverse 
crimping). In all dependencies and equations, the components of the 
displacements taken into account in the partial sums of the series (2.5a), 
(2.5b) must be taken into account. In the approximation K0-N, where N is 
an odd natural number, the order of the system of differential equations of 
equilibrium is ( )6 4N + ; for symmetric deformation in the approximation 
K02 (N-1), the system of equations has the order ( )3 1N + , and for the skew-
symmetric – order 3 1( )N + .

System of DE of equilibrium for symmetric deformation in the 
approximation K02 (N-1):

( ) , ( , . , ..,(
, ,

M u M v M w M p ii u j j
j

N

i v j j i w j j
j

N

i
=

−

=

−

∑ ∑+ + = =
0 2

1

2 4

1

1 2 3NN + 1 2) / ).  (2.7)

System of DE of equilibrium at skew symmetric deformation in the 
approximation К13 N:

( ) ,( , . , .., ( )
, ,

L u L v L w Lq i Ni u j j
j

N

i v j j i w j j
j

N

i
= =
∑ ∑+ + = = +
1 3 1 3

1 2 3 1 // )2 .    (2.8)
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In the left parts of the systems of equations (2.7), (2.8) L  and M  
with indexes, these are operators of x y,  of order not higher than the 
second. The operators L  and M  with indices on the right-hand side of 
these equations are operators of order not higher than the first [53, p. 84; 
56, p. 127]. It is shown that the differential matrices of these systems are 
symmetric.

2.2.5. Boundary conditions on the lateral surface in the approximation 
K0-N. The boundary conditions are obtained from the Reisner variation 
equation:

(
( )

(( ) ( )
( )

h
j

s l t l x u t l s l yxj x
j

N

s
yxj y sj j yxj x yj y s j2 10 +

+ − + + −
=
∑∫ δ δδ v j ) +  (2.9)

+
+

+ − =+
=

−

∑ h
j

t l t l z w dsxj x yj y sj j
j

N

( )
( ) ))

2 1
01

0

1

δ .

In (2.9) l lx y, −  is the cosines of the angles between the normal 
vector to the lateral surface and the coordinate axes; S  – contour of the 
plate; x x y y x y z x ys j s j s j( , ), ( , ), ( , ) – members in mathematical series of the 
image of the external loading X x y zν( , , ), Y x y z Z x y zν ν( , , ), ( , , ) by Legendre 
polynomials:

x x y j X x y z P z h dz hsj j
h

h

( , ) ( )( ( , , ) ( / ) ) / ,
/

/

= +
−
∫2 1 2
2

2

ν             (2.10)

( ; ; , , ..., );x y X Y j Nsj sj→ → =ν ν 0 1

z x y j X x y z P z h dz h js j j
h

h

( , ) ( )( ( , , ) ( / ) ) / , ( , , ...,
/

/

= + =
−
∫2 1 2 0 1
2

2

ν NN − 1),

where Zn  must balance the transverse load on the upper and lower 
surfaces of the plate.

Equations (2.9) yield different boundary conditions. Here are some of 
them.

1). Boundary conditions in displacements. Only the displacement 
compo-nents U x y zÃ ( , , ),  V x y zÃ ( , , ),  W x y zÃ ( , , )  are known on the side 
surface Ã  of the plate. Boundary conditions:

u x y u x y v x y v x y j Nj jÃ j jÃ( , ) ( , ); ( , ) ( , ), ( , , ..., );= = = 0 1         (2.11)

w x y w x y j N x y Sj jÃ( , ) ( , ), ( , ..., ); , ,= = ∈1

where
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u x y
j
h

U x y z P z h dz

u v U V j

j Ã Ã
z

j

j Ã jÃ Ã Ã

( , ) ( , , ) ( / ) ,

( , ),( ,

=
+

⇒ → =

∫
2 1

2

0 1,,..., ));

( , ) ( , , ) ( / ) , ( , ...,

N

w x y
j
h

W x y z P z h dz j Nj Ã Ã
z

j=
−

=∫ −

2 1
2 11 )).

2). Boundary conditions in stresses. Only the external load X x y zν( , , )
, Y x y zν( , , ) , Z x y zν( , , )  is specified on the side surface. Then we have the 
following boundary conditions:

s x y l t x y l x x yx j x y x j y s j( , ) ( , ) ( , );+ =                      (2.12)
t x y l s x y l y x y j Ny x j x y j y s j( , ) ( , ) ( , ), ( , , ..., );+ = = 0 1

t x y l t x y l z x y j N x y Sx j x y j y s j( , ) ( , ) ( , ), ( , , ..., ); , .+ = = − ∈0 1 1

In the approximations K01, K0-3, K0-5, to obtain displacements, 
stresses and boundary conditions, it is necessary to put N N N= = =1 3 5; ;  
in (2.5a), (2.5b), (2.6)–(2.12), respectively.

2.3. Formulation of a general problem in the constructed MT of plates
The problem in the constructed variant of MT is the need to solve systems of 

inhomogeneous DE in high-order partial derivatives. The main mathematical 
difficulty is finding partial solutions of high-order inhomogeneous equations. 
The problem is particularly complicated if the transverse load is discontinuous 
or local. This problem is also characteristic of other simpler theories

In what follows, we consider the system of inhomogeneous differential 
equations of equilibrium (2.8) with skew-symmetric deformation in the 
approximation K13 N.

In [16, p. 21; 23, p. 423; 45, p. 382; 51, p. 147], the method of analytic 
integration of inhomogeneous systems of DE of equilibrium was that the gene-
ral solutions of homogeneous systems and partial solutions of inhomogeneous 
systems were determined directly from the initial systems of equations of  
equilibrium. In the case of partial solutions, the methods of integral transforma-
tions were used. For high-order systems, this technique led to great difficulties.

In this article, a much simpler method for integrating the system of DE 
of equilibrium is proposed, which is as follows.

1). The initial system of differential equations of equilibrium was reduced 
to two independent systems of equations. One system (homogeneous) 
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described a vortex boundary effect. Another system (inhomogeneous) 
described the internal SSS and the potential boundary effect.

2). From the transformed systems of equilibrium equations, two 
deterministic systems of DE are derived relative to the new sought functions.

