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FINITE ELEMENT MODELING OF THE STRESS-STRAIN
STATE OF A COMPOSITE MATERIAL
WITH A VISCOELASTIC MATRIX
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INTRODUCTION

Due to their unique properties, fibrous composite materials are widely
used in the creation of new equipment, structures, etc. The materials of
which the composite is produced have significant differences in their
properties. Accordingly, a composite material with a viscoelastic matrix
and transtropic fiber is often used. Developing a mathematical model that
would take into account these properties is a rather complex procedure.
As arule, further study of the developed model is impossible without the
use of numerical methods, such as the finite element method (FEM). But
the use of FEM to solve the problem of viscoelasticity of the fibrous
composite requires improvement and modification of the method to take
into account the peculiarities of the developed model.

A significant amount of works is devoted to research in this area. In
[1], a finite element analysis of the effect of viscoelastic properties of the
matrix on the stress-strain state of an epoxy beam reinforced with fibers
was performed. Studies of residual stresses in glass-epoxy material
having orthotropic viscoelastic properties are presented in [2] using the
finite element method. The study of bound bodies of complex geometry
with different degrees of aging was carried out using the combined
perturbation finite element-boundary element method [3]. A space-time
finite element has been developed for the study of viscoelastic
deformation of fibrous composites, which is described by difference
kernels with instantaneous and long-term mechanical characteristics [4].
In [5] the special grid homogenization method by the method of finite
elements of viscoelastic composite material is presented.

Homogenization of a composite material
We will assume that the composite material consists of two
components: an isotropic viscoelastic matrix and a transtropic elastic
fiber. In this case, the mechanical characteristics of the components will
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be as follows. For transtrop elastic fiber: E;, E, are longitudinal and

transverse modulus of elasticity of the first kind for the fiber (index 1
corresponds to the direction of the axis of the fiber, directions 2 and 3
determine the plane of isotropy, i.e. E, = E,); v, mean Poisson’s ratios

(i,j=1,23), whereby v, =v,; the condition v,E;=v,E is fulfilled;
G; mean shear modules (7,/=1,2,3), whereby G, =G}, and G, =G,.

For an isotropic viscoelastic matrix: E* is elastic modulus, v’ is
Poisson’s ratio, the shear modulus is determined by the formula

G =E/ (2(1 + v)) To model the viscoelastic properties of the matrix,

we use the Boltzmann-Volterra hereditary theory and replace the elastic
modulus with an integral operator of the form:

Ele()]-F [s(t)—;fR* (1 —t)a(t)dtj, (1)

where R’ (7 -1) is the difference relaxation kernel of the matrix material,

E" is the instantaneous value of the elastic modulus of the matrix
material.

The composite material will be represented by a homogeneous
transtropic viscoelastic material, the mechanical properties of which
depend on the mechanical properties of the matrix and fiber materials,
and the volume fraction of each of them in the composite. The
mechanical properties of transtropic material are described by five
independent variables. When modeling the viscoelastic behavior of a
composite material, some of these variables are integral operators,
similar in structure to (1). Therefore, for the viscoelastic transtropic
material it is necessary to determine five instantaneous variables of
constants and five relaxation functions. By accepting some hypotheses,
the number of required characteristics can be reduced. Accordingly, in
[6], assuming that the Poisson’s ratios are constant over time, the
mechanical integral characteristics of the viscoelastic transtropic material
modeling the composite were found by the method of a representative
volume element. In the reinforcement coordinate system, the stress-strain
state of the material will be determined by the relations:
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&' =C" ey ]+ C"2 [ey] + CM2 [e43];
&2 =C" [811] +C?2 [822] + O [833];
B oz [en]+ 3 [e5]+ co» [e3]
5% =C"%,,;
&7 =C"%,;

623 — 62323823, (2)

here the integral operator has the following form:
cM [(p (t)] =C™ [(p(t) - JKWU) (t-1)0(7) d'cJ ,
0

where ¢(7) is the function on which the integrated operator acts,

K% (t-1) is the difference relaxation kernel of mechanical

characteristics C* .

