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INTRODUCTION 
Mathematical statement of contact problem with taking account of 

wear uses both equation of wear and contact boundary conditions. The 
experimental effect of exchanging of interior parameters of tribological 
system (intensity of wear, coefficient of friction, temperature of friction, 
microgeometry of surfaces etc.) delay is known as after-action effect [1]. 
Therefore, we should not ignore time interval, during which 
characteristics of contact surfaces which definited process of wear are 
being formed. This fact is described by wear inherited-aging model for 
contacting bodies 

 

         1 2
, ,      

t

o

w x t v K K t p x d , 

 
where   v  – coefficient depended on frictional surfaces’ sliding 
velocity;  ,p x  – contact pressure; 1K  – ageing core; 2K  – adaptation 
core. We use this model for plane contact problem of rectangular punch 
and elastic half-plane consideration in stationary statement, therefore 
wear is representative by linear function with time 
 

      ,


 w x t A Bt p x . 
 
Introduction of new function “ageing“ or “forgetting“ K1() gives the 

opportunity to take account of difficult transformations and changes, which 
takes place in what is called “third body” [2]. “Third body” is a thin near 
surface layer with its physical, chemical and tribotechnical properties, which 
differ from properties of main material of contacting bodies. Let assume that 
after-action and existence of burnishing zones and established work regime 
effects are consequence of changes in the “third body”. Besides, we must 



95 

take into account of wear processes delayed effect in new contact zones in 
the solution of contact problems with wear. In points 

sx  which are outside 
the initial elastic contact area  0 0,a a  process of burnishing  does not start 
at the moment 0t , but from the moment 0st , where 

st  is a time when 
border of contact area reaches point 

sx , thus   s sa t x . For these points a 
law of wear becomes following 

 

         1 2, ,      
s

t

t

w x t v K K t p x d . 

 
Form of ageing function of must satisfy 

1 0K  when    , 
therefore tribological couple must “forget” about burnishing stage with 
time. Form of adaptation function 

2K  must show that the fact of wear 
dependency from loading is characterized by after-action effect. 

All in all, introduction of new ageing function  1 K  into inherited 
wear model allows describing wide experimental wear curves’ class and 
taking into account  delayed effect of burnishing process in new zones 
for problems with monotonically increasing contact area  0 0,a a . 

 
Mathematical statement of problem 

The plane rigid punch with a plane base is pressed by the force P  in 
the elastic half-plane by the time 0   and under the punch stationary 
distribution of pressure is observed. As result, crushing of 
nonhomogeneouses of surfaces takes place. From the moment of the time 

0   punch moves along generatrix with constant relative velocity 
0V  

and erasing of half-plane take pace (Fig. 1). The surface of half-plane is 
unloaded out of the punch. 

The integration of equations of theory of elasticity 
 

  0       u x ,                                     (1) 

  0       u y ,                                     (2) 
 

with boundary conditions on surface 0y  
 

     1 0 2/     B yv f x kV H k x ,                       (3) 



96 

0 y , x a                                               (4) 

0 xy ,  x                                              (5) 
 
are necessary for the solution to the problem, where   – Laplace’s operator; 
     u x u y ; u , v  – components of displacement vector;  ,   – 
Lame’s coefficients;  f x  – function of form of base of punch; a  – half-
width of the punch; 

BH  – firmness of half-plane material (Brinell scale);   
– time. The process of wear is descripted with parameters 

1k , 
2k ,  , where 

0 1   , which were experimentally defined. 
 

 
Fig. 1. Geometry of problem 

 
Using Fourier’s integral transformation [3] 
 

   , ,






  
i xu y u x y e dx ,                                 (6) 

equations (1) and (2) can be represented in the space of transformants as 
follows: 

 

   
2

2

2
2 2 0


           



d u v
u i

ydy
                       (7) 

   
2

2

2
2 0


           



du v
i u

dy y
.                        (8) 

 
Correlations (7)-(8) can be rewritten in the general form 
 

2 2

1 1 1 1 1 12 2
0     

d u du d v dv
a b c u d e f v

dy dydy dy
                 (9) 



97 

2 2

2 2 2 2 2 22 2
0     

d u du d v dv
a b c u d e f v

dy dydy dy
,              (10) 

 
where in our case 

 
1  a , 1 0b ,   2

1 2     c , 1 0d ,  1      e i , 1 0f , 

2 0a ,  2      b i , 2 0c , 2 2   d , 2 0e , 2

2  f . 
 
