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INTRODUCTION 
The development of modern mechanical engineering and 

construction, in particular, the creation of new aerospace technology, 
transport vehicles, power plants and other complex engineering systems 
is impossible without the use of automated design systems (ADS). 
Today’s level of development of computer technology in every way 
contributes to the constant increase of its role. It is now virtually 
impossible to design and build complex machines, mechanisms and 
structures without the use of computers. 

Automation of design work is usually used in the following cases: 
1) when performing routine engineering work (creation of drawings, 

preparation of various input and output documentation, etc.);  
2) when analyzing the properties of the design object (study of 

compliance of the characteristics of the created object to the 
requirements of the customer); 

3) when performing such design tasks that are not subject  
to full formalization (tracing of electronic boards; creation of various 
schedules, etc.) [1]. 

The most complex and important in practice is the automation of the 
analysis of the properties of the design object, which allows you to 
replace expensive and time-consuming experimental study of a prototype 
with a virtual experiment, the essence of which is to build and study 
appropriate mathematical model of the design object using computer 
technology. In addition, actual tests of prototypes can lead to 
serious economic costs and sometimes to catastrophic consequences 
(for example, in construction or in the creation of rocket and space 
technology). 

When designing complex engineering systems, the main thing is 
usually to study their strength and durability. This leads to the need to 
analyze the stress-strain state of the design objects, which, in turn, 
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requires the solution of different classes of problems in the mechanics of 
a deformable solid. 

Since the actual problems of mathematical physics in most cases 
cannot be solved by analytical methods, in practice, a variety of 
approximate numerical methods is used, the most common of which is 
the finite element method (FEM) [2].  

The practical application of FEM without the use of a computer is 
virtually impossible. Therefore, for its application today a large number 
of different software that automates various aspects of the application of 
FEM is created: from the generation of two- and three-dimensional finite 
element (discrete) models of the object to visualization of large arrays of 
numerical results. 

The most well-known commercial software tools for finite element 
analysis of different classes of boundary value problems include Abaqus 
[3], Ansys [4], COMSOL [5], MSC Nastran [6] etc. [7]. Alternative to 
them are open source systems, among which there are dial.II [8], 
FreeFEM [9], OpenCAD [10], etc. [11].  

Modern ADSs that implement different finite element analysis 
algorithms can be divided into three separate subsystems: 

– preprocessor – automates the preparation of output for further 
numerical calculation of data (most often at this stage a geometric model 
of the object of calculation is created and the process of its sampling for 
a given type of finite elements is performed); 

– processor – the central part (core) of finite element software that 
performs direct numerical calculation of the problem (at this stage, 
global matrices of stiffness, mass and damping are usually built, 
boundary conditions are taken into account and the corresponding 
systems of linear algebraic equations are solved); 

– postprocessor – automates the analysis of the obtained results 
(most often at this stage the visualization of large arrays of numerical 
data, as well as the synthesis of new information on the basis of 
previously obtained are performed). 

Despite the large amount of existing software for finite element 
analysis of different classes of mechanics problems, there is often a need 
to improve them or create new programs. This can be explained, for 
example, by the fact that non-existent structural materials (carbon 
plastics, elastomers, ceramics, etc.) are regularly created, to take into 
account the features of which you need to create new or adapt existing 
models and calculation methods. In addition, recently almost all 
computer systems are equipped with several separate processors (or one 
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multi-core). To use all available computation resources effectively, it is 
necessary to develop parallel (distributed) versions of finite element 
analysis algorithms for certain classes of boundary value problems. 

Thus, the development of parallel algorithms and software for 
automation of various aspects of finite element analysis today is a very 
complex and urgent task that requires the development of new mathware 
and software. 

 
Preprocessor 

The main function of the preprocessor is to build a finite element 
model of the geometric domain occupied by the object of calculation. 
This problem can be divided into two separate tasks: 

1) development of a formal description of the geometry of the 
original object of calculation in a certain form suitable for further 
automatic processing using computer technology;  

2) automation of construction of a finite element model according to 
the previously obtained geometric model [12].  

The first task is quite complex and creative, especially for geometric 
domains of non-standard shape. Usually in engineering practice 
boundary representation [13] and solid modeling (solid modeling) are 
most often used for geometric modeling [14]. The main disadvantage of 
these approaches is the rather high work content and complexity of the 
description of objects of non-standard shape. 

