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HOMOGENIZATION OF THE MULTI-MODULAR
TRANSTROPIC COMPOSITES UNDER TRANSVERSE SHIFT

Smoliankova T. M., Klymenko M. L.

INTRODUCTION

For the effective usage of composites in engineering and
construction, we need to know their mechanical characteristics. They can
be different depend on their deformation materials characteristics. In that
case we will apply different models of multi-modular theory of elasticity.

In this article we consider concept of the multi-modularity are
suggested in the monograph [1]. Author of [2] considers the modification
of the multi-modular theory of elasticity. Shift module is considering
unchanged in [2]. Experimental data on mechanical characteristics of
granular composite are analyzed in publications [3, 4]. Author of [5]
considers multi-modular characteristics of isotropic material. Multi-
modular characteristics of reinforced concrete is viewed in article [6].

Thesis [7] including essence and modern methods of the
homogenization of transtropic fibrous composites. Solved problems of
the homogenization of transtropic fibrous composites with multi-modular
components under transverse and longitudinal stretching and
compression are suggested in [8] and [9].

The main purpose of this article is to develop mathematical models of
the homogenization of fibrous transversally isotropic composites under
deformation of transverse shift.

We develop methods based on kinematic terms of displacement [7]
for solving this problem.

Problem statement
The problem of the homogenization of composites is to determine
their mechanical characteristics as a homogenous material for the
characteristics of theirs components.
We solve this problem for fibrous transtropic composites. Its
components are isotropic matrix and isotropic fiber. Then we determine
its effective constants — module of elasticity £, for isotropy plane and

Poisson coefficient v, .
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Supposing that representative element of composite we can submit as
a cell, consists of infinite solid cylinder (0<r<a), as a fiber, and

infinite hollow cylinder(a < r <b), as a matrix. Material of matrix and

fiber are isotropic and multi-modular.

We consider tasks about transverse (in the plane of isotropy) shift of
composite’s cell. Modeling this case of deformation of the representative
element of composite is based on solving Kirsch’s problem [7].

To get a clear shift on outer surface (r =5) of elementary cell we

have to apply a load:
c,(b,6)=0,c0820, 1, (b,0) =—0c,sin26. (1)

In (1) value o, is constant. To get a clear shift we suppose that axial
deformations for matrix and fiber are &, = 0. Elasticity module and

Poisson coefficient values for multi-modular materials corresponding
E_and v, under stretching and £ and v_ under compression. Symbol

is using for material of a matrix and symbol ° is for material of a fiber.
Ratio between deformation and stress for multi-modular materials
according to (1) csn be written as:

e, =—[o,-v, (0, +,)],

E+
1
€ :E[Ge -V, (cr +csz)],
€, =EL+[GZ -v, (o, +Ge)],
C2(1+v,)

Yre Tre N (2)

E

+

On the outer surface (r = b) is a positive radial stress o, >0 and axial
stress in composites o, <0 in ratio (2). We suppose that expression sign
of stress o, in isotropy plane matches with the sign of stress o, .
Opposite the signs of stress (2) expressions changed.
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Common deformation of matrix and fiber problem
We consider the problem of common deformation of matrix and fiber
under transverse shift.
Stress components of matrix can be written as [7]:

64, 44,

o, (r,0)= —(2AI +r—43+r—2]cos26;

cy (r,0) = (ZA, +124,7 + %J c0s20;

T, (r,0) = (ZA1 + 64,7 - % - %J sin 20 ;
¢ =05 5, =0. 3)

Fiber stress taking into their end under » = 0 can be written as:

o, (r,0)=-24;co0s20;
o, (r,0) = (24 + 1244) c0s 20 ;
T, (7, 0) = (24; + 6477 )sin 20 ;
1, =0;1,=0. Q)]

Using condition ¢, =0 we can find components o, .
According to (2), we solve:

o, =V (o, +0y)=V (12A2r2 - 4—?“} c0s20. (5)
r

Z

Similarly according to ¢, =0 we find:
o, =V (o, +0,) =124, r* cos 20 . (6)

