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INTRODUCTION 
Machine learning, one of the six disciplines of Artificial Intelligence 

(AI) without it problems of having machines acting humanly could not 
be accomplished. Machine learning allows us to ‘teach’ computers how 
to perform problems providing examples of how they should be done [1]. 
Machine learning is a useful tool for abundant data (also called examples 
or patterns) explaining a certain phenomenon. The world is quietly being 
reshaped by machine learning, the Artificial neural network (also 
referred in this manuscript as ANN or neural net) being it’s the oldest [2] 
and the most powerful [3] technique. ANNs also lead the number of 
practical applications, virtually covering any field of knowledge [4]. 

Applications of ANNs to engineering structures appear in a variety of 
industries such as engineering, automotive, space structures, etc. ANNs 
allow to develop models e.g. for the stress-train state estimation of some 
type of solids. Thus, the development of machine learning methods for 
predicting the behavior of engineering structures is urgent. 

In aviation engineering and shipbuilding, the use of prismatic solids 
with a cut-out in which one size (thickness) is much smaller than the 
other two is widespread. Such solids could be modeled by plates. Models 
based on ANNs should process the geometric and mechanical parameters 
of the body, as well as boundary conditions. 

Genetic algorithms are one of a class of approaches often called 
evolutionary computation methods used in adaptive aspects of 
computation – search, optimization, machine learning, parameter 
adjustment, etc. These approaches are distinguished by the fact that they 
act on a population of potential solutions. Whereby most search 
algorithms take a single candidate solution and make small changes to 
that, attempting to improve it, evolutionary algorithms adapt an entire 
population of candidate solutions to the problem. These algorithms are 
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based on biological populations and include selection operators which 
increase the number of better solutions in the population and decrease the 
number of the poorer ones; and other operators which generate new 
solutions. The algorithms differ in the standard representation of the 
problems and in the form and relative importance of the operations 
which introduce new solutions. 

Genetic algorithms are important in machine learning for three 
reasons. First, they act on discrete spaces, where gradient-based methods 
cannot be used. They can be used to search rule sets, neural network 
architectures, cellular automata computers, and so forth. In this respect, 
they can be used where stochastic hill-climbing and simulated annealing 
might also be considered. Second, they are essentially reinforcement 
learning algorithms. The performance of a learning system is determined 
by a single number, the fitness. This is unlike something like a back-
propagation, which gives different signals to different parts of a neural 
network based on its contribution to the error. Thus, they are widely used 
in situations where the only information is a measurement of 
performance. In that regard, its competitors are Q-learning, TD-learning 
and so forth. Finally, genetic algorithms involve a population and 
sometimes what one desires is not a single entity but a group. Learning 
in multi-agent systems is a prime example. 

 
Analysis of recent research and publications 

The rapid development of computer technologies in the 20th century 
led to the fact that a significant part of computing work was entrusted to 
computers. Due to the high speed of calculations, their low cost and 
sufficient accuracy for many applied problems, it became possible to use 
methods “heavy” in terms of computations and time expenditures for 
solving mathematical problems. Examples include enumeration methods, 
iterative, methods using large amounts of statistical data). However, 
along with the previously created solution methods and algorithms, new 
ones began to appear, the existence of which apart from the computer is 
difficult to imagine. 

The first works of using genetic algorithms in ANN appeared at the 
end of the 80s of the 20th century and already by 1994, according to 
(J. Alander, 1994), in the total number of publications, starting from 
1957, they occupied the first place, significantly ahead of the rest 
application of genetic algorithms. 