We find solutions of (9) and (10) in the following form 
 

 
2

1 1 12

 
         
 

d d df
u d e f f i

dy dydy
                 (11) 

 
2 2

2

1 1 12 2

   
              

   

d d d
v a b c f

dydy dy
       (12) 

 
Then equation (9) is satisfied identically, and with (10) we have 
 

2
2

2

2
0

 
    
 

d
f

dy
,                                    (13) 

 
the solution of which has the following form for half-plane 

 
 1 2

 
 

y
f C C y e . 

 
Then taking into account (11) and (12) we obtain 
 

   1 2 1
             

y
u i C C y e                (14) 

 
     2 2

1 2 22
 

                   
y

v i C C C y e ,   (15) 
 

and according Hooke’s law 

 2       x

dv
i u

dy
,  2      y

dv
i u

dy
,     xy

du
i v

dy
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we obtain 
 

      2

1 2 2
2 2 2 2

 
                

y

x
C C C y e (16) 

   2

1 2 22 2 2
 

               
y

y C C C y e            (17) 

   2 2

1 2 22 2 2
 

                 
y

xy i C C C y e            (18) 

 
When  the boundary condition (5) is satisfied and the constant 2C  is 

determined as 
 

 2 1 /     C C ,                                    (19) 
 

then boundary conditions (3)-(4) are satisfied, and we obtain the 
following dual integral equations using (19) 

 

    2

1

1
2 /

2



 



         
 

i xC e d

 
     1 0 2/



    B yf x kV H k x , x a                      (20) 

 
2 2

1 / 0


 




        
 

i xC e d , x a                    (21) 

 
Solution of a system of dual integral equations 

In the domain we have boundary condition 

     
2 2

1 /


 




          
 

i x

yC e d x H a x ,              (22) 

where  H x  – Heaviside step function. By means of the Fourier 
transformations we determine 
 

 
 1 2 22








 

     

a

i x

y

a

C x e dx                       (23) 

By representing the unknown contact stresses  y x  in the form of a 
Fourier’s series 
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  /



  
N

i nx a

y n
n N

x a e                                    (24) 

 
we obtain 

 

 
 sin

2
/







  
 

  


a N
i x

y n
n Na

a n
x e dx a

n a
                  (25) 

 
and 

 

 

 
1 2 2

sin

/

  


       

N

n
n N

a n
C a

n a
                 (26) 

 
After substituting (26) in the integral equation (20) we obtain the 

following relation 
 

 

 

 

sin2

/



 

 

    
 

       
 
N

i x

n
n N

a n
a e d

n a  
      1 0 22 /       B yf x kV H k x                        (27) 

 
After substituting (24) in the relation (27) we obtain the following 

finally relation 
 

 
 

 
sin2

/


 

 

    
 

       
 
N

i x
n

n N

a n
a e d

n a
 

   /
1 0 22 / 2 



 
  
 

      
N

i nx a
nB

n N

kV H k a e f x                 (28) 

 
Using points collocation method [4] in  1 /    jx x a a j N , 

 1, 2 1 j N , for (28), we obtain a system of non-linear algebraic 

equations for finding the unknown coefficients na ,  1, 2 1 n N : 

 


 z A C z D b ,                                           (29) 
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where 
 

 
 

 ,

sin2

/


 



    
 
       

i x
k j

a n
a e d

k a
,          /

,


 ji kx a

k jd e , 

 2  j jb f x ,    1 1 1 2 2 1, ,..., , , ,...,
    

 N N N N Nz a a a a z z z  

 1 0 22 /   BC kV H k ,  , 1, 2 1 k j N                      (30) 

 
We can reduce non-linear system (29) to a system of linear algebraic 

equations in the cases 1   and 0   in the following forms 
 

 1  z A C D b                                             (31) 

0  z A b c                                                   (32) 
 
These limited cases ( 0  , 1  ) are the most interesting because they 

give the opportunity to compute the largest and smallest wear. If 0 1   , 
the solution of the problem (27) will be between solutions (31) and (32). 

Using iterative method [4], we obtain the system in the following form 
 

 z g z  or  1 2, ,...,j j kz g z z z ,    ( 2 1 k N ),        (33) 
 

where 
 

 
1

1 2 , ,

1 1,

1
, ,...,



  


   


 
j k

j k j m m j m m
m j mj j

g z z z a z a z
a

 

,

1





  
  

  

k

j m m j
m

C a z b                                         (34) 
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We make iteration by formula 
 

    1


n n
z g z ,                                        (35) 

 
or in other forms 
 

      1

1 ,...,



n n n

j j kz g z z ,      ( 1,j k )                         (36) 

 
or 

 
      
      

      

1

1 1 1

1

2 2 1

1

1

,...,

,...,

..........................