Deformation of matrix can be written as:

g (r,0)= —%(24 (1 + v+) + 124, (v+ + vjvi) +

+
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+%(1 +vi)+ 4rA4 (1 —vivf))cos29;

6 (7,0) = e (A (1 )+ 1247 (1 )+

+%(1 +Vi)+%(\/i +vjvi)jcos2e;

}"2

2(1+ v
Yoo (r,0)= (Et\h)(ZA1 + 64,7 -

+

6# - 2A“jsin 20;
r

Y;ZOSYZBZO- (7
Using (2) and (4) we find deformation of fiber:

&, (r,0) = —— (24 (1+v.) + 1249 (v, +viv'))cos 20 ;

- &=

gy (r,0) =

(245 (14 v.) + 12492 (1= viv')) cos 20 ;

o

Vo (7, 0) = 2(1;\@) (2A5 + 6A6r2) sin 20 ;

+

Yo =05 1,=0. ®)

From the Hooke’s law we obtain components of the displacement
vector of matrix and fiber.

u, (r,0)= '[a’:dr =— El (2Al (1 + v+) F+4A4,r° (v+ + vivi) -

+

_%(1 + v+) _ 4;44 (1 - vivi)] cos20+C, (0). ©)

. . 2
U, (r,e):j(rge —u,)dG:Ex

. , e e A o A e e
x(A] (1 +v+)r + Ay (3 +V. —2v+v7) + r—;(l +v+)+ 74(\/+ +2viv - 1) x
xsin26—JQ(6)d6+C2(r). (10)
We set up following expressions u, (r,0) and u, (r,0)for in Cauchy
equation and equate to expressions for v, (r,0) in (7):

113



2(11?)[2/1 6A2—6i—%j n20 =

4
" r r

2(1 +
=(V)[2A 64 -S4 2Ajsm26+
E rt r

+

10C (8) oG, (r) JC,(G)dG G (r)
W A

We have:

BC(;G(G)JrraC +J‘C e)de C() 0. (11)

Then we differentiate this equation on 6:

o°C, (0
6162( )+C1 (6)=0, (12)
We obtain (12):
C, (0)=H,cos6+ H,sin6 . (13)

Radial displacements of matrix can be written as:

u, (r,0) ——Ei(zA, (14v))r + 447 (v, + vV ) -
_ii(l-i—v) 4A4(1 Vvl )Jcos26+H,cose+stin9. (14)

For solving C, (r), we set up (13) in (11):

0(H, cos®+ H,sin 9) 6C (r)
o0 or

oG (r) -
rT—Cz(r)—O. (15)

+j(H cos®+ H,sin0)6 - C,(r)=
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Function is a solving of its equation:

C,(r)=Hyr. (16)

(10) can be written as:

Uy (r,0) = %[Al (1 + V:)" + Ar’ (3 +V - 2vivi)+ %(1 + v+) +
+%(vi +2vV - I)Jsin 20— H,sin0+ H,cos0+ H,r . (17)

We find constants H, and H,y (17) according to the symmetry
condition of boundary conditions:

H =0, H,=0, H,=0. (18)

We have displacements of matrix points as:

uy (r,0)=- El (2A1 (1 + vi)r +4A4,r° (v+ + vivi) -
_% 1+vj)—4rA“(1—vivi)JCOS26;
u:;(rﬁ):b%*(A1(1+v:)r+A2r3(3+vi—2vivf)+
+‘;13<1+Vj)+/:lj‘(vi+2viv*—l)]sin29. (19)

According to Cauchy equation, we obtain components of
displacement vector for fiber.

u (r,0)= J.s”dr = —EL(zA5 (1+v,)r+447" (v, + v+v7)) cos20 + T, (0) . (20)

+

2
uy(r,0)= J(rse —u,)dG =5

+

x(Ag(L+v,)r+ A (3+v, —2viv))sin20 - [T, (0)d0 + T, (r) . (21)
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Cauchy equation and equate to expressions for y,, (,6) in (8):

116

We set up following expressions for u,(r,0) and u,(r,0) into

)

+

+16T1(e)+6T2(’”)+J7“1(9)d977"2(r).

r 09 or
We obtain:
oT, (6 oT, (r
(;e( )+r7;£ )+J.7](9)d6—T2(r):0.
Similarly (11) we have:

T,(6) = R cos® + R,sin6.

