
1

DOI https://doi.org/10.30525/978-9934-26-019-3-1

IMPLEMENTATION OF GENETIC ALGORITHM
FOR NEURAL NETWORK OPTIMIZATION FOR MAKING

PREDICTIONS OF THE STRESS-STRAIN STATE
OF A RECTANGULAR PLATE WITH A CIRCULAR CUT OUT

Choporova O. V., Choporov S. V., Lisnyak A. O.

INTRODUCTION
Machine learning, one of the six disciplines of Artificial Intelligence

(AI) without it problems of having machines acting humanly could not
be accomplished. Machine learning allows us to ‘teach’ computers how
to perform problems providing examples of how they should be done [1].
Machine learning is a useful tool for abundant data (also called examples
or patterns) explaining a certain phenomenon. The world is quietly being
reshaped by machine learning, the Artificial neural network (also
referred in this manuscript as ANN or neural net) being it’s the oldest [2]
and the most powerful [3] technique. ANNs also lead the number of
practical applications, virtually covering any field of knowledge [4].

Applications of ANNs to engineering structures appear in a variety of
industries such as engineering, automotive, space structures, etc. ANNs
allow to develop models e.g. for the stress-train state estimation of some
type of solids. Thus, the development of machine learning methods for
predicting the behavior of engineering structures is urgent.

In aviation engineering and shipbuilding, the use of prismatic solids
with a cut-out in which one size (thickness) is much smaller than the
other two is widespread. Such solids could be modeled by plates. Models
based on ANNs should process the geometric and mechanical parameters
of the body, as well as boundary conditions.

Genetic algorithms are one of a class of approaches often called
evolutionary computation methods used in adaptive aspects of
computation – search, optimization, machine learning, parameter
adjustment, etc. These approaches are distinguished by the fact that they
act on a population of potential solutions. Whereby most search
algorithms take a single candidate solution and make small changes to
that, attempting to improve it, evolutionary algorithms adapt an entire
population of candidate solutions to the problem. These algorithms are

2

based on biological populations and include selection operators which
increase the number of better solutions in the population and decrease the
number of the poorer ones; and other operators which generate new
solutions. The algorithms differ in the standard representation of the
problems and in the form and relative importance of the operations
which introduce new solutions.

Genetic algorithms are important in machine learning for three
reasons. First, they act on discrete spaces, where gradient-based methods
cannot be used. They can be used to search rule sets, neural network
architectures, cellular automata computers, and so forth. In this respect,
they can be used where stochastic hill-climbing and simulated annealing
might also be considered. Second, they are essentially reinforcement
learning algorithms. The performance of a learning system is determined
by a single number, the fitness. This is unlike something like a back-
propagation, which gives different signals to different parts of a neural
network based on its contribution to the error. Thus, they are widely used
in situations where the only information is a measurement of
performance. In that regard, its competitors are Q-learning, TD-learning
and so forth. Finally, genetic algorithms involve a population and
sometimes what one desires is not a single entity but a group. Learning
in multi-agent systems is a prime example.

Analysis of recent research and publications

The rapid development of computer technologies in the 20th century
led to the fact that a significant part of computing work was entrusted to
computers. Due to the high speed of calculations, their low cost and
sufficient accuracy for many applied problems, it became possible to use
methods “heavy” in terms of computations and time expenditures for
solving mathematical problems. Examples include enumeration methods,
iterative, methods using large amounts of statistical data). However,
along with the previously created solution methods and algorithms, new
ones began to appear, the existence of which apart from the computer is
difficult to imagine.

The first works of using genetic algorithms in ANN appeared at the
end of the 80s of the 20th century and already by 1994, according to
(J. Alander, 1994), in the total number of publications, starting from
1957, they occupied the first place, significantly ahead of the rest
application of genetic algorithms.

Most often, the neuroevolutionary approach is used in adaptive
control problems, multi-agent systems, and systems of artificial life.