,...,







 










n n n

k

n n n

k

n n n

k k k

z g z z

z g z z

z g z z

                                  (37) 

 
For zero approximation we choice mean value between solutions of 

problems (31) and (32) 
 

   0

0 1 2 z z z .                                      (38) 
 

Computation of integrals 
It is necessary to compute the following integrals in the system (29) 

for determining the coefficients ,k ja  
 

 

 

sin

/


 



  
 

   
ji xa k

I e d
k a

,             ( 1, 2 1 k N )         (39) 

 
For the computation these integrals first we calculate integral which 

is derivative of integral (39) with variable x : 
 

 

 
' sin

/


 



  
   

   
ji xa k

I i sign e d
k a

,   ( 1, 2 1 k N )     (40) 
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Fig. 2. Contours of integration 

 
By representing integral (40) in the form 
 

    1'

1 2

1
1 1

2


   

k k
I I I ,                                 (41) 

 
where 

 
 

1
/


  




 

  
ji a xsign

I e d
k a

,           ( 1, 2 1 k N )           (42) 

 
2

/


  




 

  
ji a xsign

I e d
k a

,        ( 1, 2 1 k N )             (43) 

 
we use Cauchy theorem about residuals on the contour 1  for 1I  and 2  
for 2I  (Fig. 2) and obtain 

 
 

 
/

1

0

2
1

/

  

   
 

j ja x t i kx a
ke e

I dt i
a t i k a a

                        (44) 

 

 
/

2

0

2
1

/

  

    
 

j ja x t i kx a
ke e

I dt i
a t i k a a

                       (45) 
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According [5]: 
 

 

    /

0

/
/

 
  

   
 

j

j

a x t
i k a x a

j

e
dt Ei i k a x a e

t i k a
             (46) 

 

    /

0

/
/

 
 

   
 

j

j

a x t
i k a x a

j

e
dt Ei i k a x a e

t i k a
             (47) 

 
After substituting expressions (46) and (47) in (41) we obtain 
 

            / /' 1 / /
    

      j jk i k a x a i k a x a

j jI Ei i k a x a e Ei i k a x a e . 

 
We use Filon’s method [6] for computing I  during integration with 

x  of oscillatory functions (46)-(47). This method aims at consideration 
the quadrature of the integral 

 

 
b

a

y p dp ,                                           (48) 

 
in which  y p  is a numerically specified function. The error incurred in 

evaluating (48) with an n-th order scheme is proportional to    n
y z  for 

some z between a and b. Such a scheme assumes the existence of the 
Taylor expansions 
 

 
           1 1

! !

 

 

 
  

k nk nn n

k o k o

y a p a y z p a
y p

k z  
 

or an equivalent polynomial expansion and integrates it term by term. 
Different quadrature formulae are obtained depending on what method is 
used to estimate the derivatives    k

y a  from the numerical values of y. 
The maximum possible error nE  is then 
 

       
1

, , sup 1 !
   

 
nn

nE y a b y b a n
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in which  sup  
 

n
y  is the maximum of the function  ny  on the closed 

interval  ,a b . An estimate of the relative error nRE  can then be 
obtained by dividing nE  by    sup y b a , which is an upper bound for 
the integral itself: 
 

 

   

   

sup
, ,

sup 1 !

  
 



nn

n

y b a
RE y a b

y n  
 
Then if the maximum allowable relative error is r the step size should 

be less than 
 

        
1

max
sup 1 ! sup    

 

n
n

b a r y n y                 (49) 

 
A problem occurs when  expy f sp  for then if s is large  


n n

y y s . 

Thus    
11

max
1 !     

n
b a s r n  so the number of steps necessary for 

the complete contour is proportional to s. Filon’s method addresses this 
problem by expanding  f  as a polynomial instead of y. If the Taylor 
series expansion for f about the point p=a is substituted into 

 

   exp
b

a

f p sp dp                                        (50) 

 
and integrated term by term the result is 
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The maximum possible error is then given by  
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and an estimate of the relative error is 
 

 

   

   

sup
exp , ,

sup 1 !

  
     

nn

n

f b a
RE f sp a b

f n
. 

 
Since the relative error is independed of s, so too is the step size 

 b a  necessary to obtain a given accuracy. In fact the formula for step 
size, given a maximum allowable relative error r, is just equation (49) 
with f substituted for y . 

Point out that different Filon’s method quadrature formulae are 
obtained by using different methods to estimate the derivatives    k

f a  
from the numerical values of f . Thus for every quadrature formula for 
integrals of the form (48) there is an analogous Filon’s method 
quadrature formulae for integrals of the form (50) [7]. 

