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INTRODUCTION 
The presence of longitudinal cracks in elements of thin-walled 

structures is quite likely, in particular for layered composites. When such 
elements are under alternating bending strain, there appear tensile and 
compressive stresses directed along the cracks. When the elements are 
under tensile stress, the cracks do not manifest themselves, and when 
they are under compressive stresses, there may appear phenomena 
related to the buckling of the structural equilibrium of material in the 
volume surrounding the crack. In this case, one of the main tasks of 
fracture mechanics is to assess the strength of bodies with longitudinally 
compressed cracks. In the most general setting, this problem was 
investigated in the papers reviewed in [1, 2]. According to the developed 
3D linearized theory of stability of deformable bodies [3], once the 
compression stresses have reached their critical level, there occur, in the 
volume of material surrounding the crack, stress-strain state 
perturbations, or so-called "local forms of buckling". If the crack is close 
to the surface, near-surface buckling occurs. The buckling of material in 
the volume surrounding the crack precedes brittle fracture. 

A particularly important task is to assess the strength of layered and 
fiber composites, which are destroyed through delamination during 
compression in the direction of reinforcement. In the context of applying 
the concept of local buckling, a significant number of publications are 
devoted to this problem, in particular [4, 5]. In contrast to the specified 
approach based on strict provisions, approximate beam models were 
developed [6–10]. Despite the lack of estimates of the accuracy of the 
assumptions used, "beam" approaches are simpler, more pronounced, 
and can be successfully used to solve problems of applied mechanics. 

The phenomenon of local buckling around a longitudinal crack does not 
always result in the destruction of material and a further advancement of the 
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crack. For example, in the case of a near-surface crack in a rod, the local 
buckling of its part − the element between the crack and the rod surface, 
further referred to as the crack-to-surface element (CSE), − occurs once the 
local compression strain has reached its critical value. With further rod 
deformation, CSE experiences supercritical deformation, i.e. it is both in a 
state of compression and bending. In this case, the bending stiffness of the 
rod changes depending on the magnitude of deformations, which determines 
the nonlinearity of oscillations. 

The task of this paper is to determine the influence of local buckling 
in a rod with a longitudinal near-surface crack on its characteristics 
during oscillations. In this case, a "beam" scheme is used to determine 
both the state of local buckling and supercritical deformation at small 
displacements. In this work, which has an applied character, the mutual 
influence of the various phenomena is taken into account − buckling and 
oscillations. Works of this kind are poorly represented in publications. 

 
A model of a locally buckled rod with a longitudinal crack 

Figure 1 depicts a rod fragment with a longitudinal near-surface crack 
during bending, with a thin rod-like bucklable CSE of length 2l 
highlighted with a bold line. 

 

 
Fig. 1. A model of a rod with a near-surface crack 

 
When the rod undergoes bending, СSE ends experience the relative 

displacement u along the x axis, the displacement determining the 
longitudinal force arising in CSE. When the rod undergoes compression 
after the critical value of uc (critical force) has been reached, CSE 
buckles and additionally undergoes bending. With a further bending of 
the rod (increase of u), there occurs the supercritical CSE deformation, 
which is considered at small deflections without taking into account the 
inertia properties during oscillations. Obviously, the rigidity of CSE, as 
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part of the rod, changes after buckling, i.e. it is a variable and determined 
by the dependence P(u), where P is the force in CSE with the relative 
displacement u. The P(u) dependence is to be determined. 

For definiteness, we will accept the boundary conditions for CSE 
displacements (0, 2l) in the form of fixed-ends, although they have a 
more complex form, intermediate between that of fixed and free support. 
The displacement u is composed of the power component up and the 
geometric component ug [11] 

 
 p gu u u .                                              (1) 

 
The up and ug components are defined by the formulas 
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where F is the cross-sectional area of CSE; w (x) is the deflection of CSE 
after buckling. 

Given the boundary conditions, we take 
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where w0 is the deflection of CSE in the middle (Figure 1). 

In view of (1), (2) we get 
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The state of buckling, P=Pc, where 
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. In a subcritical state, at u≤uc (P<Pc), w0=0 

and the equilibrium form is rectilinear, at u≤uc (P<Pc), after buckling, 
w0≠0 and supercritical deformation occurs, controlled by the 
displacement u. After buckling at small deflections, the equilibrium state 
is indifferent, i.e. the supercritical deformation occurs at P=Pc. The P(u) 
dependence corresponding to the above is presented in Figure 2. 
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Fig. 2. P(u) dependence for CSE 

 
The variable CSE stiffness also causes the rod stiffness change, 

depending on the magnitude and sign of the deformation 
(displacement u). In CSE deformation calculations, it is appropriate to 
perform the linearization of the nonlinear dependence P(u) by the initial 
deformation method [12]. The physical relation for CSE is represented in 

the form 0( )   P EF , where 
0
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The account of the additional deformation in the calculations is 

equivalent to the application of additional forces at CSE ends, 
0
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EF
 is the CSE compliance under static loading; 0   cu u u . 

In the case of several near-surface cracks, the buckling of CSEs 
located between the cracks occurs sequentially from the external CSE, 
adjacent to the surface of the rod, to the internal ones. The calculation 
formulas and the algorithm of taking into account the CSE stiffness 
changes are similar to those given above. 

 
A method to calculate the oscillations of a rod with a crack 

To model rod oscillations, the finite element method is used in a 
three-dimensional formulation with the implementation presented in 
[13]. The equations of oscillations in matrix form are written as 

 
[ ] [ ] [ ]  M C Ku u u F ,                                     (5) 

 
where [K], [M], [C] are the stiffness, mass, and damping matrices; u, F 
are the displacement and external load vectors. 

