
61

DOI https://doi.org/10.30525/978-9934-26-019-3-5

APPLICATION OF PROTOTYPE DESIGN PATTERN
IN PARALLEL IMPLEMENTATION

OF FINITE ELEMENT ANALYSIS SYSTEMS

Ihnatchenko М. S., Kudin О. V., Homeniuk S. І.

INTRODUCTION
The development of modern mechanical engineering and

construction, in particular, the creation of new aerospace technology,
transport vehicles, power plants and other complex engineering systems
is impossible without the use of automated design systems (ADS).
Today’s level of development of computer technology in every way
contributes to the constant increase of its role. It is now virtually
impossible to design and build complex machines, mechanisms and
structures without the use of computers.

Automation of design work is usually used in the following cases:
1) when performing routine engineering work (creation of drawings,

preparation of various input and output documentation, etc.);
2) when analyzing the properties of the design object (study of

compliance of the characteristics of the created object to the
requirements of the customer);

3) when performing such design tasks that are not subject
to full formalization (tracing of electronic boards; creation of various
schedules, etc.) [1].

The most complex and important in practice is the automation of the
analysis of the properties of the design object, which allows you to
replace expensive and time-consuming experimental study of a prototype
with a virtual experiment, the essence of which is to build and study
appropriate mathematical model of the design object using computer
technology. In addition, actual tests of prototypes can lead to
serious economic costs and sometimes to catastrophic consequences
(for example, in construction or in the creation of rocket and space
technology).

When designing complex engineering systems, the main thing is
usually to study their strength and durability. This leads to the need to
analyze the stress-strain state of the design objects, which, in turn,

62

requires the solution of different classes of problems in the mechanics of
a deformable solid.

Since the actual problems of mathematical physics in most cases
cannot be solved by analytical methods, in practice, a variety of
approximate numerical methods is used, the most common of which is
the finite element method (FEM) [2].

The practical application of FEM without the use of a computer is
virtually impossible. Therefore, for its application today a large number
of different software that automates various aspects of the application of
FEM is created: from the generation of two- and three-dimensional finite
element (discrete) models of the object to visualization of large arrays of
numerical results.

The most well-known commercial software tools for finite element
analysis of different classes of boundary value problems include Abaqus
[3], Ansys [4], COMSOL [5], MSC Nastran [6] etc. [7]. Alternative to
them are open source systems, among which there are dial.II [8],
FreeFEM [9], OpenCAD [10], etc. [11].

Modern ADSs that implement different finite element analysis
algorithms can be divided into three separate subsystems:

– preprocessor – automates the preparation of output for further
numerical calculation of data (most often at this stage a geometric model
of the object of calculation is created and the process of its sampling for
a given type of finite elements is performed);

– processor – the central part (core) of finite element software that
performs direct numerical calculation of the problem (at this stage,
global matrices of stiffness, mass and damping are usually built,
boundary conditions are taken into account and the corresponding
systems of linear algebraic equations are solved);

– postprocessor – automates the analysis of the obtained results
(most often at this stage the visualization of large arrays of numerical
data, as well as the synthesis of new information on the basis of
previously obtained are performed).

Despite the large amount of existing software for finite element
analysis of different classes of mechanics problems, there is often a need
to improve them or create new programs. This can be explained, for
example, by the fact that non-existent structural materials (carbon
plastics, elastomers, ceramics, etc.) are regularly created, to take into
account the features of which you need to create new or adapt existing
models and calculation methods. In addition, recently almost all
computer systems are equipped with several separate processors (or one

63

multi-core). To use all available computation resources effectively, it is
necessary to develop parallel (distributed) versions of finite element
analysis algorithms for certain classes of boundary value problems.

Thus, the development of parallel algorithms and software for
automation of various aspects of finite element analysis today is a very
complex and urgent task that requires the development of new mathware
and software.