Integral operators that reflect the viscoelastic properties of the
transtropic composite can be written as follows:

El [(P] (1 - V§3)

outt 0] = :
[ ] 1=2v,v,, - V§3 = 2vipVy vy
chz [(P] _ El [(P]Vzl (1 + st)
1=2v,v,, - V§3 =2V Vs
c22 [(p] _ E] [‘P] Vo (l - V|2V2|) :

2
Via (] = 2vvy = vy — 2V12V21V23)

P [(p] _ E] [‘P] Vo (V23 + V12V21)
Via (1 = 2vivy, - V§3 - 2"12"21"23) ’

;333 [(p] _ El [(P] Vai (1 + V23)

2 b
1=2v,vy = Vi3 = 2v5v5 vy
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61212 [(P] _ 2G”12 [(P];

€[] - E([l“’j .t 3)

Expressions for the effective values of the constant Poisson’s ratios are:

(oc - 2Bv:2)v* +2fE, (v;2 - v*)

Y2 OL_2BV:2"'2f\’*E20 (V],z_V*) ’ @
Vi =V 2, (5)
) :a((1+v")+ (v- )( (V)z)(fx.wz) (8+nm,) ©
T a((ev) 4 -2E) (- (V) ) 0+ )+ (54 mm,)
or
_a((l+v*)+4(y—2E*)(1—(v*)2)(fxl—xz))—(6+nmz) .

® * \2
a((l +v )+4(y—2E )(1 —(V ) )(fx1 —Xz))+(6+nm2)
where / is the volume fraction of fiber in the composite material,

:E*(l—f)(l—v;3)+E;(f(l—v*)+(l+v*));
B=vyE (1-f)+V [E;;
8=f(l+v*)(y—2E§)+y(l—V*);
n=2EEf(f 1) - 2E )
1
E'(a(fE + E"(1- )= 2B(/V'E +v,LE (1- 1))
y=E (1-vy)+ E (1+V);
__dn-dy .
Xl - dl1d22 - d21d12 7

bl

N, =
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Xy = dy,—-d, .
dd,, - dyd,,

d, :E§(1+v*)(4fv* —3—%J—

_E L(4f—;2—3j(1 +v;3)+4[%—fj(l —V;IV;Z)J;

d12=E§(1+v*)(4v*—4+%—fJ—

7_f +v;3)+4 1—l (l—v;v:z) ;
S

d, E(l+v)[6f—4fv*+%—3j—

_E L(2f+f12—3](1 +v;3)+4(f_%J(1 —V§1V§2)J;

dn:E;(l+v*)£4v*—2—f_%J_

-E L[Z—f—}J(l +v;3)+4(%—lj<l —v;vjz)J.

The instantaneous value of the effective transverse elastic modulus is
determined by the formulas:

E - 20F )

a((l +v ) +4(y —2E")(1 —(v*)z)(fxl +xz))+(5+nmz)

or

E - 20F 0

(x((1+v)+4(y 2F )( ( ))(le ))+(8+n1n2)

The two integral effective characteristics have a form similar to (1), and
contain two components - the instantaneous value and the relaxation kernel:
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Efe()]=E, [s(t) _ IRE (i- r)g(r)drj, (10)
G [e(1)]= Gy (s(t) —';[RG (i- t)s(r)drj, (11

where E, is the instantaneous value of the longitudinal elastic modulus of
the first kind of homogeneous transtropic material, G,, is the instantaneous

value of the longitudinal shear modulus of the homogeneous transtropic
material, R, (#-r) is the difference relaxation kernel of the longitudinal

elastic modulus of the first kind of homogeneous transtropic material,
R;(t—1) is the difference relaxation kernel of the longitudinal shear

modulus of homogeneous transtropic material.