3

The increasing popularity of artificial neural networks leads to an
increasing number of researches devoted to the development of ANN
models for modeling various fields. Modelling of solids, the stress-train
state is also possible domain of ANNs applications. For example, [5–7]
explores the possibilities of machine learning to solve the problems of
fracture mechanics. Particularly, in [5], the data set of 64 computational
experiments and 3 full-scale experiments is used for the training of the
neural network to predict possible zones of beam destruction. In [6], a
neural network based on the Kalman filter is employed to predict the
collapse of a highway on a bridge processing temperature and oscillation
data. In [7], a model based on the self-organizing map of Kohonen is
developed to detect the fracture using vibration data. The article [15]
deals with the use of neural network technology for researching the wave
damping effect of a solid foundation plate in the closed system
“building – foundation – ground” under vibratory impact on the ground.
For this purpose, the solutions of direct and inverse forecasting problems
are studied on the basis of the developed practical method of step
neuronet forecasting. The last has been successfully tested on the model
problems of mathematics, the theory of elasticity and plasticity as well as
static problems of structural mechanics and building structures. The
article [16] formulates the efficiency suppositions of using neuronet
approaches to construction engineering problems. It enumerates some
results obtained by examples of the problems of the theory of elasticity
and plasticity, structural mechanics and engineering structures in the
field of control, optimization and forecasting. In [8], the possibilities of
neural networks in the prediction the maximum displacements in rail
beams are investigated. The neural network model is constructed as a
function of two variables: the frictional parameter and load speed.
663 points are used for training, which allowed to get the maximum the
finite element model error in 5.4%. In [9] a combination of principal
component analysis (PCA) and convolutional neural networks (CNN) are
used to predict the entire stress-strain behavior of binary composites
evaluated over the entire failure path, motivated by the significantly
faster inference speed of empirical models. The authors show that the
PCA transforms the stress-strain curves into an effective latent space by
visualizing the eigen-basis of PCA. Despite having a dataset of only
10-27% of possible microstructure configurations, the mean absolute
error of the prediction is <10% of the range of values in the dataset,
when measuring model performance based on derived material
descriptors, such as modulus, strength, and toughness. Their study

4

demonstrates the potential to use machine learning to accelerate material
design, characterization, and optimization. In [10] the proposed strategy
demonstrates the effectiveness of machine learning to reduce
experimental efforts for damage characterization in composites.

Thus, the analysis of last researches and publications allows to
conclude that problems of developing models based on neural networks
for predictions stress-stain state are actual.

Problem statement

The computer-aided design requires the development of methods and
software for fast estimation of stress components. The classical methods
of mathematical modeling (e.g. the finite element method) allow to
evaluate the stress-strain state with a good accuracy. Nevertheless, the
finite element analysis is a time-consuming process especially for
complicated domains. Moreover, the preparation stage that includes
meshing routines could also be time-consuming. A possible alternative is
machine learning. Artificial neural networks are frequently used in
machine learning. An ANN could be trained over a data set of an object
states and then employed as interactive assistants in the design process.

Genetic algorithms are so-called population-based search strategies.
They maintain a set of points, so-called genomes, in a function space and
try to make use of analogies to biological evolution by performing
mutation and crossover operations between the individuals of a
population. Starting with an initial population, the algorithm evolves by
iteratively creating a new generation of individuals based on an already
existing one. New individuals are introduced by a so-called crossover
operation, where at least two individuals of a generation are chosen as
‘parents’. Their genomes are combined to produce children. On some of
the newly generated children a so-called mutation operation is performed
by replacing a part of the child with a random value. Depending on the
genetic algorithm at hand some individuals of the parental generation
might survive into the following generation(s). Individuals are chosen for
mating based on their fitness. The fitness is a metric to indicate how
good an individual represents a solution of the problem. It directly
corresponds to the target value of a gradient based optimizer. When the
optimization is started an initial population of genomes is chosen. The
parameters of the genomes are initialized randomly but within given
bounds. The fitness of the population is then computed by evaluating
each individual by means of a simulation run. The algorithm stops
working in one of the following cases: a solution was found; the set

5

operating time or the number of generations has expired; the population
does not progress for a long time.

As a result of genetic algorithm work, a population is obtained that
contains an individual whose genes are better than the genes of other
individuals to meet the required conditions. This individual will be the
solution found with the help of genetic algorithm.

