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INTRODUCTION 
Due to their unique properties, fibrous composite materials are widely 

used in the creation of new equipment, structures, etc. The materials of 
which the composite is produced have significant differences in their 
properties. Accordingly, a composite material with a viscoelastic matrix 
and transtropic fiber is often used. Developing a mathematical model that 
would take into account these properties is a rather complex procedure. 
As a rule, further study of the developed model is impossible without the 
use of numerical methods, such as the finite element method (FEM). But 
the use of FEM to solve the problem of viscoelasticity of the fibrous 
composite requires improvement and modification of the method to take 
into account the peculiarities of the developed model. 

A significant amount of works is devoted to research in this area. In 
[1], a finite element analysis of the effect of viscoelastic properties of the 
matrix on the stress-strain state of an epoxy beam reinforced with fibers 
was performed. Studies of residual stresses in glass-epoxy material 
having orthotropic viscoelastic properties are presented in [2] using the 
finite element method. The study of bound bodies of complex geometry 
with different degrees of aging was carried out using the combined 
perturbation finite element-boundary element method [3]. A space-time 
finite element has been developed for the study of viscoelastic 
deformation of fibrous composites, which is described by difference 
kernels with instantaneous and long-term mechanical characteristics [4]. 
In [5] the special grid homogenization method by the method of finite 
elements of viscoelastic composite material is presented. 

 
Homogenization of a composite material 

We will assume that the composite material consists of two 
components: an isotropic viscoelastic matrix and a transtropic elastic 
fiber. In this case, the mechanical characteristics of the components will 
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be as follows. For transtrop elastic fiber: 1

E , 2

E  are longitudinal and 
transverse modulus of elasticity of the first kind for the fiber (index 1 
corresponds to the direction of the axis of the fiber, directions 2 and 3 
determine the plane of isotropy, i.e. 3 2

 E E ); ij  mean Poisson’s ratios 
   , 1,2,3 ,i j  whereby 12 13

     the condition      ij j ji iE E  is fulfilled; 


ijG  mean shear modules    , 1,2,3i j , whereby 12 13

 G G  and  ij jiG G . 
For an isotropic viscoelastic matrix: *E  is elastic modulus, *  is 
Poisson’s ratio, the shear modulus is determined by the formula 

  * * */ 2 1  G E . To model the viscoelastic properties of the matrix, 
we use the Boltzmann-Volterra hereditary theory and replace the elastic 
modulus with an integral operator of the form: 

 

         * * *

0

,
 

           
 


t

E t E t R t d                       (1) 

 
where  *  R t  is the difference relaxation kernel of the matrix material, 

*E  is the instantaneous value of the elastic modulus of the matrix 
material. 

The composite material will be represented by a homogeneous 
transtropic viscoelastic material, the mechanical properties of which 
depend on the mechanical properties of the matrix and fiber materials, 
and the volume fraction of each of them in the composite. The 
mechanical properties of transtropic material are described by five 
independent variables. When modeling the viscoelastic behavior of a 
composite material, some of these variables are integral operators, 
similar in structure to (1). Therefore, for the viscoelastic transtropic 
material it is necessary to determine five instantaneous variables of 
constants and five relaxation functions. By accepting some hypotheses, 
the number of required characteristics can be reduced. Accordingly, in 
[6], assuming that the Poisson’s ratios are constant over time, the 
mechanical integral characteristics of the viscoelastic transtropic material 
modeling the composite were found by the method of a representative 
volume element. In the reinforcement coordinate system, the stress-strain 
state of the material will be determined by the relations: 
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here the integral operator has the following form: 
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where   t  is the function on which the integrated operator acts, 

    
ijkl

K t  is the difference relaxation kernel of mechanical 
characteristics ijklС . 