Radial displacements of fiber can be written as:

1

u (r,0) = _E(ZAS (1+v,)r+440° (v, + v;v,))cos 20 +

+

+R cos6+ R,sin®.
Because u; (0,6) =0, for arbitrary 6 we have:

R cosb+ R,sinf=0.
So, R=0, R =0.

For determining 7, (r) from (22) we obtain the ratio:

LOT(r)

o -T,(r)=0.

From (26) we solve:

200 (24, + 6407)sin 20 - 2(];V;)(% +64y7)sin 20 +

(22)

(23)

24)

(25)

(26)



T,(r)=Ryr. (27)

From symmetry of boundary conditions we have R, =0.

uy (r,0) = _El (2A5 (1+v,)r+ 4407 (v, + vy,))cosZG ;
Uy (r,0) = El (A5 (l + v+) r+ Agr? (3 V- 2v°+v7)) sin 20 . (28)

+

We solve problem of common transverse shift of a solid cylinder as a
fiber and hollow cylinder as a matrix. So we have to find unknown
constants A, i=1,..,6 included in components of displacements and
stresses of matrix and fiber. We use boundary conditions (1) on outer
surface of a cell and conditions of continuity for displacements and
stresses under r =a:

u (a,0)=u,(a,0), (29)
o, (a,0)=0,(a,0), (30)
u; (a,0) = u, (a,0), 31
7, (a,0) =1, (a,0). (32)
We obtain:
64, 44 64, 2A4
00 :_2Al —743—724; _GO :2Al +6A2b2 —743—724,
or
6 2 2
gAY AP o 34K A &
2 2 2 2 2b

According to the continuity of stresses (30), (32), we obtain:

o, , 34 (b* -a*) LA (4a°0* —a* - 3b*)

A=-3 24" 24°D ’

(34
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Ay = (35)

Aa® - b°%) . A - d%)
a® a® '

From (29) and (31), we have:
EL:(QAI (14v)a+44a (v, + vV ) -

_%(1 +Vi)_%(1 —Vivf)j B 1; (2A5(1 +v.)a+ada’(v. +V+V*))’

+

%(Al (1 +vi)a +A2a3(3+vi —2vivf)+%(l +v*+)+

+

1

+%(v: +2viv - l)j = (A5 (1+v))a+Ad (3+v, - 2v‘+v;)) . (36)

+

Using Eq. (33) the following equations can be written as system of
two of them:
dy
a2
2 d22
d,b’B +a—D =cyh.

2

d,b’B+22 D=,

G37)

Introduce the notation:
d, = E, [[4/’—3—}12J(1 +vj)—4f(1—vjv*)J—
—E u4f—;2—3j(1+v;)+4£f12—fJ(1—v;v")J;
d,=E u}—fJ(l o)1 _v’;v*)J_
_E:L[}—fJ(l+v‘+)+4[1—}J(l—v;v”)J;
dy, =E+L4f(1—viv*)+[2f+;2—3j(l+vi)J—
—Eju2f+;2—3J(l+v;)+4(f—flzj(l—v+v)J;
dyy =E+u2—f—}J(l+vj)—4(l—viv*)J—
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. 1 1
-E 2—f——J 1+v: +4[*_1J 1-viv' J;
e
b=E, (1+v)-E (1+v,). (38)
According to (37), we have:
b2 d11d22_d21d]2,

bl dll — d21
dndzz - dZ]dIZ .