It is a difficult task to find these characteristics because of the
structure of the composite material, which is heterogeneous and is made
of two components. The properties of the components differ from each
other, so they use different mathematical formalization. In this case,
effective mechanical characteristics are found by the Laplace transform.
The instantaneous value of the effective longitudinal elastic modulus of
the first kind is as follows:

f+(1-f)k

b= o, +a, (ks — ksE* —kk) (12)
Where
o, = L vy —2vvy o, = 2v,, ,
E; (1-vy) 1-v,
C(ev)(r-2v) v
1 (1*\/*) ’[32 1*\/*’
_ By, __E
e Elﬂ(l 7\/;3)53’2 - 1_";3 ’
1
n% = b

(o, —Bz)(l—v*)f+a2(1+v*)
k, = mya, (l—v*)f,k2 :mo(otzv* (14—\/*)4—[31 (l—v*)f),
k, = my, (1+v*),k4 =rno(1+v*)(v*(oc2 ~B))—Bi)s
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k:moa'(f_l)k:h
’ T2 e Yz’
YR azv*(1+v*) .
k7‘y2[1_v*‘”’0[ = +v<az—Bz>—Bl(f—1)D,

E"(ky + ky + ks — ksE")

k = .
kE +k, -k,

Presentation of the relaxation kernel for the longitudinal elastic
modulus of a homogeneous material:

EF (1’) -k (P)

Rs(0) = EF(p)

(13)
where

F(p)= 1 (kE (1R () + o ki) +
H(1=f)E (ki + ks + kg = kE (1= R (p)))(1- R (p)),
£ (p)= ((0‘1 + azks))(l@E* (1 -R (p)) +ky — k4) -

—o,kE’ (k7E* (1-R (p)) +ky — K, ) (1- B (p))

where R (p) is the presentation of the relaxation kernel for the matrix

material.
The instantaneous value of the effective longitudinal shear modulus is
written as:

G (GL(1+f)+G (1- 1))
G = G,(1-£)+G (1+f) ~ (14

Presentation of the relaxation kernel for the longitudinal shear
modulus of a homogeneous material:
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R;(p)= — ; (15)

where

G=(f-D(C).C=G(1+/)(G,-Gp),
G = GI2GIBZ (1 —f),c4 = GIZG* (1 + f),

:Gloz(l_f)
UG (+f)

Obtaining the law of the state
For further practical use, it is necessary to determine their originals
from the obtained presentations of relaxation kernels. The complexity of
such an inverse transformation depends significantly on the type of
relaxation matrix kernel. After finding the originals of the relaxation
kernel taking into account (4)-(15) the action of integral operators (3) on
some deformation function ¢ can be described by dependencies:

cg) - E (1-v3) ( jRE [ —1)e J;

2
1=2v,vy) = Vi3 = 2vipvy Vi 0

€ o) g ()= R el

2
1=2v,,vy = Vi3 = 2v},vy vy

c22 [8] _ Ev, (l v12v21 [ jRE t- T)S(‘C) dt|;
Vi (1 —2vVy — 2V12V21V23 0
oy [8] _ EVZI (V23 + V12V21 ( jR t— ‘E)S (‘E)d‘tj X
= E >
Vi (1 2v,Vy — 2V12V21V23 0

o3 [¢] = Ervy (1+vy) [s([) - j‘RE (t-1)e(x) dTJ;

2
1=2v,vy = Vi3 = 2v5vy vy 0

é‘m[g]:zG]z{[ (1) - JRG(t—r r)dr]J

e [g] = Evz‘[a(t)—jRE (t—t)s(t)dt]. (16)

Via (1 + V23) 0
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In the right-hand sides of these equations we distinguish constant
multipliers:

2
chn — E, (1_V23)
¢ -2 -vi -2 ’
Vi2Va1r =~ Va3 Vi2VaiVas
cn2 _ Ev,, (1 + V23)
C -2 v -2 ’
Vi2Var = Va3 Vi2VaiVas
22 Eyv,y, (1 - V12V21)
C v, (1-2 ) ’
Vlz( T &VRVy T Va3 T V12V21V23)
C2 Ev,, (st + VIZVZI)
C v, (1-2 ) ’
VIZ( T &VRVy T Va3 T V12V21V23)
3% _ Evy, (] + V23)
3 =