3). Deterministic systems of DE were reduced by the method of decreasing 
order to low-order DE, for which general and partial solutions were sought. 
Partial solutions of low-order inhomogeneous equations could be found by 
different methods, in particular, by integral transformations. The general 
solutions of homogeneous equations of the defining systems were the sum of 
the total solutions of the corresponding homogeneous equations of low order. 
Partial solutions of inhomogeneous equations of a high-order definite system 
were represented as differential operators from a certain linear combination 
of partial solutions of inhomogeneous low order equations.

4). The general solutions for the components of displacements and 
stresses were found from the corresponding dependences obtained during 
the transformation of differential equations.

The described method significantly simplifies the analytical integration 
of high order equilibrium DE.

3. Justification of the advantages of the developed variant of MT
To demonstrate the efficiency and accuracy of a variant of mathematical 

plate theory, we present some numerical results of many studies of internal 
SSS of isotropic and transversal-isotropic plates with different MGP under 
the action of transverse loading:

q x y q m x a n y b

p x y p m x a n y
mn

mn

( , ) sin( / ) sin( / ),

( , ) sin( / ) sin(

=

=

π π

π π // ).b

The internal SSS is independent of boundary effects. Boundary effects 
were investigated in [62, p. 51].

Tables 1–4 summarize the results of numerical studies of stresses and 
transverse displacements for square isotropic and transversal isotropic 
plates of different thicknesses. 

In tables: 
σ σx x x y z q x y= ( , , ) / ( , ), ( , , );σ σ σx z x z  W W x y z E q x y h= ( , , ) / ( ( , ) ).

Tables 1, 2 show σx  and W  in transversal isotropic plates with 
different parameters; ∆t1, ∆t3, ∆t5 is the percentage difference between the 
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exact solution (ES) and the decision in the appropriate approximation; ∆pq 
characterizes the effect of transverse crimping in percent.

Table 1
Components of the SSS of a square transropic plate ( h a/ , ;= 0 5
′ = ′ = ′ = = = = = =G G E E v v m n p q p qmn mn mn mn/ , ; / ; , ; ; / / /0 1 1 0 3 1 0 1 )

h
z К1

К01
К13
К0-3

К135
К0-5 ES ∆t5

%
∆t3
%

∆t1
% σx

 
%

σx

0,5 -0,9250
-1,098

-1,587
-1,692

-1,889
-2,016

-1,951
-2,083

3,18
3,22

18,7
18,8

52,6
44,3

6,34
-

0 0
-0,1725

0
-0,0582

0
-0,0620

0
-0,0627

-
-

-
-

-
-

-
-

-0,5 0,9250
0,7525

1,587
1,481

1,889
1,761

1,951
1,820

-
3,24 18,6 58,7

7,2
-

W

0,5 -6,726
-6,726

-6,337
-6,564

-6,277
-6,506

-6,260
-6,486

0,27
0,31

1,23
1,20

7,44
3,70

3,48
-

0 -6,726
-6,726

-6,250
-6,250

-6,225
-6,225

-6,226
-6,226

0,02
-

0,39
-

8,03
-

-0,5 -6,726
-6,726

-6,337
-6,109

-6,277
-6,049

-6,260
-6,035

-
0,23 1,23 11,4

3,73
-

Tables 3, 4 show σx  and W  for the upper face of isotropic square plates 
of different thicknesses with skew symmetric deformation under smooth 
and non-smooth loading according to classical theory (CT), exact theory 
(ET) and approximations K13, K135.

These and our other studies, as well as the results presented in 
particular in [33, p. 84; 36, p. 51; 37, p. 69; 38, p. 64; 39, p. 99], testify 
to the high accuracy of the developed theory. The K0-5 approximation 
almost exactly describes the internal SSS at smooth loads. The Reissner 
variational principle yields comparable results with Hu-Vashitsu’s 
variational principle. The Lagrangian variational principle produces less 
accurate results.

Our research points to the need to use a variant of MT to determine the 
SSS of thick plates, plates of medium thickness, as well as thin plates at 
loads, which lead to a large gradient of change of SSS.



234

Anatoly Zelensky, Arkady Privarnikov

Table 2
Components of the SSS of a square transropic plate  

( h a G G E E v v m n/ , ; / , ; / ; , ;= ′ = ′ = ′ = = = =0 2 0 1 1 0 3 1 )

h
z

К1
К01

К13
К0-3

К135
К0-5 ES ∆t5

%
∆t3
%

∆t1
% ∆pq 

%

σx

0,5 -5,074
-5,247

-6,466
-6,555

-6,589
-6,680

-6,593
-6,685

0,06
0,07

1,93
1,94

23,4
21,5

1,38
-

0 0
-0,1725

0
-0,0679

0
-0,0681

0
-0,0685

-
-

-
-

-
-

-
-

-0,5 5,074
4,902

6,466
6,377

6,589
6,498

6,593
6,502

-
0,06

-
1,92

-
24,6

1,40
-

W

0,5 -56,75
-56,75

-55,26
-55,49

-55,16
-55,38

-55,15
-55,38

0,02
0,00

0,20
0,20

2,90
2,47

0,42
-

0 -56,75 -55,71 -55,70 -55,70 0,00 0,02 1,89 -

-0,5 -56,75
-56,75

-55,26
-55,04

-55,16
-54,93

-55,15
-54,92

-
0,02 0,22 3,33

0,42
-

Table 3
σx  stress in square isotropic plate ( z h m n/ , ;= =0 5 )

m a h/
σx

CТ К13 К135 ET

1

1 -0,1976 -0,4440 -0,4743 -0,4760
2 -0,7903 -1,013 -1,018 -1,019
5 -4,940 -5,148 -5,149 -5,152
10 -19,76 -19,96 -19,96 -20,02

5

2 -0,0316 -0,2134 -0,3501 -0,4002
5 -0,1976 -0,4440 -0,4743 -0,4760
10 -0.7903 -1.013 -1.018 -1.019
20 -3.161 -3.371 -3.373 -3.373

9

2 -0,0098 -0,1041 -0,2267 -0,4000
5 -0,0610 -0,2890 -0,3864 -0,4035
10 -0,2439 -0,4872 -0,5108 -0,5119
20 -0,9757 -1,195 -1,200 -1,200
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Table 4
W  displacement in square isotropic plate ( z h m n/ , ;= =0 5 )

m a h/
W

CT К13 К135 ET

1

1 -0,0280 -0,2508 -0,2372 -0,2343
2 -0,4485 -1,014 -0,9946 -0,9947
5 -17,52 -20,41 -20,39 -20,41
10 -280,3 -291,5 -291,5 -292,3

5

2 -0,0007 -0,0738 -0,0899 -0,0820
5 -0,0280 -0,2508 -0,2372 -0,2343
10 -0.4485 -1.014 -0.9946 -0.9946
20 -7.176 -9.071 -9.051 -9.054

9

2 -0,0001 -0,0271 -0,0447 -0,0455
5 -0,0027 -0,1173 -0,1220 -0,1145
10 -0,0427 -0,2944 -0,2791 -0,2769
20 -0,6836 -1,353 -1,334 -1,334

4. Transformation of the system of differential equations  
of equilibrium. Definitive system of differential equations  

of boundary value problems
In paragraphs 4.1 and 4.2 below, we will outline some equations and 

relations [53, p. 84; 56, p.127] that we will need later in order to analytically 
integrate the system of DE of equilibrium for skew-symmetric deformation.