Integral operators that reflect the viscoelastic properties of the 
transtropic composite can be written as follows: 
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Expressions for the effective values of the constant Poisson’s ratios are: 
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where f  is the volume fraction of fiber in the composite material, 
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The instantaneous value of the effective transverse elastic modulus is 

determined by the formulas: 
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The two integral effective characteristics have a form similar to (1), and 

contain two components - the instantaneous value and the relaxation kernel: 
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where 1E  is the instantaneous value of the longitudinal elastic modulus of 
the first kind of homogeneous transtropic material, 12G  is the instantaneous 
value of the longitudinal shear modulus of the homogeneous transtropic 
material,   ER t  is the difference relaxation kernel of the longitudinal 
elastic modulus of the first kind of homogeneous transtropic material, 

  GR t  is the difference relaxation kernel of the longitudinal shear 
modulus of homogeneous transtropic material. 

It is a difficult task to find these characteristics because of the 
structure of the composite material, which is heterogeneous and is made 
of two components. The properties of the components differ from each 
other, so they use different mathematical formalization. In this case, 
effective mechanical characteristics are found by the Laplace transform. 
The instantaneous value of the effective longitudinal elastic modulus of 
the first kind is as follows: 
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Presentation of the relaxation kernel for the longitudinal elastic 

modulus of a homogeneous material: 
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where  *R p  is the presentation of the relaxation kernel for the matrix 
material. 

The instantaneous value of the effective longitudinal shear modulus is 
written as: 
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Presentation of the relaxation kernel for the longitudinal shear 

modulus of a homogeneous material: 
 



26 

 
     

   

2
* *

1 2 3

*

4 5

1 1
,

1

   


 
G

C R p C R p C
R p

C R p C
                 (15) 

 
where 
 

        
2

* *

1 2 12 121 , 1 ,    C f G C G f G G  

    *

3 12 12 4 121 , 1 ,   C G G f C G G f  
 

 
12

5 *

1
.

1

 




G f
C

G f
 

 
Obtaining the law of the state 

For further practical use, it is necessary to determine their originals 
from the obtained presentations of relaxation kernels. The complexity of 
such an inverse transformation depends significantly on the type of 
relaxation matrix kernel. After finding the originals of the relaxation 
kernel taking into account (4)-(15) the action of integral operators (3) on 
some deformation function   can be described by dependencies: 
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In the right-hand sides of these equations we distinguish constant 
multipliers: 
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Then the law of state in the presentations takes the form: 
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Development of a finite element model 

We use a variational approach in obtaining the basic relations of the 
finite element method to model the behavior of the material described by 
law (18). We consider the application of the Lagrange variational 
principle in solving a boundary value problem for a spatial structure. The 
potential energy P for the structure can be determined as follows: 

 
 ,  W A                                              (19) 

 
where W  is the energy of elastic deformation of the structure, A  is the 
work of external forces acting on the structure. 

After constructing a discrete model of the body, we can record the 
variation of potential energy: 
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To construct a finite element stiffness matrix for a composite 

material, we consider separately the variation of the elastic deformation 
energy of a finite element  


m

W occupying volume  mV : 
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Using the relations for the law of state (18) of homogeneous 

transtropic material, we will have: 
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where   R t  is the difference kernel, which takes the form   GR t  if 
the indices (k, l) take the values (1, 2), (2, 1), (1, 3) or (3, 1), in all other 
cases – the form   ER t . 

Accordingly, we have the variation of the energy of viscoelastic 
deformation of a homogeneous material, presented in the coordinate 
system of reinforcement     1,2,3ix i . The procedure for developing a 
stiffness matrix of a single finite element is convenient to perform in the 
local coordinate system     " " 1,2,3ix i  associated with a finite element. 
Finite element coordinate system "ix  and reinforcement coordinate 
system ix  are transformed into each other by spatial rotation. To convert 
the components of the tensor of elastic constants from the coordinate 
system of reinforcement to the coordinate system of a finite element, we 
use the formula: 
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where "

" /  i

i i ia x x  are the components of the coordinate 
transformation tensor. 