The most universal and natural way of geometric modeling of 
domains of arbitrary shape is the use of functional representation [15], 
which is based on the use of R-functions [16]. According to it, an 
arbitrary geometric domain   in 3R  can be described as such a function 

   , ,F x y z , for which the following relations are fulfilled:    , , 0F x y z , 
if    , , x y z  (whereby    , , 0F x y z , if the point    , ,  x y z , where 
∂Ω is the boundary of the domain  ), і    , , 0F x y z , if    , , x y z .  

V.L. Rvachev proved [16] that for any geometric domain   you can 
construct a function    , ,F x y z  by means of elementary mathematical 
functions and logical operations of conjunction, disjunction and inversion. 

The function 1 2F F  is called the R-conjunction and is determined by 
the ratio: 

 

   2 2

1 2 1 2 1 2 / 2    F F F F F F . 
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Similarly, the function 
1 2F F  is called R-disjunction and is 

determined by the formula: 
 

  2 2

1 2 1 2 1 2 / 2    F F F F F F . 

 
The function F  is called R-inversion, and is calculated by the 

following expression: 
 

 F F . 
 
For example, a functional model of a three-dimensional geometric 

region formed by the intersection of two spheres of different radii 
(Figure 1), can be described as follows: 

 
1 2 F F F , 

 
where   2 2 2

1 , ,   F x y z R x y , 
 

     
2 22

2 , ,     F x y z r x a y b , 
R , r  are the radii of larger and smaller spheres (respectively); 
  ,a b  are the coordinates of the center of a smaller sphere. 

 
Fig. 1. The figure formed by intersection 

of two spheres of different radii 
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The practical application of the functional approach to geometric 
modeling is complicated by the fact that the R-function F (x, y, z) is 
implicit. To visualize or discretize a functionally given geometric 
domain, it is necessary to construct a certain approximation of its 
surface, which requires finding the coordinates of some set of boundary 
nodes (for which the relation F (x, y, z) = 0 holds). An overview of 
sequential algorithms for finding points on the surface of a functionally 
given domain is presented in [17, 18]. 

To increase their efficiency, it is necessary to develop appropriate 
parallel algorithms. The simplest for practical implementation is the 
method of parallel decomposition "Divide and rule" [19]. Accordingly, 
the initial task of finding a set of points belonging to the boundary   
implicitly given geometric domain  , is divided into a set of subtasks 
that are solved in parallel, and the results are later combined. 

The sequential algorithm for finding the boundary of the domain 
given by the R-function can be described using pseudocode as follows: 

Algorithm Procedure for finding boundary nodes in a geometric 
domain 

procedure FindBnPts(BoundaryPoints, Box, N) 
BnPts is the requested vector of coordinates of points on the boundary 

of the domain 
 , , , , , min min min max max maxBox X Y Z X Y Z  are cuboid coordinates (search area) 

 , , x y zN N N N  is the number of steps along the coordinate axes 
begin 

 


max min

x

x

X X
H

N
  

 


max min

y

y

Y Y
H

N
  

 


max min

z

z

Z Z
H

N
  

while  0, –1 xi N  do 

0   min xx X i H   

 1 1   min xx X i H   
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while 0, –1   yj N  do 

0   min yy Y j H   

 1 1   min yy Y j H   

while  0, –1 kk N  do 

0   min zz Z k H   

 1 1   min zz Z k H   

if  0 0 0, , 0F x y z  and  1 1 1, , 0F x y z  then 

 0 0 0 1 1 1, , , , , Find x y z x y z  BnPts   

endif 

end while 

end while 

end while 

end procedure 

 
Here the procedure Find() implements search at a segment of 

coordinates  0 0 0, ,x y z  –  1 1 1, ,x y z  of the point for which the R-function 
describing the original geometric domain takes a value of zero. 