4.1. The transformation of the system of differential equations of 
equilibrium in the approximation of K13… N ( )N ≥ 3 . The boundary 
conditions on the upper and lower boundary planes of the plate have the 
form (2.2). The system DE (2.8) in the approximation K13… N (N is an odd 
positive integer ( )N ≥ 3 ) has order 3 1( )N + .

After algebraic and differential transformations of system (2.8), two DE 
systems are obtained. One system (homogeneous system of order ( )N + 1 )) 
describes the boundary effect of the vortex:

Íіj j
j

N

ψ
=
∑ =
1 3

0
,

;  ( і N= 1 3, ,..., ),                        (4.1а)

where 
ψ j j jx y u y v x( , ) / /= ∂ ∂ − ∂ ∂ .                        (4.1b)
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In (4.1a) Í j N i ji j ( , , ..., ), ( )= =1 3  are second-order differential 
operators; Í j N i ji j ( , , ..., ), ( )= ≠1 3  are zero-order differential operators; 
ψ j x y( , )– vortex functions, the operators depend on the MGP.

Another DE system (inhomogeneous 2 1( )N +  order system) deter-
mines the internal SSS and the potential boundary effect with respect to 
w x y i Ni( , ), ( , , ..., )= 1 3  functions:

Ï w x y Ï q x yji i
i

N

jq
=
∑ =
1 3,

( , ) ( , )  ( , , ..., )j N= 1 3 ,              (4.2)

where Ïj i  are fourth-order differential operators. Ïj q –second-order 
differential operators. In the approximation K13 (N = 3), the differential 
operators of equations (4.2) Ï i jj i ( , , )= 1 3  and Ïj q  have the following form:

Ï11 114
4

112
2= ∇ + ∇µ µ ; Ï13 134

4
32

2
130= ∇ + ∇ +µ µ µ ;              (4.3)

Ï31 314
4

312
2= ∇ + ∇µ µ ; Ï33 334

4
332

2
330= ∇ + ∇ +µ µ µ ; 

Ï q1 12
2

10= ∇ −µ µ ; Ï q3 32
2

30= ∇ −µ µ ; ∇ = ∂ ∂ + ∂ ∂2 2 2 2 2/ /x y ,
where ∝ ∝ ∝114 112 30, , ..., –MGP, ∇2 –the Laplace operator.

4.2. The determining system of DE in the approximation K13…N. 
Forms of general solutions.
4.2.1. Forms of general solutions for the system (4.1a). General 

solutions of the system of DE of vortex boundary effect (4.1a) are given in 
the form:

ψ ψi iõ ó Í õ ó i N N( , ) ( , ), ( , , ..., ; )= = ≥1
0 1 3 3 ,                (4.4)

where Í i1
0  is the adjuncts of the determinant of Í 0  of the system (4.1a). 

The determining equation (4.4) for finding the function ψ( , )x y  is a 
homogeneous DE of order ( )N + 1 :

H õ ó0 0ψ( , ) = ,                                      (4.5)
where

H k k k N0
2

1
2

2
2

1 2= ∇ − ∇ − ⋅ ⋅ ∇ − +( )( ) ... ( )( )/ ,
k  with indexes–MGP.
The general solution of differential equation (4.5) is represented by:

ψ ψ( , ) ( , )( )
( )/

õ ó õ ói

i

N

=
=

+

∑
1

1 2

,                            (4.6)

where ψ( )( , )i õ ó  are the general solutions of the Helmholtz differential 
equations:
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( ) ( , ) , ( , , ...,( ) / ; )( )∇ − = = + ≥2 0 1 2 1 2 3k x y i N Ni
iψ .       (4.7)

These solutions are expressed through Bessel functions, which depends 
on the constants of ki . Thus, the vortex functions of ψi x y( , )  are determined 
from the dependences (4.4) taking into account (4.6) and the general 
solutions of equations (4.7).

4.2.2. Forms of general solutions for the system (4.2). Forms of 
general solutions of system (4.2) are obtained by the operator method and 
have the form:

w x y Ï Ô x y i N Ni k i k
k

N

( , ) ( , ),( , , ..., ; ),
,

= = ≥
=
∑ 0

1 3

1 3 3         (4.8)

where Ïk i
0  is the adjuncts of the determinant of the Ï0  system (4.2), 

Ô x yk ( , )  is the new sought-after functions.
Based on (4.2), (4.8), we obtain a defining system of DE for functions 

Ô x yk ( , ) , which describes the internal SSS and the potential boundary effect:
D D D D D Ô x y a D q x yN k k k0 0 1 2 1 0 0⋅ ⋅ =−... ( , ) ( , );( )                 (4.9) 

k N N= ≥1 3 3, ,..., ; ,
where

D D s D si i k k0
2 2

0
2

0= ∇ = ∇ − = ∇ −; ; ; i N= −1 2 1, ,..., ;

s s ai k k, ,0 0 – МGP; si – the roots of the corresponding characteristic 
equation (for transversely isotropic plates with small shear stiffness si 〉 0 ).

DE (4.9) are more convenient than (4.2), since the left-hand sides of the 
equations are the same.