Given that the global coordinate matrix and the system of solving 
equations should be represented in the global Cartesian coordinate 
system     ' ' 1,2,3iz i , we write the variation of the viscoelastic 
deformation of a homogeneous material, using the transformation: 
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transformation tensor. These components are easily found by 
approximating the coordinates of the points of a finite element given by 
the functions of the form: 
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where '

L

iz  is the coordinate of L-th node for 'i -th direction in the basic 
coordinate system,  1" 2", 3",LN x x x  is the form function of L-th node in 
the coordinate system of a finite element. 

As a result of these transformations we come to the variation of the 
energy of viscoelastic deformation of a homogeneous material in the 
presentations, shown by the components of the global coordinate system: 
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Taking into account the last expression, we write down the variation 

of the potential energy of the body: 
 

 
       δΠ  

' ' ' '

0 ' ' ' ' ' '

1 0

.


 
           

 

 
i j k l

m
V

tN
m

k l k l i j

m

C t R t d dV A    (27) 

 
Variations in the action of forces acting on the body may include the 

work of distributed volumetric 'iP  and surface forces 'iF : 
 

'

'
'

'
,    

i

i

V

i
i

S

P u dVA F u dS ∬                             (28) 

 
Where ui is the body movement in the basic coordinate system. 

Given that according to the Lagrange variational principle, the 
variation of the potential energy of the body should be zero, we will have 
the following relationship: 
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or after conversion 
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Let us break the gap   0,t  with a certain interval on n  parts. 

Assuming moving on each time interval   1, l lt t  changes linearly, the 
integral operator in (29) can be represented as follows: 
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The first expression in the left-hand side of the equation is the 

variation of the energy of elastic deformation at a certain point in time, it 
serves as a basis for constructing a stiffness matrix of a finite element 
  

1 1n mK  when modeling the elastic deformation of the body: 
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The second term in equation (30) is the hereditary part of the time-

dependent stiffness matrix, written as follows: 
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Variation of volume and surface forces can also be reduced to nodal 
values: 
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Taking into account the selected parts, the relationship (30) can be 

written as follows: 
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Taking into account that the variation of movements cannot be equal 

to zero, the expression in parentheses must be equal to zero, whence we 
obtain a system of solving equations for a homogeneous transtropic body 
modeling a fibrous composite material with a viscoelastic isotropic 
matrix and an elastic transtropic fiber: 
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The first term in the right-hand side of the obtained system (35) is an 

additional load that simulates the viscoelastic properties of a 
homogeneous transtropic material. 

 
CONCLUSIONS 
The obtained equation (35) is a linearized system of algebraic equations, 

the solution of which in the first iteration gives an elastic solution for a 
homogeneous transtropic material. Performing further iterations makes it 
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possible to obtain a stress-strain state step by step in the following moments 
of time. The properties of the components of the fibrous composite are laid 
down in the stiffness matrices in the right and left-hand sides of the equality. 
The rheological properties of the matrix material take into account the value 
�̆�𝑙, which is the integral of the difference kernel for a certain period of time. 
The main mathematical difficulty in the practical implementation of 
equation (35) is to find the original of the relaxation kernels from its image 
for certain types of difference kernels. 

 
SUMMARY 
An approach for determining the components of the stress-strain state 

of a viscoelastic transtropic composite is proposed. Its structural 
elements are a viscoelastic isotropic matrix and a perfectly elastic 
transtropic fiber. The viscoelastic properties of the material are described 
by the relations of the Boltzmann-Volterra hereditary theory. An integral 
Laplace transform has been used to homogenize the composite. After 
finding the temporal viscoelastic characteristics of the composite, the 
equation of state has been found. The Lagrange variational principle has 
been used to obtain the basic relations of the finite element method. The 
stiffness matrix and the basic solving equations of the finite element 
method for spatial structures made of composite have been developed. 
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