Most often, the neuroevolutionary approach is used in adaptive 
control problems, multi-agent systems, and systems of artificial life. 
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The increasing popularity of artificial neural networks leads to an 
increasing number of researches devoted to the development of ANN 
models for modeling various fields. Modelling of solids, the stress-train 
state is also possible domain of ANNs applications. For example, [5–7] 
explores the possibilities of machine learning to solve the problems of 
fracture mechanics. Particularly, in [5], the data set of 64 computational 
experiments and 3 full-scale experiments is used for the training of the 
neural network to predict possible zones of beam destruction. In [6], a 
neural network based on the Kalman filter is employed to predict the 
collapse of a highway on a bridge processing temperature and oscillation 
data. In [7], a model based on the self-organizing map of Kohonen is 
developed to detect the fracture using vibration data. The article [15] 
deals with the use of neural network technology for researching the wave 
damping effect of a solid foundation plate in the closed system 
“building – foundation – ground” under vibratory impact on the ground. 
For this purpose, the solutions of direct and inverse forecasting problems 
are studied on the basis of the developed practical method of step 
neuronet forecasting. The last has been successfully tested on the model 
problems of mathematics, the theory of elasticity and plasticity as well as 
static problems of structural mechanics and building structures. The 
article [16] formulates the efficiency suppositions of using neuronet 
approaches to construction engineering problems. It enumerates some 
results obtained by examples of the problems of the theory of elasticity 
and plasticity, structural mechanics and engineering structures in the 
field of control, optimization and forecasting.  In [8], the possibilities of 
neural networks in the prediction the maximum displacements in rail 
beams are investigated. The neural network model is constructed as a 
function of two variables: the frictional parameter and load speed. 
663 points are used for training, which allowed to get the maximum the 
finite element model error in 5.4%. In [9] a combination of principal 
component analysis (PCA) and convolutional neural networks (CNN) are 
used to predict the entire stress-strain behavior of binary composites 
evaluated over the entire failure path, motivated by the significantly 
faster inference speed of empirical models. The authors show that the 
PCA transforms the stress-strain curves into an effective latent space by 
visualizing the eigen-basis of PCA. Despite having a dataset of only  
10-27% of possible microstructure configurations, the mean absolute 
error of the prediction is <10% of the range of values in the dataset, 
when measuring model performance based on derived material 
descriptors, such as modulus, strength, and toughness. Their study 
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demonstrates the potential to use machine learning to accelerate material 
design, characterization, and optimization. In [10] the proposed strategy 
demonstrates the effectiveness of machine learning to reduce 
experimental efforts for damage characterization in composites. 

Thus, the analysis of last researches and publications allows to 
conclude that problems of developing models based on neural networks 
for predictions stress-stain state are actual.   

 
Problem statement 

The computer-aided design requires the development of methods and 
software for fast estimation of stress components. The classical methods 
of mathematical modeling (e.g. the finite element method) allow to 
evaluate the stress-strain state with a good accuracy. Nevertheless, the 
finite element analysis is a time-consuming process especially for 
complicated domains. Moreover, the preparation stage that includes 
meshing routines could also be time-consuming. A possible alternative is 
machine learning. Artificial neural networks are frequently used in 
machine learning. An ANN could be trained over a data set of an object 
states and then employed as interactive assistants in the design process. 

Genetic algorithms are so-called population-based search strategies. 
They maintain a set of points, so-called genomes, in a function space and 
try to make use of analogies to biological evolution by performing 
mutation and crossover operations between the individuals of a 
population. Starting with an initial population, the algorithm evolves by 
iteratively creating a new generation of individuals based on an already 
existing one. New individuals are introduced by a so-called crossover 
operation, where at least two individuals of a generation are chosen as 
‘parents’. Their genomes are combined to produce children. On some of 
the newly generated children a so-called mutation operation is performed 
by replacing a part of the child with a random value. Depending on the 
genetic algorithm at hand some individuals of the parental generation 
might survive into the following generation(s). Individuals are chosen for 
mating based on their fitness. The fitness is a metric to indicate how 
good an individual represents a solution of the problem. It directly 
corresponds to the target value of a gradient based optimizer. When the 
optimization is started an initial population of genomes is chosen. The 
parameters of the genomes are initialized randomly but within given 
bounds. The fitness of the population is then computed by evaluating 
each individual by means of a simulation run. The algorithm stops 
working in one of the following cases: a solution was found; the set 
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operating time or the number of generations has expired; the population 
does not progress for a long time. 

As a result of genetic algorithm work, a population is obtained that 
contains an individual whose genes are better than the genes of other 
individuals to meet the required conditions. This individual will be the 
solution found with the help of genetic algorithm. 