2 b
1=2v,vy = vy = 2vipvy vy
1212 _ .
G =2G,;
Ev,

C2323 _ .
0 viy (14 vy3)

17
Then the law of state in the presentations takes the form:

o =G50~ R 1= ), (e |+
50 R 1= 9 (5
0= [ (1= 5) s 1)

7 =G 04 (0)= R (1= (94

0

o [822 (1)~ [Re (1 - 7)o (5) drj +

0

o [833 (t)- jRE (- 1)ey (1) drj;

0

& = {e” (1) - jRE (t-1)e, (T)dTJ +

0
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2= R 1= 9 0+

0

G000 R 1= e (95

0

o =€ 51~ R0 )50 (005
5 =P [sm (1)~ iRG (t-1)e, (r)d‘cj;

& = 2 [323 (1) - jRE (t—1)ey (1) er. (18)

0

Development of a finite element model
We use a variational approach in obtaining the basic relations of the
finite element method to model the behavior of the material described by
law (18). We consider the application of the Lagrange variational
principle in solving a boundary value problem for a spatial structure. The
potential energy P for the structure can be determined as follows:

=W - A4, (19)

where W is the energy of elastic deformation of the structure, A4 is the
work of external forces acting on the structure.

After constructing a discrete model of the body, we can record the
variation of potential energy:

N
I =Y W™ —5A. (20)

m=1

To construct a finite element stiffness matrix for a composite
material, we consider separately the variation of the elastic deformation

energy of a finite element 5" occupying volume V" :

sW = [[[ &"se,av™ 1)
yim

Using the relations for the law of state (18) of homogeneous
transtropic material, we will have:
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t

s - ([ i [ (1)~ [R(t =)z (r)dr]f»s,»,-dV“"% @2)

0

where R(r - ) is the difference kernel, which takes the form R; (z - 1) if
the indices (k, /) take the values (1, 2), (2, 1), (1, 3) or (3, 1), in all other
cases — the form R, (1 —1).

Accordingly, we have the variation of the energy of viscoelastic
deformation of a homogeneous material, presented in the coordinate
system of reinforcement x,(i=1,2,3). The procedure for developing a
stiffness matrix of a single finite element is convenient to perform in the
local coordinate system x;.(i"=1,2,3) associated with a finite element.
Finite element coordinate system x,. and reinforcement coordinate
system x, are transformed into each other by spatial rotation. To convert
the components of the tensor of elastic constants from the coordinate

system of reinforcement to the coordinate system of a finite element, we
use the formula:

iUkt ekl it gt k1
C =C"a al a; q , (23)

where a =aox./éx, are the components of the coordinate
transformation tensor.

Given that the global coordinate matrix and the system of solving
equations should be represented in the global Cartesian coordinate

system z.(i'=1,2,3), we write the variation of the viscoelastic

deformation of a homogeneous material, using the transformation:
i'jk'l (A AY 2 AW RSy B S
c/ =C"'"" "a.al.a.aq., (24)

where a =0dz./0x. are the components of the coordinate

transformation tensor. These components are easily found by
approximating the coordinates of the points of a finite element given by
the functions of the form:

Ly
2= Y TN, (Xm0 3,0, (25)

L=1
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where z*

i

coordinate system, N, (x.,%,.x;.) is the form function of L-th node in

is the coordinate of L-th node for i'-th direction in the basic

the coordinate system of a finite element.

As a result of these transformations we come to the variation of the
energy of viscoelastic deformation of a homogeneous material in the
presentations, shown by the components of the global coordinate system:

s _ j(ﬂ) ¢ [gk.,. (1)~ [R(t - ey (T)dt]ﬁsi.j.dV('"). (26)

0

Taking into account the last expression, we write down the variation
of the potential energy of the body:

o=l C;'”"'[gk,,,(t)—jR(t—r)ak,,,(r)drjaa,,dv('”—SA. 27)

m=1,(m) )

Variations in the action of forces acting on the body may include the
work of distributed volumetric P and surface forces F' :

5A = ||| P'su.dv o ([ Fi'su.ds, 28
I{ + ] Frouds, [ (28)

Where u; is the body movement in the basic coordinate system.