 
Results 

Numerical computations were carried out for the following 
parameters (system SI): material of half-plane – aluminum ( 11.3BH , 

105.6 10   , 102.6 10   ), 
0 0.25V , 0.25a , 10

1 10k , 11

2 10k , 
  0.01 f x const , 23N . 
Distribution of displacements v  and contact stresses 2 /  y ya P  is 

given in Fig. 3 for 0   and 100  , curve 1 corresponds to 0  , 
curve 2 corresponds to 1  . Value of force P  is computing by 
formulae 

 

  11
exp 2

 

 
 


       

a a N

y NN k
k Na a

i kx
P x dx z az

a
         (51) 

 
It should be noted that, for the anti-plane problem, the boundary 

conditions on the tangential stresses   yz yf  must be satisfied (normal 
stresses y  are defined by formula (24), 

f  – coefficient of friction). 
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a)                                                       b) 

Fig. 3. Distribution of displacements and stresses 
for 0   (a) and 100   (b) 

 
CONCLUSIONS 
First contact problems with wear were considered in [8]. 

Mathematical models of wear were presented in [9]. Statement of two-
dimensional contact problem with heat release in the process of friction 
was given in [10]. We investigate plane problem of elastic half-plane 
wear under the base of moving along generatrix with constant velocity 
rectangular rigid punch. Half-plane is considered in independent plane 
and anti-plane deformation conditions. We investigate process of wear, 
described by boundary condition including empirical parameter  , 
where 0 1   . These limited cases ( 0  , 1  ) are the most 
interesting because they give the opportunity to compute the largest and 
the smallest wear. In the case 1   vertical displacements increase due 
to the interaction time, it shows half-plane material abrasion increasing 
(curves 2 on Fig. 3). In the case 0   we obtain invariability of vertical 
displacements (curves 1 on Fig. 3). Results obtained for the limited case 

0  , 0   coincide with the one known in literature [7]. 
Further mathematical statement of plane contact problem with heat 

generation and wear account of friction is planned. Let plane punch of 
the height H with a plane base is pressed by the force P in the elastic 
half-plane and moves along generatrix with the constant relative velocity 

0V . The heat exchange between the side surfaces of the punch and the 
external medium occurs according to Newton’s law with the coefficient 
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of heat exchange a . The convective heat exchange with external 
medium through the unloaded surface is realized with the coefficient of 
heat exchange 0 . The upper end of the punch carries out a heat 
exchange with external medium with the coefficient of heat exchange 
H . The heat contact between bodies is non-ideal. The direction of the 
heat fluxes into the interactive bodies has been generated due to the 
action of frictional forces and wear process. The coefficient of heat flux 
redistribution is not considered in the formulation of the boundary 
conditions, which is insignificant. The temperature of the external 
medium presumably equals zero without restriction of generality. 
Investigation methods of contact problem solution which are similar to 
solved problem are planned. The existence of half-plane detaching zones 
from punch is predicted. This effect we obtained in the problem about 
thermoelastic contact of half-plane and rectangular punch with heat 
generation account of friction without wear [11]. In this case the solution 
of heat conduction problem for the punch must be obtained, and 
boundary conditions for area with full contact and for the detaching 
zones punch must be formulated. Besides, methods of solution building 
for problems with non-perfect contact are not investigated well. 

 
SUMMARY 
Investigation of thermal stresses and wear in the contact couple is an 

important problem for many engineering researches. The steady problem 
of thermoelasticity currently is sufficiently investigated. However, taking 
into account the actual operating conditions, in particular wear, leads to 
complication of statement and mathematical problem modeling. This is 
due to mathematical difficulties that arise in the solution of dual integral 
equations. A method of constructing solutions of contact problems with 
wear is developed. The plane contact problem of elastic half-plane wear 
by a rigid punch has been considered. The punch moves along generatrix 
with constant velocity. Arising thermal effects are neglected because the 
problem is investigated in stationary statement. In this case the 
crumpling of the nonhomogeneities of the surfaces and abrasion of half-
plane take place. The surface of half-plane is unloaded out of the punch. 
The solution for problem of theory of elasticity is constructed by means 
of Fourier integral transformation. Contact stresses are found in Fourier 
series which coefficients satisfy the dual integral equations. It leads to 
the system of nonlinear algebraic equations for unknown coefficients by 
a method of collocations. Cauchy theorem about residuals is used for 
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computing integrals. This system is reduced to linear system in the 
partial most interesting cases for computing of largest and smallest wear. 
The iterative scheme is considered for investigation of other nonlinear 
cases, for initial approximation the mean value of boundary cases is 
exploited. Filon’s method for computing oscillatory integrals is used. 
The evolutions of contact stresses, wear and abrasion in the time are 
given. For both last cases increase or invariability of vertical 
displacements correspondently is obtained. In the boundary cases 
coincidence of results with known is obtained. 
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