The forms of general solutions of system (4.9) are as follows:
Ô x y Ô x y Ô x y Ô x yB Ï r1 1 1 1( , ) ( , ) ( , ) ( , );= + +              (4.10a)
Ô x y Ô x y k Nk kr( , ) ( , ), ( , , ..., )= = 3 5 .                 (4.10b)

In formulas (4.10a), (4.10b):
Ô Â1  is the general solution of a harmonic equation

∇ =4
1 0Ô ;                                           (4.11)

Ô Ï1  is the general solution of a homogeneous DE of order 2 1( )N −

D D D Ô x y k N NN k1 2 1 0 1 3 3⋅ ⋅ = = ≥−... ( , ) ; , , ..., ; ;( )        (4.12)
Ô x yk r ( , ) – partial solutions of inhomogeneous DE (4.9).
The potential boundary effect is described by the general solution Ô Ï1  of 

homogeneous equation (4.12). The general solution of Ô Â1  of equation (4.11) 
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together with the partial solutions of Ô k Nkr ( , , ..., )= 1 3  of inhomogeneous 
DE (4.9) of order 3 1( )N +  describe the internal SSS of the plates. Thus, the 
equations of the internal SSS and the potential boundary effect are separated.

Forms of general solutions for w x yk ( , )  based on (4.8), (4.10a), (4.10b) 
have the form:

w x y Ï Ô x y Ô x y Ï x yi i B Ï k i
k

N

k r( , ) ( ( , ) ( , )) ( , ),
,

= + +
=
∑1

0
1 1

0

1 3

Φ        (4.13)

( , , ..., ).i N= 1 3

The components u v k Nk k, ( , , ..., )= 1 3  are determined from the 
transformed equations of equilibrium (2.8):

u x y w qk
i

N

k i i x k i i y k w i i x kq x( , ) ( ) ,
,

, , , ,= + + +
=
∑
1 3

λ φ λ ψ λ λφ ψ           (4.14)

( , , , , , , , , ),, , , , , , , ,u w q v w qk x y x x k y x y yφ ψ φ ψ→ −

where 
φ λ λ λ λі і ik

k

N

ik k i qõ ó w w q( , ) ( ) ;
,

= ∇ + ∇ + ′ +
=
∑1

2
1

2

3 5

             (4.15)

φі i iõ ó u x v y( , ) / / ,= ∂ ∂ + ∂ ∂

λ  with indexes – MGP.

5. Method of reducing inhomogeneous high-order differential 
equations to low-order inhomogeneous equations

Consider the system of inhomogeneous equations (4.9), which has a 
high order 2 1( )N + :

D D D D D Ô x y a D q x yN k k k0 0 1 2 1 0 0⋅ ⋅ =−... ( , ) ( , );( )               (4.9)
k N N= ≥1 3 3, ,..., ; .

In (4.9) s i Ni ( , , ..., )= −1 2 1 – the roots of the corresponding 
characteristic equation.

The difficulty of finding partial solutions to equations (4.9) depends 
on the complexity of the right-hand sides and the order of the equations. 
Special complications arise if the right-hand sides of the equations have 
discontinuous functions that correspond to local and concentrated load. 
Then analytical finding of partial solutions using integral transformations 
is either very complicated or impossible. In such cases, you can use infinite 
series, numerical methods, or combined numerical-analytic methods. 
Therefore, the goal is to simplify the definition of partial and, consequently, 
general solutions of differential equations (4.9).
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The simplification of the search for partial solutions can be achieved by 
applying the method of splitting an inhomogeneous high-order equation 
into several inhomogeneous low-order equations [58, p. 154; 59, p. 60].  
It is shown that the classical operator method for integrating a non-
homogeneous DE follows from the aforementioned splitting method.

In the publication [29, p. 125] used the classical operator method of 
integrating non-homogeneous fourth-order differential equations of 
the ( )( ) ( , ) ( ) ( , )∇ − ∇ − = ∇ −2

1
2

2
2

0s s Ô x y s f x y  type, which led to two 
inhomogeneous Helmholtz equations. In the future, integral transformations 
to the obtained equations were not applied. In the article [45, p. 382] a 
partial solution of the basic equation ∇ ∇ + ∇ =2 2

1
2

0σ σ( ) ( ) ( )r s r a q r  of the 
theory of thin isotropic spherical shells of small curvature was found by 
direct application of the integral Hankel transform [49], which has already 
led to some complications. The analysis shows that the use of the methods 
of integral transformations directly in higher-order equations leads to 
considerable mathematical difficulties, since in the reverse transformation 
it is ne-cessary to find cumbersome integrals with parameters that are not 
given in the well-known literature [12].

5.1. The idea of the method of finding partial solutions
The method is based on the complex use of the operator method and the 

method of integral transformations. It consists of the following:
1) a partial solution of a non-homogeneous DE of high order using the 

operator integration method is represented as a differential operator from a 
linear combination of partial solutions of inhomogeneous DE of a low order 
(second and fourth);

2) the partial solution of each inhomogeneous equation of low order, 
indicated in 1, is determined by the methods of integral transforma-tions;

3) with allowance for 1 and 2, a partial solution of a non-homogeneous 
equation of a high order is determined.

5.2. Representation of a partial solution of an inhomogeneous high-
order equation through partial solutions of inhomogeneous equations 
of a small order

We use the operator method to integrate higher order differential 
equations, which are decisive in the considered variant of the mathematical 
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theory of plates. Integrating (4.9), after some transformations, we obtain 
formulas for partial solutions of the considered class of inhomogeneous 
equations, which can be expressed in terms of partial solutions of 
inhomogeneous second and fourth order equations. We give these formulas.

5.2.1. Differential equations of the eighth order.

D D D D Ô x y a D q x y kk k k0 0 1 2 0 0 1 3( , ) ( , ), ( , )= = .              (5.1)
The partial solutions of the Ô x yk r ( , )  equation (6) have the form:

Ô x y
a D

s s
s
s s

f f
s
s s

f f fk r
k k

r r r r r( , ) ( ) ( )= − + − +
0 0

1 2

2

1 12
1 0

1

2 21
2 0 00







 ,     (5.2)

where here and below s s si j i j= − ; 
f x yr0 ( , )– the partial solution of the differential Poisson’s equation

D f x y f x y q x y0 0
2
0( , ) ( , ) ( , )≡ ∇ = ;                         (5.3)

f x yr00 ( , ) – the partial solution of a inhomogeneous equation of the 
fourth order

D D f x y f x y q x y0 0 00
4
00( , ) ( , ) ( , )≡ ∇ = ;                      (5.4)

f x yi r ( , ) – the partial solutions of the inhomogeneous Helmholtz 
differential equations

D f x y s f x y q x y ii i i i( , ) ( ) ( , ) ( , ), ( , )≡ ∇ − = =2 1 2 .             (5.5)
5.2.2. Differential equations of the twelfth order.