A, =c,a°
(39)

Then we obtain other undefined constants:

A - ?Ldlldzzbldzldu [3(;2 —1](d22 dy)+ [4—f —;](d“ —dZI)J—lj;
e ) LR v LR
Ay = M((dzz —dy) - f(d ~dy));
4 = ‘;0[1 +m(3(ar22 ~dy)+ f(d, 7d2,))J . (40)
The stress of the matrix can be written as:
& (r8) = o (1 v 4 i [3 (1 - ’r’:j(dn dy)+
+f(1 + 3%4 —‘t’bzzj(d” —dZI)]JCOSZO;

. b
6, (r,0)=—c, |+ —————x
’ ( ) ’ L dlld22 - d21d12

r b 3p*
x£3(1—4b2—r4j(d22 —d12)+f[l+r4j(d11 —dzl)JJCOS295

. b 2 bt
0)=—0,|1l+———3|1-="+=|(dy, - d
%o (750) "{ +dndzz—d2]d.2£ [ b’ +r4j( 2~ o)+
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4 2
+f (dy, —dzl)[l—yi+2b2jJJsin2e;
r r

4o,v,,b,
b’ (dndzz - d2|d12)
For the displacements of the matrix we obtain:

G, b

(r0) =S| (1+ V) + ————
ur (r ) E‘+ L( tv )+ (d”d22 - d21d12) *

b N
x{[[3+r4j(l+v+)—b’;(V++V+V)J(dzz_d|2)+
4q° - . b*

J{fz(1_V+V)+f(1+V+)[1_r4D(dn _dzl)JJCOS%;

o, (r,0) = (3r* (dy, - d,) - a’b’ (d,, - d,,))cos 20 . (41)

_ Gy b,

A= (T+V )+ — T x
0 e

(e -2y [Bos)re ) -

+[2ra22 (V+ +2vv - l) - (1 + Vi)f[l + f:]] (dn - d2|)JJ sin26.  (42)

uy (r,0)

We have following expressions of stress of fiber’s points:

b 1
(r0)=c,|1-———|3| = —1|(d,, - d,
Gr(r ) 60[ dlld22_d2ldlz£ [fz J( 2 12)+

+[4_f—;J(dll —dZI)JJCOSZO;

b 4r’ ) 1 4r?
0| gty [ e
+[4(1—?’;:J_ +;(4arz2—lj](a’”—dﬂ)J—lJcosze;

b 1 2r? 2r?
0) = A 3 =11+ d, —d,
‘rro(r, ) GOL(dlldzz_dZIdIZ)[ [fz[ azj + 2 fj( 2 |2)+
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3r? 3 (2r? . .

+[2(2_azj_f+f(a2_ln(d” —dZ,)J—lem29 ;
~ P N (U P S NN PN

c.(r,0) :maz ([f fzj(dn d12)+[f IJ(dH d,, )J

XV}, C0S20 . (43)
Displacements of fiber can be written as:

u (r,0) = (ErL(l+v+)—(blx

+ dl]dZZ _d2ldl2)

xu[}i_sj(uw)ﬁ;’f[ _;Zj(v++v+v)j(d22_du)+
+[[4 _f _;j@ b))+ ‘Z;(} - 1J(v+ +V+V)J(ar11 - dZI)JJCOSZG;

Gl b,

Uy (r,0)=—"-(l+v )+ ————x
e( ) E L ( ) (dlld22_d21dl2)

M/i_SJ(HVW2ar22[f_fkj(“w—2v;v‘)](dzz_dn)+
+([4—f—%j(l +V*)+27:2[%_1J(3”* —2v+v,)J(dl, —dZI)Dsin 20. (44)

We solve similarly problem of clear transverse shift of transtropic
homogeneous material as a composite. In that case composite materials
considered as a solid cylinder with radius b. The boundary conditions
can be written as (1). Components of stress-strain state of a
homogeneous modeling similarly to fiber, so we have:

o, (r,0) =24 cos20,
T,0(r,0) = (2;1] + 61:12r2)sin 26. (45)