Preprocessor

The main function of the preprocessor is to build a finite element
model of the geometric domain occupied by the object of calculation.
This problem can be divided into two separate tasks:

1) development of a formal description of the geometry of the
original object of calculation in a certain form suitable for further
automatic processing using computer technology;

2) automation of construction of a finite element model according to
the previously obtained geometric model [12].

The first task is quite complex and creative, especially for geometric
domains of non-standard shape. Usually in engineering practice
boundary representation [13] and solid modeling (solid modeling) are
most often used for geometric modeling [14]. The main disadvantage of
these approaches is the rather high work content and complexity of the
description of objects of non-standard shape.

The most universal and natural way of geometric modeling of
domains of arbitrary shape is the use of functional representation [15],
which is based on the use of R-functions [16]. According to it, an
arbitrary geometric domain  in 3R can be described as such a function

  , ,F x y z , for which the following relations are fulfilled:   , , 0F x y z ,
if   , , x y z (whereby   , , 0F x y z , if the point   , ,  x y z , where
∂Ω is the boundary of the domain ), і   , , 0F x y z , if   , , x y z .

V.L. Rvachev proved [16] that for any geometric domain  you can
construct a function   , ,F x y z by means of elementary mathematical
functions and logical operations of conjunction, disjunction and inversion.

The function 1 2F F is called the R-conjunction and is determined by
the ratio:

  2 2

1 2 1 2 1 2 / 2    F F F F F F .

64

Similarly, the function
1 2F F is called R-disjunction and is

determined by the formula:

  2 2

1 2 1 2 1 2 / 2    F F F F F F .

The function F is called R-inversion, and is calculated by the

following expression:

 F F .

For example, a functional model of a three-dimensional geometric

region formed by the intersection of two spheres of different radii
(Figure 1), can be described as follows:

1 2 F F F ,

where   2 2 2

1 , ,   F x y z R x y ,

     
2 22

2 , ,     F x y z r x a y b ,
R , r are the radii of larger and smaller spheres (respectively);
  ,a b are the coordinates of the center of a smaller sphere.

Fig. 1. The figure formed by intersection

of two spheres of different radii

65

The practical application of the functional approach to geometric
modeling is complicated by the fact that the R-function F (x, y, z) is
implicit. To visualize or discretize a functionally given geometric
domain, it is necessary to construct a certain approximation of its
surface, which requires finding the coordinates of some set of boundary
nodes (for which the relation F (x, y, z) = 0 holds). An overview of
sequential algorithms for finding points on the surface of a functionally
given domain is presented in [17, 18].

To increase their efficiency, it is necessary to develop appropriate
parallel algorithms. The simplest for practical implementation is the
method of parallel decomposition "Divide and rule" [19]. Accordingly,
the initial task of finding a set of points belonging to the boundary 
implicitly given geometric domain  , is divided into a set of subtasks
that are solved in parallel, and the results are later combined.

The sequential algorithm for finding the boundary of the domain
given by the R-function can be described using pseudocode as follows:

Algorithm Procedure for finding boundary nodes in a geometric
domain

procedure FindBnPts(BoundaryPoints, Box, N)
BnPts is the requested vector of coordinates of points on the boundary

of the domain
 , , , , , min min min max max maxBox X Y Z X Y Z are cuboid coordinates (search area)

 , , x y zN N N N is the number of steps along the coordinate axes
begin

 


max min

x

x

X X
H

N

 


max min

y

y

Y Y
H

N

 


max min

z

z

Z Z
H

N

while  0, –1 xi N do

0   min xx X i H

 1 1   min xx X i H

66

while 0, –1   yj N do

0   min yy Y j H

 1 1   min yy Y j H

while  0, –1 kk N do

0   min zz Z k H

 1 1   min zz Z k H

if  0 0 0, , 0F x y z and  1 1 1, , 0F x y z then

 0 0 0 1 1 1, , , , , Find x y z x y z BnPts

endif

end while

end while

end while

end procedure

Here the procedure Find() implements search at a segment of

coordinates  0 0 0, ,x y z –  1 1 1, ,x y z of the point for which the R-function
describing the original geometric domain takes a value of zero.