 
Research 

The data set is generated using the finite element method. Parameters 
of a plate are randomly generated with following restrictions: 
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‒   50000;300000E  (MPa), this interval includes the majority of 
metals and alloys; 

‒   0;0, 45  ; 
‒   0.01;0.1q  (MPa). 
Boundary conditions are applied to plate’s edges. In numerical 

experiments, boundary conditions are also randomly generated. One of 
the following boundary conditions could be applied to each edge of the 
plate: a free edge, a supported edge, a clamped (fixed) edge. Hence, 
boundary conditions could be processed as categorical data. Any 
combination of boundary conditions is possible excluding combinations 
of four free edges or one supported edge and three free edges. 
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Let 
0c  is a boundary condition applied at the edge  

2
 

width
x , 

1c  is 

a boundary condition applied at the edge 
2

 
height

y , 
3c  is a boundary 

condition applied at the edge 
2


width

x , and finally 
3c  is a boundary 

condition applied at the edge  
2


height

y  (see Fig. 1). If we also 

enumerate a free edge by 0, a supported edge by 1, a clamped edge by 2, 
then we get the following restriction: 

1 2 3 4 2   c c c c . Boundary 
conditions include 76 possible valid combinations that could be 
represented by one-hot encoding. 

The data set includes randomly generated 40,000 records. We exclude 
records that don’t satisfy the linear model requirements (if deflection 

isn’t in the interval from  510 width 10–5 to 1

5
width ). 

The model of an artificial neural network includes two input branches 
of neurons (see Fig. 2). Branches use dense input layers of neurons to 
separate an input for numerical and categorical data. Each branch could 
include few hidden dense layers of neurons. Then the branches are 
merged combining the output the hidden layers for numerical and 
categorical data processing. An arbitrary number of hidden dense layers 
could follow the layer for the merged output. Finally, the last hidden 
dense layer is connected with the top dense layer. 

 
Fig. 1. The scheme of a plate 
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Genetic algorithm for predicting the behavior of isotropic plate 
with circular cut-out 

The theory of evolutionary, in particular, genetic algorithms is 
currently well developed, for example in [13, 14], the basic concepts and 
examples of applications to discrete optimization problems are 
formalized. We are going to develop a genetic algorithm for the 
optimization of hyperparameters of the model. 

The following hyperparameters are encoded into an integer-valued 
chromosome   0 1 14, , , V v v v : 

– a number of neurons at the input layer in the branch of numerical 
data ( 0v ); 

– an activation function at the input layer in the branch of numerical 
data ( 1v ); 

– a number of hidden layers in the branch of numerical data ( 2v ); 
– a number of neurons at hidden layers in the branch of numerical 

data ( 3v ); 
 

 
Fig. 2. The layers of neurons in the model 
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– an activation function at hidden layers in the branch of numerical 
data ( 4v ); 

– a number of neurons at the input layer in the branch of categorical 
data ( 5v ); 

– an activation function at the input layer in the branch of categorical 
data ( 6v ); 

– a number of hidden layers in the branch of categorical data ( 7v ); 
– a number of neurons at hidden layers in the branch of categorical 

data ( 8v ); 
– an activation function at hidden layers in the branch of categorical 

data ( 9v ); 

– a number of neurons at the merge layer ( 10v ); 
– an activation function at hidden layers in the branch of categorical 

data ( 11v ); 

– a number of hidden layers after the merge layer ( 12v ); 

– a number of neurons at hidden layers after the merge layer ( 13v ); 

– an activation function at hidden layers after the merge layer ( 14v ); 
The model includes 9 inputs in the branch of numerical data and 76 

inputs in the branch of categorical data. We could suppose that in 
branches each layer has at least the same number of neurons as the 
number of input signals; the model might don’t include hidden layers; 
the maximum number of hidden layers could be limited to 10; the 
maximum number of neurons could be limited by the minimum value 
multiplied to 3; the minimum number of neurons at hidden layers after 
the merge layer could be set to 25% of the total number of input signals. 
Hyperbolic tangent (tanh), sigmoid and Rectified Linear Unit (relu) are 
the most useful in the regression problem activation functions. We can 
enumerate activation functions by integers: 0 – tanh, 1 – sigmoid, 2 – 
relu. Hence, the following restrictions on chromosome’s values could be 
used to generate a population: 0 3, ;3   f fv v n n ,  1 4 9 11 146, , , , , 0;2v v v v v v , 

 2 7 12, , 0;10v v v ,  3 8, ;3 c cv v n n ,   
10
, ;3    f c f c

v n n n n , 

 13, ;3
4

 
  
 

f c

f c

n n
v n n , where 9fn  and 76cn . 
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The scheme of the genetic algorithm is shown in the Fig. 3. 
 