According to boundary conditions, we obtain:
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A=-20. (46)

A -0. (47)

Using ratios for the fiber and matrix and (46), (47) for the
homogeneous transtropic material which modeled composite as follows:

c,(r,0)=0,c0520 ; c,(r,0)=-0,c0520 ;

T, (F,0) = -0, sin 20 , (48)
1+v; 1+v;
g, (r,e):Mcos%; eo(r,e):—Mcos%;
E; E;
26, (1+v;
Yoo (7,0) = -M sin 20, (49)
2
1+vy,)r
u,(r,0)= GO( E*VB) $20,
2
1+ vy, )r
u, (r,0) = —GO(E:/B)sin 20, (50)

According to the conditions of harmonization — equality of radial
displacements of homogeneous composite and radial displacements of
matrix on an outer border of a composite cell, we obtain effective elastic
constants of a homogeneous composite:

u, (b,6) =u, (b,6). 1)

Using Eq. (51), we have:

(1+V;3) ) ; [(1+Vi)+bl((3(dzz _d|2)+f(dll —d2,))><

E2+ Ei dlld22 _dZIdIZ
x(l + v:) -4(dy, - dlz)(v: + vivi) +((dy - dy) - f(d), - dy))) %
x(1+vj)+4f(d,l—dﬂ)(l-vivi))). (52)

Introduce the notation:
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(dn - d2l) _ (dzz - dlz) (53)

X = s Ao = .
1 dlldzz_dZIdlz ’ dlld22_d2ld12

After transformations, we expressed:

1 + 1 N N * x
({1 -2 (1 () (54)

In article [7] we give the following ratio % . According this ratio,
2

(54) and using following condition I=vy + THvy _

, we find:
E, E,

Nh'l‘l\)

20.E
El = - - — . (55)
? cx((l+v+)+4(y—2E+)(1—v+v_)(fx1+x2))+6+n1n2

Introduce the notation:

a=E (1= f)(1-v,)+ E(f(1-v])+(1+V])),
S=f(1+v))(v-2E)+v(1-v}),
n=2EE f(f-1)(v, ~y—2v+E+),
_1/( a(Ef+E (1= 1) - 2B(V.E.f +VipE (1- 1))
E (1-v,)+ E(1+V)).

1+ v, _ﬂ_ 2vy,
E, E, E
for Poisson coefficient v,,:

Using ratio , (54), (55), we obtain expression

(56)

Q
—_
—

p—t

+

<
~

+

N
—_

<
|

N

N
~
—_—

—

|

<

<
v

—_
~
=
+
=
¥
~—
—_
+
—_
[e7]
+
=
=
¥)
~

In case of transverse shift caused by transverse compression and
longitudinal stretching homogeneous mechanical characteristics can be
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solved with ratios (55), (56), where we have to take opposite sings in
index.

CONCLUSIONS

To design and construct materials made of composites we have to
know effective elastic constants of its materials solved with considering
of differences between their mechanical characteristics under
compression and stretching deformation. We can find homogenization of
a composite using kinematic terms of harmonization.

Effective values of transverse module of elasticity £, and Poisson

coefficient for isotropy plane of transversally isotropic composite can be
solved according to common transverse shift of matrix and fiber and
similarly problem for deformation of homogeneous composite.
Equations of radial displacements on outer surface and common
composite’s cell are the kinematic terms of harmonization.

Following effective elastic constants can be used to design and
construct materials made of multi-modular composites.

SUMMARY

In this thesis we solve the problem of homogenization of multi-
modular transtropic composite under transverse shift. It’s consists of
isotropic elastic matrix and fiber. Mechanical characteristics of
composite and its components under compression and stretching are
different. In this article we solved effective module of elasticity and
Poisson coefficient for isotropy plane of transtropic composite. So we
use kinematic terms of harmonization of radial displacements on outer
surface and common composite’s cell.
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