Research

The data set is generated using the finite element method. Parameters
of a plate are randomly generated with following restrictions:

‒   0.1;10width (meters);
‒   0.1;10height (meters);

‒ 1
3 ; 3

2

 
  
 

r s a s (meters), where s is a size of a background cell in

a meshing routine (for an uniform mesh we could use
  max ,


width height

s
n

, 2n is a number of cells),   min ,a width height ;

‒ 0

1
0; 3

2

 
   
 

x a r s (meters);

‒ 0

1
0; 3

2

 
   
 

y a r s (meters);

‒ 1 1
;

100 20

 
  
 

h a a (meters);

‒   50000;300000E (MPa), this interval includes the majority of
metals and alloys;

‒   0;0, 45  ;
‒   0.01;0.1q (MPa).
Boundary conditions are applied to plate’s edges. In numerical

experiments, boundary conditions are also randomly generated. One of
the following boundary conditions could be applied to each edge of the
plate: a free edge, a supported edge, a clamped (fixed) edge. Hence,
boundary conditions could be processed as categorical data. Any
combination of boundary conditions is possible excluding combinations
of four free edges or one supported edge and three free edges.

6

Let
0c is a boundary condition applied at the edge

2
 

width
x ,

1c is

a boundary condition applied at the edge
2

 
height

y ,
3c is a boundary

condition applied at the edge
2


width

x , and finally
3c is a boundary

condition applied at the edge
2


height

y (see Fig. 1). If we also

enumerate a free edge by 0, a supported edge by 1, a clamped edge by 2,
then we get the following restriction:

1 2 3 4 2   c c c c . Boundary
conditions include 76 possible valid combinations that could be
represented by one-hot encoding.

The data set includes randomly generated 40,000 records. We exclude
records that don’t satisfy the linear model requirements (if deflection

isn’t in the interval from 510 width 10–5 to 1

5
width).

The model of an artificial neural network includes two input branches
of neurons (see Fig. 2). Branches use dense input layers of neurons to
separate an input for numerical and categorical data. Each branch could
include few hidden dense layers of neurons. Then the branches are
merged combining the output the hidden layers for numerical and
categorical data processing. An arbitrary number of hidden dense layers
could follow the layer for the merged output. Finally, the last hidden
dense layer is connected with the top dense layer.

Fig. 1. The scheme of a plate

7

Genetic algorithm for predicting the behavior of isotropic plate
with circular cut-out

The theory of evolutionary, in particular, genetic algorithms is
currently well developed, for example in [13, 14], the basic concepts and
examples of applications to discrete optimization problems are
formalized. We are going to develop a genetic algorithm for the
optimization of hyperparameters of the model.

The following hyperparameters are encoded into an integer-valued
chromosome   0 1 14, , , V v v v :

– a number of neurons at the input layer in the branch of numerical
data (0v);

– an activation function at the input layer in the branch of numerical
data (1v);

– a number of hidden layers in the branch of numerical data (2v);
– a number of neurons at hidden layers in the branch of numerical

data (3v);

Fig. 2. The layers of neurons in the model

8

– an activation function at hidden layers in the branch of numerical
data (4v);

– a number of neurons at the input layer in the branch of categorical
data (5v);

– an activation function at the input layer in the branch of categorical
data (6v);

– a number of hidden layers in the branch of categorical data (7v);
– a number of neurons at hidden layers in the branch of categorical

data (8v);
– an activation function at hidden layers in the branch of categorical

data (9v);

– a number of neurons at the merge layer (10v);
– an activation function at hidden layers in the branch of categorical

data (11v);

– a number of hidden layers after the merge layer (12v);

– a number of neurons at hidden layers after the merge layer (13v);

– an activation function at hidden layers after the merge layer (14v);
The model includes 9 inputs in the branch of numerical data and 76

inputs in the branch of categorical data. We could suppose that in
branches each layer has at least the same number of neurons as the
number of input signals; the model might don’t include hidden layers;
the maximum number of hidden layers could be limited to 10; the
maximum number of neurons could be limited by the minimum value
multiplied to 3; the minimum number of neurons at hidden layers after
the merge layer could be set to 25% of the total number of input signals.
Hyperbolic tangent (tanh), sigmoid and Rectified Linear Unit (relu) are
the most useful in the regression problem activation functions. We can
enumerate activation functions by integers: 0 – tanh, 1 – sigmoid, 2 –
relu. Hence, the following restrictions on chromosome’s values could be
used to generate a population: 0 3, ;3   f fv v n n ,  1 4 9 11 146, , , , , 0;2v v v v v v ,

 2 7 12, , 0;10v v v ,  3 8, ;3 c cv v n n ,  
10
, ;3    f c f c

v n n n n ,

 13, ;3
4

 
  
 

f c

f c

n n
v n n , where 9fn and 76cn .