 
Fig. 3. The scheme of the genetic algorithm 

 
The loss function of the model is used as an output of a fitness 

function. The fitness function builds the model, trains it using the data 
set and returns the value of the loss function for the trained model. The 
scheme of the fitness is shown in the Fig. 4. 

In the Fig. 4,     dense ,units activation I  denotes a fully connected 
layer, where units  is the number of neurons, activation  is the activation 
function, I  is an input signal of the layer; F  is the input signal for the 
branch of numerical data and C  is the input signal for the branch of 
categorical data; O  denotes the number of output signals; linear  denotes 
the linear activation function; the function  mse m  is the mean squared 
error in the trained model. 

The crossover combines genes of the population. The crossover 
selects the chromosome with the best fitness and combines it with other 
chromosomes. It m randomly selected genes of each chromosome by the 
genes of the best chromosome. The scheme of the crossover is shown in 
the Fig. 5. 

 

algorithm genetic 

begin 

   𝑒𝑝𝑜𝑐ℎ ← 0 
   initialize(𝑃𝑒𝑝𝑜𝑐ℎ) 
   while not stop-criterion do 

   begin 

      𝐹𝑒𝑝𝑜𝑐ℎ ← fitness(𝑃𝑒𝑝𝑜𝑐ℎ) 

      𝑃𝑒𝑝𝑜𝑐ℎ ← 𝑃𝑒𝑝𝑜𝑐ℎ[argsort(𝐹𝑒𝑝𝑜𝑐ℎ)] 

      𝑒𝑝𝑜𝑐ℎ ← 𝑒𝑝𝑜𝑐ℎ + 1 

      𝑃𝑒𝑝𝑜𝑐ℎ ← crossover(𝑃𝑒𝑝𝑜𝑐ℎ−1) 

      𝑃𝑒𝑝𝑜𝑐ℎ ← mutate(𝑃𝑒𝑝𝑜𝑐ℎ) 
   end 

end 
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Fig. 4. The scheme of the fitness 

 

 
Fig. 5. The scheme of the crossover 

 
In the Fig. 5,   choise ,N swap  generates a list of swap  random 

integers without duplicates , each integer is a value from the interval 
 0; 1N ; N  is the size of the population; swap  denotes the number of 
genes taken from the best chromosome. 

function fitness(𝑉) 
begin 

   𝑓 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉0, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉1)(𝐹) 
   for 𝑖 ← 0 to 𝑉2 do 
   begin 

      𝑓 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉3, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉4)(𝑓) 
   end 

   𝑐 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉5, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉6)(𝐶) 
   for 𝑖 ← 0 to 𝑉7 do 
   begin 

      𝑐 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉8, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉9)(𝑐) 
   end 

   𝑚 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉10, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉11)(𝑓 ∪ 𝑐) 
   for 𝑖 ← 0 to 𝑉12 do 
   begin 

      𝑚 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑉13, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑉14)(𝑚) 
   end 

   𝑚𝑜𝑑𝑒𝑙 ← dense(𝑢𝑛𝑖𝑡𝑠 = 𝑂, 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 = 𝑙𝑖𝑛𝑒𝑎𝑟)(𝑚) 
   train(𝑚𝑜𝑑𝑒𝑙) 
return mse(𝑚) 

function crossover(𝑃) 

begin 

   for 𝑖 ← 1 to 𝑁–1 do 

   begin 

      𝑖𝑑𝑥 ← choise(𝑁, 𝑠𝑤𝑎𝑝) 

      𝑃𝑖[𝑖𝑑𝑥] ← 𝑃0[𝑖𝑑𝑥] 

   end 

return 𝑃 
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Fig. 6. The scheme of the mutation 

 
We use a uniform mutation to avoid premature convergence. The 

mutation combines the worst M  chromosomes with new random 
chromosomes similar to the crossover (see Fig. 6). In the Fig. 6, 
chromosome()  generates a new random chromosome. 

 
Numerical Experiment 

In the numerical experiments, we used the population of 
10 chromosomes of 15 genes. We set 7M . The algorithm stops if the 
best three chromosomes are not changed at least 50 populations. 

The algorithm stopped after 100 populations. We can conclude that 
the genetic algorithm significantly reduces the mean squared error in the 
model (see the Fig. 7). 