D D D D D D Ô x y a D q x y kk k k0 0 1 2 3 4 0 0 1 3 5. ( , ) ( , ), ( , , ).= =        (5.6)
Partial solutions of the Ô x yk r ( , )  equation (5.6) are presented thus:

Ô x yk r ( , ) =                                             

(5.7)= − +
a D

s s s s
s s s

s s s s
f f

s s s
s s s s

k k
r r

0 0

1 2 3 4

2 3 4

1 12 13 14
1 0

1 3 4

2 21 23

( ( )
224

2 0( )f fr r− +

+ − + − +
s s s

s s s s
f f

s s s
s s s s

f f fr r r r
1 2 4

3 31 32 34
3 0

1 2 3

4 41 42 43
4 0 00( ) ( ) rr ),

where f x y f x y f x y ir r i r0 00 1 2 3 4( , ), ( , ), ( , ) ( , , , )= – are partial solutions of 
the corresponding differential equations (5.3)–(5.5).

5.2.3. Differential equations (4.9) of the order of 2 1( )N + . Analyzing 
the structure of the specific solutions obtained, depending on the order of 
the equations, we obtain partial solutions of the DE (4.9) of the order of 
2 1( )N +  in the form:
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Ô x y
a D

s s s
s s s

s s s sk r
k k

n

n

n

( , )
...

(
...
..., , ,

=
−

−0 0

1 2 2 2

2 3 2 2

1 1 2 1 3 1 2 −−

− +
2

1 0( ),f fr r             

(5.8)+ − +−

−

s s s s
s s s s

f fn

n
r r

1 3 4 2 2

2 2 1 2 3 2 2 2
2 0

...
...

( )
, , ,

, …+

+ −−

− − − − −
−

s s s s
s s s s

f fn

n n n n n
n r

1 2 3 2 3

2 2 2 2 1 2 2 2 2 2 2 3
2 2 0

...
...

(
, , ,

, rr rf) ),+ 00

where s s sm l m l, = − ; f x y i Ni r, ( , ) ( , , ..., )= −1 2 1 – are partial solutions of 
DE (5.5).

Putting in (5.8) n = 2  and n = 3 , we get the formulas (5.2) and (5.7). We 
will present the use of the proposed method for finding partial solutions when 
integrating the system of differential bending equations of the plate (5.1) in the 
approximation of K13. Consider the action of axisymmetric intermittent loads.

System (5.1) consists of two inhomogeneous DE of the eighth order.
Consider the axisymmetric problem of plate bending in the 

K13 approximation. Vortex edge effect will be absent. We apply the 
Hankel integral transformation. We also find the general solutions of the 
system of equations (5.1). This will allow us to find general solutions for 
all components of the stress-strain state of the plate. Analytical solutions 
for different classes of boundary-value problems will be found taking into 
account boundary conditions on the side surface.

6. Transverse loading of the plate around the circumference
In this case, the load q r( )  is represented as follows:

q r q r r( ) ( )= −0 0δ ,                                    (6.1)
where q const0 = , δ( )r r− 0  is the Dirac delta function: 

δ( )
, ( );

, ( ).
r r

r r

r r
o

o

− =
≠

∞ =



0

0

Then the differential equations (5.1), (5.3)–(5.5) take the form:
D D D D Ô r a D q r kk k k0 0 1 2 0 0 1 3( ) ( ), ( , )= = ;                 (6.2)

D f r f r q r0 0
2
0( ) ( ) ( )≡ ∇ = ;                                (6.3)

D D f r f r q r0 0 00
4
00( ) ( ) ( )≡ ∇ = ;                              (6.4)

D f r s f r q r ii i i i( ) ( ) ( ) ( ), ( , )≡ ∇ − = =2 1 2 ,                      (6.5)
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where q r( )  satisfies the dependence (6.1), and the Laplace operator has 
the form: ∇ = +2 2 2 1d d r r d dr/ ( / ) / .

Partial solutions of equation (6.2) are found in accordance with (5.2), 
and the partial solutions of equations (6.3)–(6.5) are sought by the Hankel 
integral transformation method [49, p. 67].

We give the main formulas in the method of the integral Hankel 
transform.

The image of the f r( )  function in the Hankel transform is the F p( )  
function:

F p rJ pr f r dr( ) ( ) ( )=
∞

∫
0

0 ,                              (6.6)

where J pr0( )  is the Bessel function of the first kind of zero order [22].
Other formulas:

rJ pr f r dr p F p
0

0
2 2

∞

∫ ∇ = −( ) ( ) ( ) ; 

rJ pr f r dr p F p m Nm m m

0
0

2 21
∞

∫ ∇ = − ∈( ) ( ) ( ) ( ), ;                 (6.7)

rJ pr r r dr r J pr
0

0 0 0 0 0

∞

∫ − =( ) ( ) ( )δ .                           (6.8)

The original function f r( )  is determined from its image (by function 
F p( ) ) as follows:

f r p J p r F p dp( ) ( ) ( )=
∞

∫
0

0 .                                 (6.9)

We assume that the functions on the left-hand sides of equations (6.3)-
(6.5) satisfy the conditions of the Hankel integral transformation, namely:

r F r r F r( ) , ( )→ ′ →0 0 , ….,if r r→ → ∞0, ,
where F r( )  is any of the functions of the left side of equations (6.3)–

(6.5); the function q r r0 0δ( )−  on the right-hand side of (6.3)–(6.5) satisfies 
these conditions.

6.1. Partial solutions of equations (6.3), (6.4) under load (6.1)
Without dwelling on the solution of the inhomogeneous differential 

equations (6.3) and (6.4), we give them partial solutions.
Partial solutions of equation (6.3):

f r q r r r rr0 0 0 0 0( ) ln , ( )= 〈 ;                            (6.10)
f r q r r r rr0 0 0 0( ) ln , ( )= 〉 .                             (6.11)
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Partial solutions of equation (6.4):

f r
q r

r r r r r rr00
0 0 2

0
2

0
2

04
( ) (( ) ln ), ( )= + + 〈 ;               (6.12)

f r
q r

r r r r r rr00
0 0 2

0
2

0
2

04
( ) (( ) ln ), ( )= + + 〉 .                (6.13)

By direct verification, one can see that (6.10)–(6.13) are indeed partial 
solutions of the differential equations (6.3) and (6.4). Here, the dimensions 
r  and r0  are understood to be dimensionless, which are numerically equal 
to their dimensional values. Taking into account the boundary conditions, 
the solution of the boundary value problems will include the relations of 
dimensional quantities, which will already be dimensionless.