9

The scheme of the genetic algorithm is shown in the Fig. 3.

Fig. 3. The scheme of the genetic algorithm

The loss function of the model is used as an output of a fitness

function. The fitness function builds the model, trains it using the data
set and returns the value of the loss function for the trained model. The
scheme of the fitness is shown in the Fig. 4.

In the Fig. 4,     dense ,units activation I denotes a fully connected
layer, where units is the number of neurons, activation is the activation
function, I is an input signal of the layer; F is the input signal for the
branch of numerical data and C is the input signal for the branch of
categorical data; O denotes the number of output signals; linear denotes
the linear activation function; the function  mse m is the mean squared
error in the trained model.

The crossover combines genes of the population. The crossover
selects the chromosome with the best fitness and combines it with other
chromosomes. It m randomly selected genes of each chromosome by the
genes of the best chromosome. The scheme of the crossover is shown in
the Fig. 5.

algorithm genetic

begin

 𝑒𝑝𝑜𝑐ℎ ← 0
 initialize(𝑃𝑒𝑝𝑜𝑐ℎ)
 while not stop-criterion do

 begin

 𝐹𝑒𝑝𝑜𝑐ℎ ← fitness(𝑃𝑒𝑝𝑜𝑐ℎ)

 𝑃𝑒𝑝𝑜𝑐ℎ ← 𝑃𝑒𝑝𝑜𝑐ℎ[argsort(𝐹𝑒𝑝𝑜𝑐ℎ)]

 𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1

 𝑃𝑒𝑝𝑜𝑐ℎ ← crossover(𝑃𝑒𝑝𝑜𝑐ℎ−1)

 𝑃𝑒𝑝𝑜𝑐ℎ ← mutate(𝑃𝑒𝑝𝑜𝑐ℎ)
 end

end

10

Fig. 4. The scheme of the fitness

Fig. 5. The scheme of the crossover

In the Fig. 5,   choise ,N swap generates a list of swap random

integers without duplicates , each integer is a value from the interval
 0; 1N ; N is the size of the population; swap denotes the number of
genes taken from the best chromosome.

function fitness(𝑉)
begin

 𝑓 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉0, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉1)(𝐹)
 for 𝑖 ← 0 to 𝑉2 do
 begin

 𝑓 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉3, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉4)(𝑓)
 end

 𝑐 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉5, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉6)(𝐶)
 for 𝑖 ← 0 to 𝑉7 do
 begin

 𝑐 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉8, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉9)(𝑐)
 end

 𝑚 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉10, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉11)(𝑓 ∪ 𝑐)
 for 𝑖 ← 0 to 𝑉12 do
 begin

 𝑚 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉13, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉14)(𝑚)
 end

 𝑚𝑜𝑑𝑒𝑙 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑂, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑛𝑒𝑎𝑟)(𝑚)
 train(𝑚𝑜𝑑𝑒𝑙)
return mse(𝑚)

function crossover(𝑃)

begin

 for 𝑖 ← 1 to 𝑁–1 do

 begin

 𝑖𝑑𝑥 ← choise(𝑁, 𝑠𝑤𝑎𝑝)

 𝑃𝑖[𝑖𝑑𝑥] ← 𝑃0[𝑖𝑑𝑥]

 end

return 𝑃

11

Fig. 6. The scheme of the mutation

We use a uniform mutation to avoid premature convergence. The

mutation combines the worst M chromosomes with new random
chromosomes similar to the crossover (see Fig. 6). In the Fig. 6,
chromosome() generates a new random chromosome.

Numerical Experiment

In the numerical experiments, we used the population of
10 chromosomes of 15 genes. We set 7M . The algorithm stops if the
best three chromosomes are not changed at least 50 populations.