 

 
Fig. 7. The fitness of the best three chromosomes 

function mutate(𝑃) 

begin 

   for 𝑖 ← 𝑁 −𝑀 − 1 to 𝑁–1 do 

   begin 

      𝑖𝑑𝑥 ← choise(𝑁, 𝑠𝑤𝑎𝑝) 

      𝐶 ← chromosome() 

      𝑃𝑖[𝑖𝑑𝑥] ← 𝐶[𝑖𝑑𝑥] 

   end 

return 𝑃 
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Fig. 8. The number of neurons at the input layer 

in the branch of numerical data 
 
Figures 8–11 show how a number of neurons are changed in different 

layers. The Fig. 12 shows populations using the Principal Component 
Analysis to reduce dimensions. 

 

 
Fig. 9. The number of neurons at the input layer 

in the branch of categorical data 
 
The best chromosome is                21,0,0,22,2,189,2,0,139,1,245,2,3,192,2 . The 

chromosome defines the model with 21 neurons at the input layer, the 
hyperbolic tangent activation and 0 hidden layers in the branch of 
numerical data; 189 neurons at the input layer, the ReLU activation and 0 
hidden layers in the branch of categorical data; 245 neurons the ReLU 
activation at the merge layer; 3 hidden layers with 192 neurons and the 
ReLU activation after the merge layer (see Fig. 13). 
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Fig. 10. The number of neurons at the merge layer 

 
Fig. 11. The number of neurons at hidden layers after the merge layer 

 
Fig. 12. The PCA projection of the population 
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The Fig. 14 shows the mean squared error in the best model for training 
and testing. The Fig. 15 shows the mean absolute percentage error. 

 
Fig. 14. The mean squared error in the best model 

 
Fig. 15. The absolute percentage error in the best model 

 
CONCLUSIONS 
Genetic algorithms are general purpose search algorithms which act 

on a population of candidate solutions. They can be applied to search on 
discrete spaces, so can be used to search rule sets, representations of 
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computer programs or computer structures, neural network architectures, 
and so forth. When applied to learning, genetic algorithms turn learning 
tasks into reinforcement learning problems; it is in this domain where 
they are often used. Genetic algorithms combine quite successfully with 
local search algorithms or local machine learning methods. 

The genetic algorithm allows to reduce the mean squared error in the 
ANN verifying its architecture. The best chromosome of the initial 
population defines the model of ANN with the mean squared error that is 
approximately equals 4,7×10–5 while the same chromosome in the last 
population defines the model of ANN with the mean squared error that is 
approximately equals 1,2×10–6. 

Fig. 8–11 show that genes are changed slow, so some premature 
convergence is present. Hence, crossover or mutation procedures should 
be improved. 

The obtained ANN allows to estimate the stress-strain state of a 
rectangular plate with a circular cut-out with reasonable restrictions. 
Such pretrained ANN might be used as an interactive assistant in CAE or 
CAD software. 

Further researches are related to the development of artificial neural 
networks that will predict the stress-strain state according to the drawing 
or image of shell structures using machine vision and classification 
algorithms. 

 
SUMMARY 
Machine learning, one of the six disciplines of Artificial Intelligence 

(AI) without it problems of having machines acting humanly could not 
be accomplished. Machine learning is a useful tool for abundant data 
(also called examples or patterns) explaining a certain phenomenon.  

Applications of ANNs to engineering structures appear in a variety of 
industries such as engineering, automotive, space structures, etc. ANNs 
allow to develop models e.g. for the stress-train state estimation of some 
type of solids. Thus, the development of machine learning methods for 
predicting the behavior of engineering structures is urgent. 

Genetic algorithms are important in machine learning for three 
reasons. First, they act on discrete spaces, where gradient-based methods 
cannot be used. They can be used to search rule sets, neural network 
architectures, cellular automata computers, and so forth. In this respect, 
they can be used where stochastic hill-climbing and simulated annealing 
might also be considered. Second, they are essentially reinforcement 
learning algorithms. The performance of a learning system is determined 
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by a single number, the fitness. This is unlike something like a back-
propagation, which gives different signals to different parts of a neural 
network based on its contribution to the error. Thus, they are widely used 
in situations where the only information is a measurement of 
performance. In that regard, its competitors are Q-learning, TD-learning 
and so forth. Finally, genetic algorithms involve a population and 
sometimes what one desires is not a single entity but a group. Learning 
in multi-agent systems is a prime example. 
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