A corresponding parallel implementation of the above sequential 
algorithm can be obtained by dividing the original search cuboid into a 
number of individual subdomains, the number of which is selected 
depending on the available number of processors in the computer system. 
Then the results of parallel algorithms should be combined into one 
resulting array of boundary nodes (Figure 2). 
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Fig. 2. An example of parallelism in the implementation 

of the search for boundary nodes 
 
The software implementation of this procedure is convenient to 

perform using the creative design pattern Prototype [20], which allows 
you to copy objects of any complexity without going into the details of 
their software implementation. Thus, when using this template to 
develop a finite element analysis program, you can, for example, perform 
cloning of an object that implements the above algorithm on a particular 
node of a computation cluster or processor (processor core), without 
reference to its class (Figure 3). 
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Fig. 3. An example of cloning procedures 
for constructing a set of boundary nodes 

 
After obtaining a set of nodes belonging to the boundaries of the 

functionally given source domain, using the algorithm Marching cubes 
[21], you can obtain a preliminary triangulation of the surface of the 
source domain. As an example, consider the geometric domain “Cup”, 
which is given by the following relationship: 

 
       1 2, , , , , , F x y z F x y z F x y z , 

 
where 
 

     1 3 4, , , , , , F x y z F x y z F x y z ; 

     2 5 6, , , , , , F x y z F x y z F x y z ; 

         
2 2 2 2 2

3 , ,          F x y z a x a y b x a y b z b ; 

 4 , ,   F x y z x b ; 

     5 7 8, , , , , , F x y z F x y z F x y z ; 

  2 2 2 2 2

6 , , 2 2     F x y z b x z x y z a ; 

     7 9 10, , , , , , F x y z F x y z F x y z ; 
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 8 , ,  F x y z y ; 

     
2

2 2 4

9 , , 1 / / 16   F x y z x z c y c ; 

       
2

2 2 4

10 , , / 4 / 5 1   F x y z x z c y c ; 

4a ; 
3b ; 

256c . 
 
Figure 4 shows the boundary representation of the “Cup”, described 

by the above function, which has been obtained using the above parallel 
algorithm. 

 

 
Fig. 4. Preliminary boundary representation of the R-function “Cup” 

 
The operating time of the algorithm depending on the number of used 

computational flows is shown in Figure 5. The computational experiment 
was performed on a computer with an AMD Ryzen 7 2700X Octa-Core 
Processor clock rate 3.70 GHz and 32 GB RAM running Windows 10. 
To find the boundary of the domain, a grid consisting of 100 × 100 × 100 
nodes was built. 

The graph shows that the execution time of the parallel algorithm 
decreases logarithmically with increasing number of threads involved in 
the calculations until such time as their number does not equal the 
number of physical processor cores (AMD Ryzen 7 is equipped with 
eight physical cores). Then the speed does not change, which is due to 
the growing overhead of the operating system scheduler to switch 
controls between threads. 

Having a boundary representation in the form of a triangulated surface 
and applying to it a frontal algorithm [22], we can obtain a discrete finite 
element model of the original geometric domain (Figure 6). 
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Fig. 5. Execution time of parallel algorithm of visualization of geometric 

domain “Cup” depending on quantity of the threads involved 
 

Processor 
The processor is the core of any ADS in mechanical engineering and 

construction. It directly implements computer analysis of models of 
design objects using a computational method (FEM, the method of 
boundary elements, the finite difference method, etc.). 

 

 
Fig. 6. Discrete model of R-function “Cup” 

 
The most common in practice is FEM. Numerical analysis of the 

behavior of the designed structure using this method consists of the 
following steps [2]: 

1) generation of local stiffness, mass and damping matrices for each 
finite element and their ensemble to the corresponding global matrices; 

2) formation of a column vector – the right part of the system of 
linear algebraic equations (SLAE); 
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3) formation of a system of linear algebraic equations from global 
matrices; 

4) taking into account boundary conditions; 
5) SLAE solution; 
6) calculation of additional nodal results (for example, deformations 

and stresses on the basis of the received displacements). 
Each of the above stages can be quite long with a large number of 

finite elements, so modern ADSs use the technology of parallel and 
distributed computation in their implementation. 

A typical object-oriented structure of a finite element processor ADS 
can be represented as follows (Figure 7). It consists of the following 
structural elements: 

1) Message – a class that implements the output of information about 
the calculation, possible errors, results, etc.;  

2) Mesh – a class that contains descriptions of all necessary 
information for the calculation of a discrete model of the projected object 
(coordinates of nodes, boundary and finite elements, connections 
between nodes, etc.); 

3) Parameters – a class that implements the storage of a database of 
parameters of the current task, such as elastic and physical characteristics 
of the material; boundary conditions; load, etc.; 

4) FEM – a base class describing the generalized FEM; 
5) FEMStatic, FEMDynamic, FEMNonLinear, … – classes derived 

from FEM, which implement a certain calculation algorithm using the 
FEM of a given type of problem (statics, dynamics, viscoelasticity, 
contact interaction, etc.). 