The algorithm stopped after 100 populations. We can conclude that
the genetic algorithm significantly reduces the mean squared error in the
model (see the Fig. 7).

Fig. 7. The fitness of the best three chromosomes

function mutate(𝑃)

begin

 for 𝑖 ← 𝑁 −𝑀 − 1 to 𝑁–1 do

 begin

 𝑖𝑑𝑥 ← choise(𝑁, 𝑠𝑤𝑎𝑝)

 𝐶 ← chromosome()

 𝑃𝑖[𝑖𝑑𝑥] ← 𝐶[𝑖𝑑𝑥]

 end

return 𝑃

12

Fig. 8. The number of neurons at the input layer

in the branch of numerical data

Figures 8–11 show how a number of neurons are changed in different

layers. The Fig. 12 shows populations using the Principal Component
Analysis to reduce dimensions.

Fig. 9. The number of neurons at the input layer

in the branch of categorical data

The best chromosome is   21,0,0,22,2,189,2,0,139,1,245,2,3,192,2 . The

chromosome defines the model with 21 neurons at the input layer, the
hyperbolic tangent activation and 0 hidden layers in the branch of
numerical data; 189 neurons at the input layer, the ReLU activation and 0
hidden layers in the branch of categorical data; 245 neurons the ReLU
activation at the merge layer; 3 hidden layers with 192 neurons and the
ReLU activation after the merge layer (see Fig. 13).

13

Fig. 10. The number of neurons at the merge layer

Fig. 11. The number of neurons at hidden layers after the merge layer

Fig. 12. The PCA projection of the population

14

15

The Fig. 14 shows the mean squared error in the best model for training
and testing. The Fig. 15 shows the mean absolute percentage error.

Fig. 14. The mean squared error in the best model

Fig. 15. The absolute percentage error in the best model

CONCLUSIONS
Genetic algorithms are general purpose search algorithms which act

on a population of candidate solutions. They can be applied to search on
discrete spaces, so can be used to search rule sets, representations of

16

computer programs or computer structures, neural network architectures,
and so forth. When applied to learning, genetic algorithms turn learning
tasks into reinforcement learning problems; it is in this domain where
they are often used. Genetic algorithms combine quite successfully with
local search algorithms or local machine learning methods.

The genetic algorithm allows to reduce the mean squared error in the
ANN verifying its architecture. The best chromosome of the initial
population defines the model of ANN with the mean squared error that is
approximately equals 4,7×10–5 while the same chromosome in the last
population defines the model of ANN with the mean squared error that is
approximately equals 1,2×10–6.

Fig. 8–11 show that genes are changed slow, so some premature
convergence is present. Hence, crossover or mutation procedures should
be improved.

The obtained ANN allows to estimate the stress-strain state of a
rectangular plate with a circular cut-out with reasonable restrictions.
Such pretrained ANN might be used as an interactive assistant in CAE or
CAD software.

Further researches are related to the development of artificial neural
networks that will predict the stress-strain state according to the drawing
or image of shell structures using machine vision and classification
algorithms.

SUMMARY
Machine learning, one of the six disciplines of Artificial Intelligence

(AI) without it problems of having machines acting humanly could not
be accomplished. Machine learning is a useful tool for abundant data
(also called examples or patterns) explaining a certain phenomenon.

Applications of ANNs to engineering structures appear in a variety of
industries such as engineering, automotive, space structures, etc. ANNs
allow to develop models e.g. for the stress-train state estimation of some
type of solids. Thus, the development of machine learning methods for
predicting the behavior of engineering structures is urgent.

Genetic algorithms are important in machine learning for three
reasons. First, they act on discrete spaces, where gradient-based methods
cannot be used. They can be used to search rule sets, neural network
architectures, cellular automata computers, and so forth. In this respect,
they can be used where stochastic hill-climbing and simulated annealing
might also be considered. Second, they are essentially reinforcement
learning algorithms. The performance of a learning system is determined

17

by a single number, the fitness. This is unlike something like a back-
propagation, which gives different signals to different parts of a neural
network based on its contribution to the error. Thus, they are widely used
in situations where the only information is a measurement of
performance. In that regard, its competitors are Q-learning, TD-learning
and so forth. Finally, genetic algorithms involve a population and
sometimes what one desires is not a single entity but a group. Learning
in multi-agent systems is a prime example.