A corresponding parallel implementation of the above sequential
algorithm can be obtained by dividing the original search cuboid into a
number of individual subdomains, the number of which is selected
depending on the available number of processors in the computer system.
Then the results of parallel algorithms should be combined into one
resulting array of boundary nodes (Figure 2).

67

Fig. 2. An example of parallelism in the implementation

of the search for boundary nodes

The software implementation of this procedure is convenient to

perform using the creative design pattern Prototype [20], which allows
you to copy objects of any complexity without going into the details of
their software implementation. Thus, when using this template to
develop a finite element analysis program, you can, for example, perform
cloning of an object that implements the above algorithm on a particular
node of a computation cluster or processor (processor core), without
reference to its class (Figure 3).

68

Fig. 3. An example of cloning procedures
for constructing a set of boundary nodes

After obtaining a set of nodes belonging to the boundaries of the

functionally given source domain, using the algorithm Marching cubes
[21], you can obtain a preliminary triangulation of the surface of the
source domain. As an example, consider the geometric domain “Cup”,
which is given by the following relationship:

      1 2, , , , , , F x y z F x y z F x y z ,

where

     1 3 4, , , , , , F x y z F x y z F x y z ;

     2 5 6, , , , , , F x y z F x y z F x y z ;

         
2 2 2 2 2

3 , ,          F x y z a x a y b x a y b z b ;

 4 , ,   F x y z x b ;

     5 7 8, , , , , , F x y z F x y z F x y z ;

  2 2 2 2 2

6 , , 2 2     F x y z b x z x y z a ;

     7 9 10, , , , , , F x y z F x y z F x y z ;

69

 8 , ,  F x y z y ;

     
2

2 2 4

9 , , 1 / / 16   F x y z x z c y c ;

       
2

2 2 4

10 , , / 4 / 5 1   F x y z x z c y c ;

4a ;
3b ;

256c .

Figure 4 shows the boundary representation of the “Cup”, described

by the above function, which has been obtained using the above parallel
algorithm.

Fig. 4. Preliminary boundary representation of the R-function “Cup”

The operating time of the algorithm depending on the number of used

computational flows is shown in Figure 5. The computational experiment
was performed on a computer with an AMD Ryzen 7 2700X Octa-Core
Processor clock rate 3.70 GHz and 32 GB RAM running Windows 10.
To find the boundary of the domain, a grid consisting of 100 × 100 × 100
nodes was built.

The graph shows that the execution time of the parallel algorithm
decreases logarithmically with increasing number of threads involved in
the calculations until such time as their number does not equal the
number of physical processor cores (AMD Ryzen 7 is equipped with
eight physical cores). Then the speed does not change, which is due to
the growing overhead of the operating system scheduler to switch
controls between threads.

Having a boundary representation in the form of a triangulated surface
and applying to it a frontal algorithm [22], we can obtain a discrete finite
element model of the original geometric domain (Figure 6).

70

Fig. 5. Execution time of parallel algorithm of visualization of geometric

domain “Cup” depending on quantity of the threads involved

Processor
The processor is the core of any ADS in mechanical engineering and

construction. It directly implements computer analysis of models of
design objects using a computational method (FEM, the method of
boundary elements, the finite difference method, etc.).

Fig. 6. Discrete model of R-function “Cup”

The most common in practice is FEM. Numerical analysis of the

behavior of the designed structure using this method consists of the
following steps [2]:

1) generation of local stiffness, mass and damping matrices for each
finite element and their ensemble to the corresponding global matrices;

2) formation of a column vector – the right part of the system of
linear algebraic equations (SLAE);

71

3) formation of a system of linear algebraic equations from global
matrices;

4) taking into account boundary conditions;
5) SLAE solution;
6) calculation of additional nodal results (for example, deformations

and stresses on the basis of the received displacements).
Each of the above stages can be quite long with a large number of

finite elements, so modern ADSs use the technology of parallel and
distributed computation in their implementation.