As in the development of the preprocessor, an effective technology 
for creating the ADS processor with support for parallel calculations is 
the use of a creative design pattern Prototype [20]. We consider its 
application in the development of ADS with support for parallel data 
processing. One of the longest stages of finite element computation is the 
process of formation of global matrices of stiffness, mass and damping. 
It usually consists of sequentially constructing local matrices for each 
element and assembling them into appropriate global ones. Therefore, 
when using object-oriented programming technology to implement this 
template, it is necessary to design a class of constructing local matrices 
of a finite element so that they support the implementation of exact 
copies of their objects on a particular processor, core, or computation 
node (Figure 8). 
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Fig. 7. Typical finite element processor structure 

 
Fig. 8. Cloning scheme of the process of constructing local stiffness 

matrices on different processors of finite element 

 

FEMProcessor – finite element processor ADS 

Message – informational 
subsystem 

Mesh – an array of finite 
elements 

Parameters – computation 
parameters 

FEM – FEM implementation 
module 

FEMStatic FEMDynamic  FEMNonLinear  …  

Solver – SLAE solution 
module 

 

Abstract class FE 

element_dimension 
number_of_degrees_of_freedom 
Young's_modulus 
…  

+construction_of_local_matrices() 
+ cloning() 
…  

FE3D4 

…  

+ 
construction_LM() 

FE3D8 

…  

+ 
construction_LM() 

FE3D10 

…  

+ 
construction_LM() 

 
 
 

Processor 1 

 
 
 

Processor 2 

 
 
 

ProcessorN 

… 

Cloning 

… 
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Similarly, appropriate classes are designed for implementing other 
stages of finite element analysis, such as solving SLAE, where, for 
example, the matrix factorization procedure can be designed so that it 
runs in parallel on a number of available processors, performing the 
cloning procedure of the object of the corresponding class (Figure 9). 

Similarly, you can design other classes that implement the algorithm 
of finite element computation of a certain type of problem. 

The above structure of the processor was implemented 
programmatically in the C ++ programming language using standard 
tools for parallel calculations of the STL library [23]. As a test, the 
problem of finding the parameters of the stress-strain state of an I-beam 
with circular holes, the upper surface of which was under the action of a 
uniformly distributed load, was solved. For the calculation, a 
corresponding discrete model was constructed, which consisted of 1855 
nodes and 6991 linear tetrahedral finite elements (Figure 10). 

The calculation was performed with a different number of threads 
involved on a computer with an Intel (R) Core (TM) i7-3630QM 
processor clock rate 2.40 GHz and 16 GB RAM running Windows 10. 
The dependence of the calculation time on the number of involved cores 
is shown in Figure 11. 

 
Fig. 9. Application of the Clone design pattern in the implementation 

of the SLAE solution subsystem 

 

Class Solver 

Matrix 

…  

+ matrix_transformaiton() 
+ cloning() 
…  

 
 
 
 
 

Processor 1 

 
 
 
 
 

Processor 2 

 
 
 
 
 

Processor N 

cloning 

… 
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Fig. 10. Discrete model of I-beam with circular holes 

 

 
Fig. 11. Time of calculation of an I-beam with holes 

at various quantity of the threads involved 
 
As in the previous experiment, the calculation time decreased with 

increasing number of threads involved until the number does not equal 
the number of physical cores. Then the speed of calculations does not 
change. 
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Postprocessor 
When analyzing the numerical solutions obtained as a result of the 

application of the FEM, there are usually two main tasks: 
– a large amount of numerical information to be processed (for 

example, research on the accuracy, reliability and adequacy of the 
content); 

– the need to synthesize additional information, such as standard 
results of a finite element. 

To automate the solution of these problems, specialized subsystems 
of finite element analysis systems – postprocessors – are used. 

The most effective means of visual representation of the results 
obtained during the calculation is their certain visualization, when the 
distribution of the studied value in the calculation area is encoded with a 
certain color (Figure 12).  