6.2. Partial solutions of differential equations (6.5) under loading (6.1)
Equations (6.5) in the image space have the following form:

rJ pr s f r dr rJ pr q r r dr ii i0
2

0
0 0 0

0

1 2( )( ) ( ) ( ) ( ) , ( , )∇ − = − =
∞ ∞

∫ ∫ δ .

Therefore, taking (6.6)-(6.8) into account, we find:

F p
q r

p s
J p ri

i

( ) ( )=
−
+
0 0

2 0 0 .

Returning to f ri r ( ) , we get:

f r pJ pr F p dp q r
p J pr J pr

p s
dpi r i

i

( ) ( ) ( )
( ) ( )

= = −
+

∞ ∞

∫ ∫0
0

0 0
0 0 0

2
0

.       (6.14)

Taking into account the formulas for the last integral given in the 
reference book [12, p. 693], we have:

p J pr J pr
p s

dp I r s K r s r r
i

i i
0 0 0

2
0

0 0 0 0

( ) ( )
( ) ( ), ( )

+
= 〈

∞

∫ ;

p J pr J pr
p s

dp I r s K r s r r
i

i i
0 0 0

2
0

0 0 0 0

( ) ( )
( ) ( ), ( )

+
= 〉

∞

∫ ,

where I 0  is a modified Bessel function of zero order, K0  is a zero-order 
Macdonald function.

Consequently, the partial solutions f ri r ( )  of equations (6.5) taking into 
account (6.14) and the last equalities take the following form:

f r q r I r s K r s r ri r i i( ) ( ) ( ), ( );= − 〈0 0 0 0 0 0                  (6.15) 

f r q r I r s K r s r ri r i i( ) ( ) ( ), ( ).= − 〉0 0 0 0 0 0                  (6.16)
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6.3. Partial solutions of differential equations (6.2)
We obtain partial solutions of DE (6.2) taking into account (5.2), (6.1), 

(6.10)–(6.13), (6.15), (6.16):

Ô r
a q r D

s s
s
s s

I r s K r sk r
k k( ) ( ( ) ( )= − +0 0 0 0

1 2

2

1 12
0 1 0 0 1             

(6.17)+ + − + +
s
s s

I r s K r s s r r r r r1

2 21
0 2 0 0 2 12

0
0

2
0
2

0
21

4
( ) ( ) ln (( ) ln )),

( , , );r r k〈 =0 1 3

Ô r
a q r D

s s
s
s s

I r s K r sk r
k k( ) ( ( ) ( )= − +0 0 0 0

1 2

2

1 12
0 0 1 0 1             

(6.18) + + − + +
s
s s

I r s K r s s r r r r r1

2 21
0 0 2 0 2 12

0 2
0
2

0
21

4
( ) ( ) ln (( ) ln )),

( , , ),r r k〉 =0 1 3
where s s

s s
s

s s12
0 2

1 12

1

2 21

= + .

We take into account the following relations [22]:

∇ = ∇ =2
0 0

4
0

2
0K s r s K s r K s r s K s ri i i i i i( ) ( ), ( ) ( ) ,

∇ = ∇ = =2
0 0

4
0

2
0 1 2I s r s I s r I s r s I s r ii i i i i i( ) ( ), ( ) ( ), ( , ) .

Then the partial solutions (6.17) and (6.18) of equation (6.2) take the 
following form:

Ô r
a q r
s s

s
s s

s s I r s K r sk r
k

k( ) ( ( ) ( ) ( )= − − +0 0 0

1 2

2

1 12
1 0 0 1 0 0 1

+ − −
s
s s

s s I r s K r sk
1

2 21
2 0 0 2 0 0 2( ) ( ) ( )                       (6.19)

− − + − + + + 〈 =ln ( ln ( ) ln )), ( , , );r s s r r r r r r r kk0 0 12
0

0
2

0
2

0
2

01
1
4

1
4

1 3

Ô r
a q r
s s

s
s s

s s I r s K r sk r
k

k( ) ( ( ) ( ) ( )= − − +0 0 0

1 2

2

1 12
1 0 0 0 1 0 1  

+ − −
s
s s

s s I r s K r sk
1

2 21
2 0 0 0 2 0 2( ) ( ) ( )                       (6.20)

− − + − + + + 〉 =ln ( ln ( ) ln )), ( , , ).r s s r r r r r r r kk1
1
4

1
4

1 30 12
0 2

0
2

0
2

0

Pairing conditions for Ô rk r ( ) , if r r= 0 , are met.
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7. Transverse loading of the plate along the ring
Consider a plate under the action of a uniformly distributed load q0  

along a circular ring with radii r1  and r2  ( )r r1 2〈 :

q r

r r

q r r r

r r

( )

, ( );

, ( );

, ( ).

=
〈
〈 〈
〉









0

0

1

0 1 2

2

                                     (7.1)

To obtain partial solutions of the differential equations (6.2) with 
allowance for (7.1), we replace q0  in (6.19) and (6.20) by q dr0 0  and 
integrate them in the range from r1  to r2 . We obtain:

Ô rk r ( ) =

= − − −
a q
s s

s

s s s
s s I r s r K r s r K r sk

k
0 0

1 2

2

1 12 1

1 0 0 1 1 1 1 1 2 1 2 1( ( ) ( )( ( ) ( ))) +

+ − − − −
s

s s s
s s I r s r K r s r K r s r rk

1

2 21 2

2 0 0 2 1 1 1 2 2 1 2 2 2
2

1

1
4

( ) ( )( ( ) ( )) ( 22) +  
(7.2)

+ − − − + −
1
2 4

1
16

0
2

0 12
0

2
2

2 1
2

1
0

2
4

2 1
4( )( ln ln ) ( ln ln

s r
s s r r r r

s
r r rk

k
k rr1 +

+ − − − + − 〈 =4
1
4

1 312
0

2
2

1
2

2
4

1
4 2

2
2

1
2

1s r r r r r r r r r k( ) ( ) ( ))), ( , , );

Ô rk r ( ) =                          
= − − −

a q
s s

s

s s s
s s K r s r I r s r I r sk

k
0 0

1 2

2

1 12 1

1 0 0 1 2 1 2 1 1 1 1 1( ( ) ( )( ( ) ( ))) +  

+ − − −
s

s s s
s s K r s r I r s r I r sk

1

2 21 2

2 0 0 2 2 1 2 2 1 1 1 2( ) ( )( ( ) ( ))          (7.3)