A typical object-oriented structure of a finite element processor ADS
can be represented as follows (Figure 7). It consists of the following
structural elements:

1) Message – a class that implements the output of information about
the calculation, possible errors, results, etc.;

2) Mesh – a class that contains descriptions of all necessary
information for the calculation of a discrete model of the projected object
(coordinates of nodes, boundary and finite elements, connections
between nodes, etc.);

3) Parameters – a class that implements the storage of a database of
parameters of the current task, such as elastic and physical characteristics
of the material; boundary conditions; load, etc.;

4) FEM – a base class describing the generalized FEM;
5) FEMStatic, FEMDynamic, FEMNonLinear, … – classes derived

from FEM, which implement a certain calculation algorithm using the
FEM of a given type of problem (statics, dynamics, viscoelasticity,
contact interaction, etc.).

As in the development of the preprocessor, an effective technology
for creating the ADS processor with support for parallel calculations is
the use of a creative design pattern Prototype [20]. We consider its
application in the development of ADS with support for parallel data
processing. One of the longest stages of finite element computation is the
process of formation of global matrices of stiffness, mass and damping.
It usually consists of sequentially constructing local matrices for each
element and assembling them into appropriate global ones. Therefore,
when using object-oriented programming technology to implement this
template, it is necessary to design a class of constructing local matrices
of a finite element so that they support the implementation of exact
copies of their objects on a particular processor, core, or computation
node (Figure 8).

72

Fig. 7. Typical finite element processor structure

Fig. 8. Cloning scheme of the process of constructing local stiffness

matrices on different processors of finite element

FEMProcessor – finite element processor ADS

Message – informational
subsystem

Mesh – an array of finite
elements

Parameters – computation
parameters

FEM – FEM implementation
module

FEMStatic FEMDynamic FEMNonLinear …

Solver – SLAE solution
module

Abstract class FE

element_dimension
number_of_degrees_of_freedom
Young's_modulus
…

+construction_of_local_matrices()
+ cloning()
…

FE3D4

…

+
construction_LM()

FE3D8

…

+
construction_LM()

FE3D10

…

+
construction_LM()

Processor 1

Processor 2

ProcessorN

…

Cloning

…

73

Similarly, appropriate classes are designed for implementing other
stages of finite element analysis, such as solving SLAE, where, for
example, the matrix factorization procedure can be designed so that it
runs in parallel on a number of available processors, performing the
cloning procedure of the object of the corresponding class (Figure 9).

Similarly, you can design other classes that implement the algorithm
of finite element computation of a certain type of problem.

The above structure of the processor was implemented
programmatically in the C ++ programming language using standard
tools for parallel calculations of the STL library [23]. As a test, the
problem of finding the parameters of the stress-strain state of an I-beam
with circular holes, the upper surface of which was under the action of a
uniformly distributed load, was solved. For the calculation, a
corresponding discrete model was constructed, which consisted of 1855
nodes and 6991 linear tetrahedral finite elements (Figure 10).

The calculation was performed with a different number of threads
involved on a computer with an Intel (R) Core (TM) i7-3630QM
processor clock rate 2.40 GHz and 16 GB RAM running Windows 10.
The dependence of the calculation time on the number of involved cores
is shown in Figure 11.

Fig. 9. Application of the Clone design pattern in the implementation

of the SLAE solution subsystem

Class Solver

Matrix

…

+ matrix_transformaiton()
+ cloning()
…

Processor 1

Processor 2

Processor N

cloning

…

74

Fig. 10. Discrete model of I-beam with circular holes

Fig. 11. Time of calculation of an I-beam with holes

at various quantity of the threads involved

As in the previous experiment, the calculation time decreased with

increasing number of threads involved until the number does not equal
the number of physical cores. Then the speed of calculations does not
change.

75

Postprocessor
When analyzing the numerical solutions obtained as a result of the

application of the FEM, there are usually two main tasks:
– a large amount of numerical information to be processed (for

example, research on the accuracy, reliability and adequacy of the
content);

– the need to synthesize additional information, such as standard
results of a finite element.