To construct such a figure, it is necessary to implement an algorithm 
for visualizing the distribution of the studied quantity over a separate 
boundary segment (for example, a triangle). The idea of such an 
algorithm is to divide the boundary segment into a number of triangles, 
the value of the studied value of which will be the same (Figure 13).  

 
Fig. 12. Distribution of the vertical component 

of the displacement vector along the I-beam 
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Fig. 13. The scheme of dividing the boundary segment into triangles, 

which correspond to the same value of the studied quantity 
 
This algorithm can be described using pseudocode as follows: 
Algorithm Visualization of the boundary segment (triangle) 
procedure ShowBoundarySegment(Coord, U) 

 , , min mid maxU U U U  are nodal values of the required function 
 0 0 0 1 1 1 2 2 2, , , , , , , ,Coord X Y Z X Y Z X Y Z  are coordinates of nodes of the 

boundary segment 
 02, 012P P  are auxiliary vectors 

begin 
 min minC ColorIndex U   
 mid midC ColorIndex U   
 max maxC ColorIndex U   

if min midC C  and mid maxC C  then 
ShowTriangle(Coord , )minC  
return 
endif 
 

1  max minStep C C   
   / x max minH X X Step   
   / y max minH Y Y Step   
   / z max minH Z Z Step   
   / c max minH C C Step   
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while     0, –1i Step  do 
  0 0 002. ( , , ,       x y z min cP add X i H Y i H Z i H C i H ) 

end while 
  2 2 202. ( , , , maxP add X Y Z C ) 

 
1  mid minStep C C   

   / x mid minH X X Step   
   / y mid minH y y Step   
   / z mid minH z z Step   
   / c mid minH C C Step   

while     1, –1i Step  do 
  0 0 0012. ( , , ,       x y z min cP add X i H Y i H Z i H C i H ) 

end while 
  1 1 1012. ( , , , midP add x y z C ) 

 
1  max midstep C C   

   / x max midh x x step   
   / y max midh y y step   
   / z max midh z z step   
   / c max minh C C step   

while  1, –1i step  do 
  1 1 1012. ( , , ,       x y z mid cP add x i h y i h z i h C i h ) 

end while 
 
while  0, 02. () – 2i P length  do 
if  012. ()i P length  then 

        
        
        

  
   
  

( 02 1 0 , 02 1 1 , 02 1 2 ,

02 0 , 02 1 , 02 2 ,

012 0 , 012 1 , 02 2 )

  



P i P i P i

CurCoord P i P i P i

P i P i P i

  

ShowTriangle(CurCoord,   02 3 )P i  
endif 
if  1 012. () i P length  then 
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        
        

        

  
   

  

( 02 1 0 , 02 1 1 , 02 1 2 ,

012 0 , 012 1 , 012 2 ,

012 1 0 , 012 1 1 , 02 1 2 )

  



  

P i P i P i

CurCoord P i P i P i

P i P i P i

  

ShowTriangle(CurCoord,   012 1 3 )P i  
endif 
end while 
end procedure 
 
Here the procedure ShowTriangle() directly implements the reflection 

of a single-color triangle. 
An example of the proposed algorithm is shown in Figure 12. It 

should be noted that when using modern graphics cards to make the 
visualization algorithm work in parallel does not make sense, because 
this procedure is automatically performed by the graphics processor. 
However, if necessary, using the Prototype pattern, you can build a class 
that divides the total set of boundary segments into subsets, for which 
processing is performed in parallel similarly to the scheme described 
above in the description of the preprocessor or processor. 

 
CONCLUSIONS 
The presented scheme of designing a finite element analysis system 

using the Prototype design pattern allows you to develop appropriate 
software for parallel computation systems quickly and efficiently. 

 
SUMMARY 
The article explores the application of prototype design pattern in 

parallel implementation of finite element analysis systems.  
The development of modern mechanical engineering and 

construction, in particular, the creation of new aerospace technology, 
transport vehicles, power plants and other complex engineering systems 
is impossible without the use of automated design systems (ADS). 
Today’s level of development of computer technology in every way 
contributes to the constant increase of its role. It is now virtually 
impossible to design and build complex machines, mechanisms and 
structures without the use of computers. 

Thus, the development of parallel algorithms and software for 
automation of various aspects of finite element analysis today is a very 
complex and urgent task that requires the development of new mathware 
and software. 
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