− + + − + − + −
1
2
1

16
20 12

0
2
2

1
2 0 2

2
2

1
2

2
4( ln ln )( ) ( ( ) ln (r s s r r r

s
r r r r rk

k rr r1
4 1)( ln ))),+

( , , ),r r k〉 =2 1 3
I1 , K1 is the modified first-order Bessel and Macdonald functions.
To find partial solutions of the differential equations (6.2) for the load (7.1) 

with r r r1 2〈 〈 , we need to add the right-hand sides of (7.2) and (7.3). In this case, 
in (7.2), it is necessary to replace r1  by r , and in (7.3)– r2  to r . We get

Ô r
a q

s s
A r B rk r

k
k r k r( ) ( ( ) ( ))= − +0 0

1 2

;                          (7.4)

A r
s

s s s
s s I r s r K r s r K r sk r k( ) ( ) ( )( ( ) ( ))= − − +2

1 12 1

1 0 0 1 1 1 2 1 2 1

+ − − +
s

s s s
s s I r s r K r s r K r sk

1

2 21 2

2 0 0 2 1 2 2 1 2 2( ) ( )( ( ) ( ))

+ − − + − − −
1
4

1
1
2 4

12
2 2

0 12
0 0

2

0 12
0

2
2

2
2( )( ) ( )( ln ln )r r s s

s r
s s r r r rk

k
k ;;



246

Anatoly Zelensky, Arkady Privarnikov

B r
s

r r r r r r r r rk r
k( ) ( ln ln ( ) ( ))= − − − + − +0

2
4

2
4

2
4 4 2

2
2 2

16
1
4

+ − − +
s

s s s
s s K r s r I r s r I r sk

2

1 12 1

1 0 0 1 1 1 1 1 1 1( ) ( )( ( ) ( ))

+ − − −
s

s s s
s s K r s r I r s r I r sk

1

2 21 2

2 0 0 2 1 2 1 1 1 2( ) ( )( ( ) ( ))

− + + − + − + −
1
2
1

16
20 12

0 2
1
2 0 2 2

1
2 4

1
4( ln ln )( ) ( ( ) ln (r s s r r r

s
r r r r r rk

k ))( ln )))1 + r ,

( )r r r1 2〈 〈 .
The conjugation conditions for r r= 1  and r r= 2  are satisfied.

8. Transverse loading of the plate on the area of the circle
Let us now consider a plate of arbitrary constant thickness that undergoes 

a transverse load q0  uniformly distributed along a circular pad of radius r2 :

q r
q r r

r r
( )

, ( );

, ( ).
=

〈
〉






0 2

20
                                     (8.1)

Partial solutions of the differential equations (6.2) with allowance for 
(8.1) are obtained if we put r1 0=  in expressions (7.3) and (7.4). Then from 
(7.4) we find Ô rk r ( )  for r r〈 2 :

Ô r
a q

s s
C r D rk r

k
k r k r( ) ( ( ) ( ));= − +0 0

1 2

                       (8.2)

C r
s

s s s
s s I r s r K r s r K r sk r k( ) ( ) ( )( ( ) ( ))= − − +2

1 12 1

1 0 0 1 1 1 2 1 2 1

+ − − +
s

s s s
s s I r s r K r s r K r sk

1

2 21 2

2 0 0 2 1 2 2 1 2 2( ) ( )( ( ) ( ))

+ − − + − − −
1
4

1
1
2 4

12
2 2

0 12
0 0

2

0 12
0

2
2

2
2( )( ) ( )( ln ln )r r s s

s r
s s r r r rk

k
k ;;

D r
s

r r r r r r r r rk r
k( ) ( ln ln ( ) ( ))= − − − + − +0

2
4

2
4

2
4 4 2

2
2 2

16
1
4

+ − +
s

s s s
s s K r s r I r sk

2

1 12 1

1 0 0 1 1 1( ) ( ) ( )

+ − −
s

s s s
s s K r s r I r sk

1

2 21 2

2 0 0 2 1 2( ) ( ) ( )

− + + + +
1
2
1

16
3 10 12

0 2 0
4

( ln ln ) ( ln ))r s s r r
s r

rk
k .
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From (7.3) we obtain Ô rk r ( )  for r r〉 2 :

Ô r
a q
s s

s

s s s
s s K r s r I r sk r

k
k( ) ( ( ) ( ) ( )= − − +0 0

1 2

2

1 12 1

1 0 0 1 2 1 2 1

+ − −
s

s s s
s s K r s r I r sk

1

2 21 2

2 0 0 2 2 1 2 2( ) ( ) ( )                      (8.3)

− + + + + +
1
2
1

16
2 10 12

0
2
2 0 2

2
2

2
4( ln ln ) ( ln ( ln ))).r s s r r

s
r r r r rk

k

The conjugation conditions for solutions Ô rk r ( )  for r r= 2  according to 
(8.2) and (8.3) are fulfilled.

9. The plate is loaded with a local load applied to the center
Consider the action of a concentrated force F , applied to the center. 

Partial solutions of the corresponding differential equations (6.2) in the 
polar coordinate system will be obtained from (6.20) if r0  tends to zero. For 
this, we take into account that r0 0→ . Then we get 

I r s r q Fi0 0 0 01 2( ) ;→ →π ; q F
r0
02

→
π

;

Ô rk r ( ) =  

= − − + −
a F
s s

s
s s

s s K r s
s
s s

s s K r sk
k k

0

1 2

2

1 12
1 0 0 1

1

2 21
2 0 0 22π

( ( ) ( ) ( ) ( ) −−         (9.1)

− + + − =( ln ( ) ln )), ( , ).1
1
4

1 30 12
0 2r s s r r kk

Partial solutions (6.2) of the action of a concentrated force in the center 
can also be found from (8.3) if r2  is tending to zero. It should be noted that 
with r2 0→ :

I r s
r s

r q Fi
i

1 2
2

2
2

02
( ) ,→ →π , q F

r0
2
2

→
π

.

It is easy to check that we get the same solutions as (9.1).
Knowing the partial solutions of differential equations (6.2) at constant 

load, it is possible to obtain partial solutions of the action on the transverse 
load plate, which varies with r .

