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INTRODUCTION 
The development of ways and means of creating reliable power shell 

structures in industrial, civil, chemical and aerospace engineering, and in 
other areas includes a significant range of theoretical, experimental, 
technological and computer-software problems. The creation of adequate 
mathematical models and methods of calculating the local and overall 
stability under combined loading, the study of new mechanical effects 
and phenomena that can significantly increase the bearing capacity of the 
developed structures and systems with a reduction in their material 
consumption should be related to these problems [1–17]. Improving the 
shell structure stability is achieved, in particular, by using the reinforcing 
elements in the form of longitudinal and transverse structural frames.   

Under the prevailing action of an external pressure on a thin shell of 
rotation, the transverse reinforcement with intermediate rings is the most 
effective, and the discreteness consideration of their location allows us to 
offer rational stiffness characteristics of the structures being researched 
on the basis of studying the local and overall forms of buckling [1–5], 
and changes in the geometric shape of the middle surface [6–13]. 

As for compound shell systems, the results of studying the stability of 
a reinforced “cylinder-cone type” structure under the action of an 
external loading of various types, causing the loss of stability, should be 
noted here [2, 3, 14–16]. Some stability problems of the compound 
“barrel-ogive type” structure with a positive Gaussian curvature of the 
middle surface should be mentioned in [10]. On account of the behavior 
special features of the reinforced shell structures of this configuration, 
the solution method and the analysis results of the axial force effect on 
stability at a uniform external pressure are discussed in this paper. 
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Statement of the problem 
We consider the overall instability problem of a compound «barrel-

ogive type» shell structure with a positive Gaussian curvature of the 
middle surface reinforced with the intermediate rings and consisting of 
two sections, in the elastic region of material deformation with thickness 
parameters h , elastic modulus E  and Poisson’s ratio   . The solution 
is built taking into account the discreteness of the reinforcing ring 
location under the combined loading with the uniform pressure q , which 
is normal for the middle surface, and axial (tensile or compressive) 
forces T  (Fig. 1). 

 

 
Fig. 1. Scheme of the shell structure 

 
Under the action of axial compressive forces, buckling forms 

corresponding to the prevailing effect of the external pressure, which 
allows one with the axial tensile forces taken into account to accept the 
condition [4, 5] for the formation of one half-wave along the generatrix 
and n  waves in the annular direction in case of a structural instability, 
are considered. In such a case, for the class of “medium length” shells, 
the condition is 2 1n  

 
The main relationships 
The coordinates are introduced along the generatrices of the 

cylindrical and conical surfaces s  and s , respectively, the arc 
coordinate for the cylinder – y , the angular coordinate along the parallel 
of the cone –  .  



37 

A “barrel-shaped” shell is considered, and its surface of rotation has 
the following function of a parallel circle radius in a section which is 
perpendicular to the axis of rotation [10]: 
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where L  and R  are the distance between the bases and the "barrel" base 
radius, 

barC  is the relative height of the "barrel" generatrix camber. 
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where 0l  and 1l  are the distance along the axis Os  to smaller and larger 
bases,   is the taper angle, ogC  is the relative height of the generatrix 
camber. 

As following from [10], the resolving equations for each section of 
the compound structure with positive Gaussian curvature are obtained 
taking into account formulas (1), (2) and [12, 17]. In this case, the effects 
of tensile forces in the annular direction for the case of external 
compressive forces in a certain range, as well as the effects of 
compressive forces in the annular direction for the case of tensile forces 
in the meridional sections affecting the nature of the stability loss and the 
value of the critical external pressure forces are taken into account. 

In keeping with [10], the differential equations of a basic stress-strain 
state as to the deflection functions for each compartment of the 
compound structure are: 
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where x s L , 
1x s l , and the variable coefficients of the equations 

depend on the geometric characteristics of the shells and external loads. 
With the axial forces for the barrel-shaped section taken into account, the 
coefficients are determined by the formulas: 
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the coefficients for the “ogive-shaped” section are determined as follows: 
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The specifics of applying the finite difference method [18] for solving 
equations (3), (4) are described in [10], and the matrix algorithm for the 
discreteness consideration of the intermediate ring location is described 
in [4, 5]: 
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where t1 and t2 are the coordinates of the section conjugation, *

/ ,1cyl coneG  
and *

/ ,2cyl coneG  are the dimensionless stiffness parameters of the rings 
placed on the corresponding (locally cylindrical or locally conical) shell 
both in the plane of initial curvature and from its plane are defined by the 
formulas: 
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Here ring

xJ , ring

zJ  are the moments of inertia under bending the ring in 
the plane of the initial curvature and, accordingly, from its plane, ringr is 
the radius of the ring,   is the base angle of the “local cone”. 