REFERENCES

1. Keras. URL: https://www.tensorflow.org/guide/keras.
2. Abambres M., Marcy M., Doz G. “Potential of Neural Networks

for Structural Damage Localization”, engrXiv. 2018. URL: Available:
engrxiv.org/rghpf/ doi: 10.31224/osf.io/rghpf.

3. C. Jin, S. Jang, X. Sun “Damage detection of a highway bridge
under severe temperature changes using extended Kalman filter trained
neural network”, Journal of Civil Structural Health Monitoring. 2016.
Vol. 6, Iss. 3, pp. 545–560.

4. Onur Avci P. O., Abdeljaber A. O. “Self-Organizing Maps for
Structural Damage Detection: A Novel Unsupervised Vibration-Based
Algorithm”, Journal of Performance of Constructed Facilities. 2016.
Vol. 30, Iss. 3. pp. 1–11.

5. Li K., Liu W., Zhao K., Shao M., Liu L. “A Novel Dynamic
Weight Neural Network Ensemble Model. International Journal of
Distributed Sensor Networks”. 2015. Vol. 2015, Article ID 862056,
13 pages, doi: 10.1155/2015/862056

6. Tao S. “Deep Neural Network Ensembles”. Available:
https://arxiv.org/abs/1904.05488

7. Webb A. M., Reynolds C., Iliescu D.-A., Reeve H., Lujan M.,
Brown G. “Joint Training of Neural Network Ensembles”. Available:
https://arxiv.org/abs/1902.04422.

8. Hany Sallam, Carlo S. Regazzoni, Ihab Talkhan, and Amir Atiya
“Evolving neural networks ensembles”. IAPR Workshop on Cognitive
Information Processing, pp. 142-147.

9. Symone G. Soares, Carlos H. Antunes, Rui Arajo. “A Genetic
Algorithm for Designing Neural Network Ensembles”. Proceedings of
the 14th annual conference on Genetic and evolutionary computation.
pp. 681-688.

18

10. Maksymova О. M. “Razvitie s primenenie neurosetevih
tehnologiy dlia zadach mahaniki i stroitelnih konstrukcij”, Vestnik
IrGTU. 2013. № 8 (79). pp. 81–88.

11. Lesovik R. V. “Optimal’noye proyektirovaniye stroitel’nykh
konstruktsiy na osnove geneticheskogo algoritma”. Stroitel’naya
mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2010. pp. 20–24.

12. Vakal L. P. “Henetichni alhorytmy yak instrument rozv’yazannya
neliniynikh Krayova zavdah”, Komp’yuterni zasoby, merezhi ta
systemy. 2015. № 14. pp. 16–23.

13. Oliynyk A. O., Subbotin S. O., Oliynyk O. O. “Evolyutsiyni
obchyslennya ta prohramuvannya”. Zaporizhzhya: ZNTU. 2010. p. 324.

14. Kozyn I. V. “Evolyutsiyni modeli v dyskretnoyi optymizatsiyi”.
Zaporizhzhya: ZNU. 2019. p. 204.

15. Maksymova О. M. “Neural network forecasting technologies for
problems of the dynamics of building structures” XIV All-Russian
Scientific and Technical Conference “Neuroinformatics-2012”;
Moscow. 2012.

16. Maksymova О. M. “Neuronet technology development and
application for solving mechanical and engineering structures problems”,
Vestnik IrGTU. 2013. № 8 (79). p. 82.

17. Holland, J. N. “Adaptation in Natural and Artificial Systems”,
Michigan: Univ. Michigan Press, 1975.

Information about authors:
Choporova O. V.,

Post-graduate student,
Zaporizhzhia National University

66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

Choporov S. V.,
Doctor of Technical Sciences, Docent,

Professor at the Software Engineering Department,
Zaporizhzhia National University

66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

Lisnyak A. O.,
Candidate of Physical and Mathematical Sciences (PhD), Docent,

Chair at the Software Engineering Department
66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