Given that according to the Lagrange variational principle, the
variation of the potential energy of the body should be zero, we will have
the following relationship:

mﬁ: .” C(;'j'kllv [sk./' (1) —jR(t - 1) & (r)d‘c]Ss,.j.dV('") -

1, (m) 0

[ P'suav fsf Fréuds =0, [
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or after conversion

Zjﬂcuk’gk, 1) 8¢, dV'"

—ﬁ: .”.[ C(;,j’k’[, ["[R (t—1)ee, (1) d’t] Se,,dV'") —

m:lV(m) 0

T Powav — ([ Frsuds - o, (29)
vV N

Let us break the gap [0,/] with a certain interval on n parts.
Assuming moving on each time interval [#,#,,] changes linearly, the
integral operator in (29) can be represented as follows:

Z” C* e (2 1)8e,, avm —

=1y 0)
Sfffer {z (1) ri- ’)‘“J&"”WW _
=Ly 1=0 [’
~||| P'su,dv — || F'du,ds =0, 0
% S

The first expression in the left-hand side of the equation is the
variation of the energy of elastic deformation at a certain point in time, it
serves as a basis for constructing a stiffness matrix of a finite element
| K™ | when modeling the elastic deformation of the body:

K"™u, (t)du,, = i [[[ ™ e (t)de,yav™. (31)

The second term in equation (30) is the hereditary part of the time-
dependent stiffness matrix, written as follows:
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R/ K"™ (tl )“n, (’/ )Eium1 =

n—

~
Il
=}

1 n—1 1141
= ZV:HI e [ng,l, (%) IR(t - T)dTJSSw'dV(M)a (32)
" = ;

m:lV m

where

i

1;3/ = J.R(t—r)dr.
4

Variation of volume and surface forces can also be reduced to nodal
values:

F™8u,, = ||| P"8u,av —[[ F'su.ds. (33)
4 N

Taking into account the selected parts, the relationship (30) can be
written as follows:

K", (6,) - S RK™™ (4)u, (1)~ F™ |su, =0.  (34)

[=

Taking into account that the variation of movements cannot be equal
to zero, the expression in parentheses must be equal to zero, whence we
obtain a system of solving equations for a homogeneous transtropic body
modeling a fibrous composite material with a viscoelastic isotropic
matrix and an elastic transtropic fiber:

n-1 -
K"™u, (t,)= ;Rz K"™ (8, u, (4,)+ F™. (35)

The first term in the right-hand side of the obtained system (35) is an
additional load that simulates the viscoelastic properties of a
homogeneous transtropic material.

CONCLUSIONS

The obtained equation (35) is a linearized system of algebraic equations,
the solution of which in the first iteration gives an elastic solution for a
homogeneous transtropic material. Performing further iterations makes it
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possible to obtain a stress-strain state step by step in the following moments
of time. The properties of the components of the fibrous composite are laid
down in the stiffness matrices in the right and left-hand sides of the equality.
The rheological properties of the matrix material take into account the value
R, which is the integral of the difference kernel for a certain period of time.
The main mathematical difficulty in the practical implementation of
equation (35) is to find the original of the relaxation kernels from its image
for certain types of difference kernels.

SUMMARY

An approach for determining the components of the stress-strain state
of a viscoelastic transtropic composite is proposed. Its structural
elements are a viscoelastic isotropic matrix and a perfectly elastic
transtropic fiber. The viscoelastic properties of the material are described
by the relations of the Boltzmann-Volterra hereditary theory. An integral
Laplace transform has been used to homogenize the composite. After
finding the temporal viscoelastic characteristics of the composite, the
equation of state has been found. The Lagrange variational principle has
been used to obtain the basic relations of the finite element method. The
stiffness matrix and the basic solving equations of the finite element
method for spatial structures made of composite have been developed.
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