 
Results 
A hinge-supported compound shell structure with the following 

characteristics is considered as an example: 0,3 cmh , 
5 27 10 kg cm E , 0,32  . The “ogive-shaped” compartment is 

selected with the following parameters: 
1 0 1182 cm, 0,45 , 75    l l l , 

and the “barrel-shaped” section is selected with the parameters as 
follows: 2,5L R . 

The algorithm of determining the equal stability of the compound 
structure sections relative to the geometric and stiffness characteristics 
and the nature of the external loading corresponds to [2, 3, 10]. We 
consider both hinge-supported sections (“barrel” and “ogive”) taken 
individually, and the compound structure as a whole. The equal values of 
critical external pressure correspond to the sections correlated in terms of 
geometric and stiffness characteristics with relative camber parameters 
barC  and ogC . For specified geometric and stiffness characteristics and 

curvature parameters of the section meridian ogC =0,062596, barC =0,137, 
the critical external pressure values of the local and overall buckling 
forms are 22,97kg cm bar ogq q  and 22,3kg cmconstrq

respectively. 
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In such a case, the intermediate ring on the “ogive-shaped” shell is 
positioned so that the sections into which the conical shell is partitioned 
are equally stable. The location of the ring in the controlling case is 
determined by the ratio : 1,809 :1

left right
L L  (from smaller base of the 

conical compartment). 
Dimensionless parameters for the external load characteristics are 

introduced 
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Here are determined the classical values of critical loads for 
cylindrical and conical shells by the dependencies given in [17]. 

Figures 2-6 show the results of numerical calculations of the critical 
external pressure forces for the shell structures under study, depending 
on the nature of loading by axial forces, the parameters of the meridian 
camber /bar ogC , the stiffness of the rings 1,2G  , the amount of rings in 
accordance with the presented schemes and the nature of the wave 
formation in case of the loss in stability according to the minimization of 
critical forces in a wavenumber n . 

The action of the compressive forces on shells with zero Gaussian 
curvature (of a cylindrical or conical form) leads to a decrease in the 
critical external pressure, and the action of the tensile ones leads to an 
increase. The result is a decreasing curve with the dependence of the 
critical pressure on the axial force, separating the stability region from 
the instability region (a blue line in Figs. 2 and 3). If the meridians of the 
middle surface of the “barrel” (Figs. 2 and 4) and “ogive” type shells 
(Figs. 3 and 5) have a positive Gaussian curvature, then a maximum 
point exists on the curves of the indicated dependencies. In this case, 
either the compressive or tensile axial force may correspond to the 
highest critical pressure value depending on the relative camber of the 
“barrel-shaped” or “ogive-shaped” compartment. 
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Fig. 2. The effect of axial forces on the critical external pressure value 

of the unreinforced “barrel-shaped” shell 

 

 

 
Fig. 3. The effect of axial forces on the stability of the reinforced  

“barrel-shaped” shell 
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Fig. 4. The effect of axial forces on the stability of the reinforced  

“barrel-shaped” shell 

 

 

 

 
Fig. 5. The effect of axial forces on the stability of the reinforced 

"ogive-shaped" shell at the external pressure 
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Fig. 6. The effect of the meridian curvature of the compartments 

on the stability of the compound shell structure of the "barrel-ogive" 
type at the external pressure: a – unsupported; b-d – reinforced 