To automate the solution of these problems, specialized subsystems
of finite element analysis systems – postprocessors – are used.

The most effective means of visual representation of the results
obtained during the calculation is their certain visualization, when the
distribution of the studied value in the calculation area is encoded with a
certain color (Figure 12).

To construct such a figure, it is necessary to implement an algorithm
for visualizing the distribution of the studied quantity over a separate
boundary segment (for example, a triangle). The idea of such an
algorithm is to divide the boundary segment into a number of triangles,
the value of the studied value of which will be the same (Figure 13).

Fig. 12. Distribution of the vertical component

of the displacement vector along the I-beam

76

Fig. 13. The scheme of dividing the boundary segment into triangles,

which correspond to the same value of the studied quantity

This algorithm can be described using pseudocode as follows:
Algorithm Visualization of the boundary segment (triangle)
procedure ShowBoundarySegment(Coord, U)

 , , min mid maxU U U U are nodal values of the required function
 0 0 0 1 1 1 2 2 2, , , , , , , ,Coord X Y Z X Y Z X Y Z are coordinates of nodes of the

boundary segment
 02, 012P P are auxiliary vectors

begin
 min minC ColorIndex U
 mid midC ColorIndex U
 max maxC ColorIndex U

if min midC C and mid maxC C then
ShowTriangle(Coord ,)minC
return
endif

1  max minStep C C
  / x max minH X X Step
  / y max minH Y Y Step
  / z max minH Z Z Step
  / c max minH C C Step

77

while   0, –1i Step do
 0 0 002. (, , ,       x y z min cP add X i H Y i H Z i H C i H)

end while
 2 2 202. (, , , maxP add X Y Z C)

1  mid minStep C C

  / x mid minH X X Step
  / y mid minH y y Step
  / z mid minH z z Step
  / c mid minH C C Step

while   1, –1i Step do
 0 0 0012. (, , ,       x y z min cP add X i H Y i H Z i H C i H)

end while
 1 1 1012. (, , , midP add x y z C)

1  max midstep C C

  / x max midh x x step
  / y max midh y y step
  / z max midh z z step
  / c max minh C C step

while  1, –1i step do
 1 1 1012. (, , ,       x y z mid cP add x i h y i h z i h C i h)

end while

while  0, 02. () – 2i P length do
if 012. ()i P length then

        
        
        

(02 1 0 , 02 1 1 , 02 1 2 ,

02 0 , 02 1 , 02 2 ,

012 0 , 012 1 , 02 2)

  



P i P i P i

CurCoord P i P i P i

P i P i P i

ShowTriangle(CurCoord,   02 3)P i
endif
if 1 012. () i P length then

78

        
        

        

(02 1 0 , 02 1 1 , 02 1 2 ,

012 0 , 012 1 , 012 2 ,

012 1 0 , 012 1 1 , 02 1 2)

  



  

P i P i P i

CurCoord P i P i P i

P i P i P i

ShowTriangle(CurCoord,   012 1 3)P i
endif
end while
end procedure

Here the procedure ShowTriangle() directly implements the reflection

of a single-color triangle.
An example of the proposed algorithm is shown in Figure 12. It

should be noted that when using modern graphics cards to make the
visualization algorithm work in parallel does not make sense, because
this procedure is automatically performed by the graphics processor.
However, if necessary, using the Prototype pattern, you can build a class
that divides the total set of boundary segments into subsets, for which
processing is performed in parallel similarly to the scheme described
above in the description of the preprocessor or processor.

CONCLUSIONS
The presented scheme of designing a finite element analysis system

using the Prototype design pattern allows you to develop appropriate
software for parallel computation systems quickly and efficiently.

SUMMARY
The article explores the application of prototype design pattern in

parallel implementation of finite element analysis systems.
The development of modern mechanical engineering and

construction, in particular, the creation of new aerospace technology,
transport vehicles, power plants and other complex engineering systems
is impossible without the use of automated design systems (ADS).
Today’s level of development of computer technology in every way
contributes to the constant increase of its role. It is now virtually
impossible to design and build complex machines, mechanisms and
structures without the use of computers.