10. General solutions of equations (6.2)
General solutions of the Ô rk 0( )  of equations of the eighth order (6.2) are 

represented as:
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Ô r Ô r Ô r kk k r0 0 1 3( ) ( ) ( ), ( , )= + =                      (10.1)
where Ô r0 ( )  is the general solution of the corresponding homogeneous 

equation (6.2), and Ô rk r ( )  are partial solutions of equations (6.2).
Partial solutions are determined by formulas (6.19) and (6.20) (for a 

load along the circumference); (7.2), (7.3) and (7.4) (under the ring load); 
(8.2) and (8.3) (with the load in a circle); by formula (9.1) (under the action 
of concentrated force in the center).

The general solution Ô r0 ( )  of the homogeneous equation (6.2):
Ô r f r f r f r0 00 10 20( ) ( ) ( ) ( )= + + .                    (10.2)

Here 
f r00 ( )  is the general solution of the biharmonic equation ∇ =4 0f r( ) :

f r A B r C r D r r00 0 0
2

0 0
2( ) ln ln ;= + + +                 (10.3)

f r ii 0 1 2( ) ( , )= – general solutions of the Helmholtz equations 
( ) ( )∇ − =2 0s f ri i :

f r A I r s B K r s ii i i i i0 0 0 1 2( ) ( ) ( ), ( , ).= + =                 (10.4)
In the above formulas A B B0 0 2, , ...,  are constants of integration.
Consequently, the general solutions of equations (6.2) with allowance 

for (10.1)–(10.4) are defined thus:
Ô r A B r C r D r rk 0 0 0

2
0 0

2( ) ( ln ln )= + + + +               
(10.5)

+ + + + +A I r s B K r s A I r s B K r s Ô rk r1 0 1 1 0 1 2 0 2 2 0 2( ) ( ) ( ) ( ) ( ).

Based on the general solutions (10.5) of the system of governing equations 
(6.2), one can find general solutions for all components of displacements 
and stresses, taking into account the dependences (2.6), (4.3), (4.8), (4.14), 
(4.15 ). We must also take into account that in the polar coordinate system 
for the axisymmetric problem the vortex functions (4.1b) ψi r( ) ≡ 0 .

Similarly to the above method, one can find general solutions of the 
defining system of differential equations (4.9) in higher approximations 
using (5.7), (5.8), (10.1)–(10.5).

It should be noted that in [46] analytical solutions of axisymmetric 
problems were found in mathematical series for thick circular and annular 
plates and short cylinders using three-dimensional equations of elasticity 
theory. The boundary conditions on the flat surfaces of the slab were met 
exactly. On a cylindrical surface, static conditions were fulfilled in the integral 
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sense, and ki-nematic conditions were satisfied only on some circumferences 
of the lateral surface. In our version of the mathematical theory [8, 9, 12, 13, 
13d, 48], the boundary conditions on the flat faces of the plate (2.1a), (2.1b) 
are satisfied exactly, and on the side surface the boundary conditions (2.9)–
(2.12) performed exactly across the entire thickness of the plate in every 
approximation. Therefore, with an increase in the order of approximation, the 
analytical solution of a variant of the MT will be more accurate than in [46].

The second part of the article presents general solutions of all components of 
displacements and stresses of the used mathematical theory. The first, second, 
and third boundary problems are considered for transverse isotropic annular 
and circular plates of arbitrary thickness for various discontinuous loads. The 
conditions from which the constants of integration are found are determined. 
Analytical solutions of various classes of boundary value problems, the nature 
of their changes in the tangential and transverse directions are investigated.

11. Conclusions
A new method is proposed for integrating inhomogeneous systems of 

high-order DE of equilibrium, which is based on the following:
1) systems of high-order equilibrium equations are reduced, using 

algebraic and differential transformations, to convenient defining systems 
of inhomogeneous differential equations of a high order with respect to new 
unknown functions;

2) inhomogeneous differential equations of the defining systems of 
equations are reduced by a method of decreasing the order to inhomogeneous 
differential equations of the second and fourth orders, the solution of which 
under intermittent and local loads can be found, in particular, by integral 
transformation methods;

3) the partial solution of the inhomogeneous equation of the defining high-
order system is presented as the differential operator of a linear combination 
of the partial solutions of the second and fourth order inhomogeneous 
equations; the general solution of a homogeneous equation of high order is 
presented as the sum of the general solutions of homogeneous equations of 
the second and fourth orders;

4) the general solution of a inhomogeneous high-order DE is represented 
through the general and partiials solutions of the second and fourth order 
inhomogeneous equations;
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5) general solutions of the original systems of DE of high order 
equilibrium are found by inverse transformations through general and partial 
solutions of inhomogeneous equations of the second and fourth orders. 

The forms of general solutions of inhomogeneous systems of high-order 
DE of equilibrium in displacements are obtained.

Using the proposed method, general solutions of an inhomogeneous 
system of eighth-order governing equations of axisymmetric problems 
of bending transversely isotropic circular and annular plates of arbitrary 
thickness under intermittent and local loads, which are expressed through 
the Dirac delta function, are obtained.

Application of the method is presented using the Hankel integral 
transform. General solutions of the defining systems of inhomogeneous DE 
are obtained for plates that are under the action of transverse loads acting 
around a circle, over the area of the ring and over the area of the circle. The 
action of a concentrated force applied in the center is considered.

Proposed Method:
1) significantly simplifies the finding of particular and general solutions 

of inhomogeneous systems of high-order differential equations, especially 
in cases where the right-hand sides of the equations are discontinuous or 
local functions that correspond to discontinuous or local loads;

2) it is generalized without fundamental mathematical difficulties for 
solving inhomogeneous systems of differential equations of high order 
that arise when solving boundary value problems for plates of arbitrary 
thickness in higher approximations K0-3, K135, K0-5 and others; 

3) it can be used to solve boundary problems for plates on a Winkler 
elastic base, the governing equations of which are of the form:

D D D Ô x y a D q x yn k k k1 2 0 0... ( , ) ( , )= ,
only in this case the general and particular solutions of these 

inhomogeneous equations are expressed through the general and particular 
solutions of the inhomogeneous Helmholtz equations; 

4) it can also be used in solving inhomogeneous differential 
equations of class D D D Ô x y D f x yn1 2 ... ( , ) ( , )=  with an arbitrary 
differential operator D  and with differential operators Di  of the form: 

D b
x

c
y

d i ni i= ∇ +
∂
∂

+
∂
∂

+ =2 1 2, ( , , ..., ) . 
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The developed technique for solving boundary-value problems can also 
be applied to plate theories that use physical and geometric hypotheses.
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