with one (b), two (c) or three (d) stiffness rings * *

1 25000, 10 G G  
 

For convex shells of all studied types, the tensile force leads to a 
decrease in the critical external pressure up to its zero value (Fig. 2-7). 
The inversion effect of the meridian camber of the middle surface under 
the action of the tensile force characterized by the intersection point of 
the constructed dependences is noted. For unreinforced structures of the 
“barrel” and “ogive” type, the corresponding inversion points are 
presented in Fig. 2 and 3, and for reinforced ones these points are shown 
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in Fig. 4 and 5. The inversion points in Fig. 4 and 5 are illustrated by the 
intersection of lines of the same color, which correspond to the equal 
values of stiffness characteristics. For compound "barrel-ogive type" 
structures, the inversion effect is shown in Fig. 6. The location of the 
inversion points depends on the nature of the reinforcement and the value 
of the ring stiffness parameters. In Fig. 6, the bold lines show the 
dependencies corresponding to the equally stable structure. In Fig. 7, the 
presented dependencies characterize the stiffness effect of the equally 
stable structure on its behavior under the combined loading. 

 

 
Fig. 7. The effect of axial forces on the stability of the reinforced 

«barrel-ogive» type shell structure with camber parameters 
ogC =0,062586, 

barC =0,137 at the external pressure 
 
The inversion points in Fig. 4 and 5 are illustrated by the intersection 

of lines of the same color, which are correspond to equal values of 
stiffness characteristics. For compound "barrel-ogive" structures, the 
inversion effect is shown in Fig. 6. The location of the inversion point 
depends on the nature of the reinforcement and the magnitude of the 
rigidity parameters of the rings. In Fig. 6, the bold lines show the 
dependencies corresponding to the equally stable construction. In fig. 7, 
the presented dependences characterize the influence of rigidity of an 
equally stable structure on its behavior under combined loading. 

 
 



46 

CONCLUSIONS 
The results of the study for the compound shell structures with a 

positive Gaussian curvature reinforced with rings with the combined 
action of axial forces and external pressure have shown that while 
designing real structures, the change of the meridian curvature from the 
center of curvature and the presence of compressive longitudinal forces 
can lead to a significant increase in the critical external pressure by  
1.5-2 times compared to the shells with zero Gaussian curvature, that is 
associated with the appearance of tensile annular stresses at the initial 
stage of loading due to the axial forces and the “snapping” effect on 
account of the middle surface curvature along the meridian. 

When loading a compound shell structure with tensile forces, the 
effect of “inversion of the meridian curvature parameter of the middle 
surface for the shell of rotation” on the critical external pressure was 
found, this must be taken into account in practical calculations of shell 
structures operating on stability. The approach discussed in the paper 
makes it possible to estimate the critical loads of local and overall forms 
of buckling with an estimate of the stiffness characteristics of the 
reinforcing elements, which ensure equal stability of the spans of a 
compound shell structure. 

The veracity of the obtained results is confirmed by the following 
factors. Firstly, they correspond to the physical representation of the 
deformation nature of systems under study. Secondly, in limiting cases, 
the numerical data obtained satisfactorily corresponds to the results 
based on other methods. In structures with zero Gaussian curvature, the 
critical pressure values obtained in the study deviate from the results of 
[5, 17] by less than 10%. 

 
SUMMARY 
We consider the problem of overall instability of the compound 

rotational shell structure with a positive Gaussian curvature of the middle 
surface reinforced with transverse stiffeners (rings) associated with the 
effect of the meridian curvature and axial compressive or tensile forces at 
the uniform external pressure. Particular attention is paid to the shell 
structure of the «barrel-ogive» type with the analysis of local, relative to 
the reinforced compartments, and overall forms of structural instability 
as a whole including the intermediate rings under the combined loading. 

The solution of the basic differential stability equations is based on a 
“semi-momentless” theory of thin medium length shells on the premise 
that the variability nature of the stress-strain state of the shell in one of 
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the directions, in the considered case it is in the circumferential direction, 
significantly exceeds the variability of the state in the orthogonal 
direction. 

In this problem, a sinusoidal approximation of the meridian form of 
the constituent shell elements is used, and the effect of the location 
discreteness and stiffness characteristics of the reinforcing rings is also 
taken into account. On the basis of the studies, a significant effect of the 
meridian curvature parameter of the middle surface and axial 
compressive forces on the stability of the structure under the combined 
loading is noted. The determined “inversion effect” of the axial tensile 
force action relative to the meridian curvature parameter on the stability 
and critical force value of the shell structures under study at the external 
pressure is discussed. 
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