Thus, the development of parallel algorithms and software for
automation of various aspects of finite element analysis today is a very
complex and urgent task that requires the development of new mathware
and software.

79

REFERENCES
1. Norenkov I.P. Fundamentals of computer-aided design: Textbook

for universities. 2nd edition, revised and expanded. Moscow: Bauman
University Publishing House, 2002. 336 p.

2. Zienkiewicz O. C., Taylor R. L., Zhu J. Z. The Finite Element
Method: Its Basis and Fundamentals. Sixth edition. Butterworth-
Heinemann, 2016. 753 p.

3. Design and Engineering Simulation | SIMULIA – Dassault
Systemes. URL: https://www.3ds.com/products-services/simulia/

4. Engineering Simulation & 3D Design Software | Ansys. URL:
https://www.ansys.com/

5. COMSOL Multiphysics ® Modelling Software. URL:
https://www.comsol.com/

6. MSC Nastran – Multidisciplinary Structural Analysis. URL:
https://www.mscsoftware.com/product/msc-nastran

7. Top Finite Element Analysis (FEA) Software List, Reviews,
Comparison & Price | TEC. URL:
https://www3.technologyevaluation.com/sd/category/finite-element-
analysis-fea

8. The dial.II Finite Element Library. URL: https://www.dealii.org/
9. FreeFEM – An open-source PDE Solver using The Finite Element

Method: URL: https://freefem.org/
10. OpenCAD The Programmers Solid 3D CAD Modeller. URL:

https://www.openscad.org/
11. qzCAD. URL: https://github.com/qzcad
12. Choporov S. V., Hrebeniuk S. N., Homeniuk S. I. Functional

approach to geometric modeling of technical systems. Zaporizhzhia:
ZNU, 2016. 177 p.

13. Stroud I. Boundary Representation Modelling Techniques.
London: Springer-Verlag. 2006. 788 p.

14. LaCourse D. E. Handbook of solid modeling., editor in chief. New
York: McGraw-Hill, 1995. 308 p.

15. Pasko A., Adzhiev V., Sourin A. Savchenko V. Function
representation in geometric modeling: concepts, implementation and
applications. The visual computer. 1995. Vol. 11. P. 429-446.

16. Rvachov V. L. Theory of R-functions and some of its
applications. Kyiv: Naukova Dumka, 1982. 106 p.

17. Tolok А. V. Functional-voxel method in computer modeling.
Moscow: FIZMATLIT, 2016. 112 p.

80

18. Homeniuk S. І., Choporov S. V., Al-Atamneh B. G. M.
Mathematical modeling of geometric objects in parallel computer systems:
monograph. Kherson: Publishing house “Helvetyka”, 2018. 112 p.

19. Cormen Тh., Leiserson Ch., Rivest R., Stein C. Algorithms:
construction and analysis. Moscow: Williams, 2005. 1296 p.

20. Gamma E., Helm R., Johnson R., Vlissides J. Techniques of
object-oriented design. Design patterns. Saint Petersburg: Piter,
2015. 368 p.

21. Lorensen W. E., Cline H. E. Marching Cubes: A high resolution
3D surface construction algorithm. In: Computer Graphics, Vol. 21(4),
July 1987, P. 163-169.

22. Liseikin V. D. Grid Generation Methods. Springer International
Publishing AG, 2017. 541 p.

23. Standard Template Library Programmer’s Guide. URL:
https://justinmeiners.github.io/sgi-stl-docs/

Information about the authors:

Ihnatchenko М. S.,
Post-graduate student,

Zaporizhzhia National University
66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

Homeniuk S. І.,

Doctor of Technical Sciences, Professor,
Dean of the Mathematical Faculty,
Zaporizhzhia National University

66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

Kudin О. V.,
Candidate of Physical and Mathematical Sciences (PhD),

Associated Professor at the Software Engineering Department,
66, Zhukovsky str., Zaporizhzhia, 69600, Ukraine