The modeling of the longitudinal crack in the finite element diagram 
of the rod is carried out by the method described in [14] according to 
which constructing a finite element model of a body with a crack 
consists in breaking the bonds between the nodes of its finite element 
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mesh along the surface separating the crack faces. The resulting modified 
finite element mesh contains a dividing surface that has unconnected 
double nodes representing the crack faces. 

Figures 3a and 3b show the transformation of the finite element mesh 
for the introduction of a crack. The initial state (Figure 3a) corresponds 
to a regular grid without a crack, where CS is the crack surface; CL is the 
crack line; A, B, C, D are finite elements. The transformation of the 
initial mesh and the formation of an irregular finite element mesh with a 
crack (Figure 3b) is carried out by selecting the nodes that are initially 
located on the dividing surface (marked with “х”) and displacing to them 
the adjacent nodes (marked with “o”) (Figure 3a). As a result, double 
nodes are formed on the dividing surface (Figure 3b), while the finite 
elements A are transformed into A’, elements C, D degenerate into C’, 
D’, and elements B are eliminated. 

The application of the described scheme for introducing cuts to account 
for cracks leads to a change in the main characteristics of the finite element 
model – the stiffness matrix [K] and the mass matrix [M]. Their formation 
for elements A (Figure 3a) is carried out taking into account changes in a 
number of nodal coordinates, and for elements B, taking into account the 
breaking of bonds between nodes "х" with the adjacent nodes and by the 
diagonalization of matrices relative to nodes "x" 
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where the dyadic form of the representation of tensors (matrices) is adopted; 
ij is the vector in which only the j-th component is nonzero and equal to one; 
j is the index pointing to nodes x and the components of displacements in 
these nodes; G1, g1 are, respectively, large and small numbers. 

To change the finite elements C, D (Figure 3a), in which the number 
of faces and nodes decreases, formalized procedures of matrix 
transformations are applied. The modified stiffness matrix [K’] and the 
mass matrix [M’] of these elements are determined by the dependencies 
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is the unit matrix; k refers to nodes "o" and displacements therein. 



148 

 

  
а b 

Fig. 3. A scheme of mesh transformation 
with the introduction of a crack 

 
The described scheme allows us to model cracks with complex 

surfaces, for example, consisting of joined or intersecting planes of 
different directions, and it does not impose constraints on the number of 
introduced cracks. 

The integration of equations (5) over time is performed by the Wilson 
finite-difference method [15]. A peculiarity of its application in this case 
is the introduction of unit forces P0 at CSE ends at each integration step, 
for which the displacement u can be represented as 

 
0  tu u P ,                                                  (6) 

 
where ut is the current displacement in the Wilson scheme (excluding 
additional forces); α is the displacement of CSE ends in the rod from the 
momentum of the unit forces P0 (dynamic compliance). Taking into 

account the expression for 0 




cu u
P  by the method of additional 

deformations and excluding u from equation (6), we obtain the 
expression for the boundary forces 
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The denominator of formula (7) is nonzero, because the dynamic 

compliance is lower than the static compliance. Additional forces P0 at 
each step are uniquely determined by formula (7) and do not require 
iterations. A similar approach to taking into account the nonlinearity of 
individual structural elements was used in [16]. 
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A cantilever rod with a single near-surface crack 

A diagram of a rod with a through-the-thickness longitudinal crack is 
shown in Figure 4. 

 

 
Fig. 4. A diagram of a cantilever rod with a crack 

 
The calculation data are as follows: L=80 cm, b=1 cm, H=4 cm, 

h1=1 cm, l=40 cm, E=20.6 MN cm2, m=8.15 kg. It is accepted that the rod is 
massless while performing the function of variable stiffness, and 
concentrated masses are placed at its end. In this case, the system can be 
reduced to a single-mass variable stiffness model and analyzed analytically. 

Free vibrations of the presented nonlinear system were studied, and 
the dependence of the frequency of oscillations on their amplitude was 
determined. Note that due to the asymmetry of the dependence of the 
restoring force, the maximum deviations of the different signs A+, A– 

differ. In this case, introduced are the following characteristics: the 

center of vibrations, 
2

 

A A

A , and the half-amplitude of vibrations, 

2

 

A A

A . The dependence of the restoring force, F(wm), where F, wm 

is the force at the cantilever end and its displacement (mass m), is 
calculated for a static load, and the data are placed in table 1. 

 
Table 1 

Dependence of the restoring force on displacement 
F, кN 2.452 0 -

0.981 
-

1.020 
-

1.472 
-

1.962 
-

2.452 
-

2.943 
-

3.434 

wm, сm 3.801 0 -
1.520 

-
1.582 

-
2.557 

-
3.618 

-
4.679 

-
5.740 

-
6.801 

 



150 

The dependence F(wm) is bilinear and is represented as 
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where Fc, wc are, respectively, the values of the force at the cantilever 
end and its displacements at the moment when CSE buckles 
(Fc=1.020 kN, wc=1.582 сm; k0, k1 are the coefficients characterizing the 
slope of lines in the diagram (k0=1.291 kN/cm, k1=0.925 kN/сm). 

Free vibrations were caused by the initial deflection of the system 
during quasi-static loading by the forces F(t) and subsequent drop of load 
in the presence of a small level of damping. The calculation results for 
the proposed model and methodology are presented in table 2. 

 
Table 2 

Dependence of the frequency of free oscillations 
on amplitude. Proposed model 

A, сm 1.582 1.977 2.270 3.047 3.865 4.673 
Δ, сm 0.000 0.005 0.017 0.038 0.106 0.161 
p, Hz 10.00 9.914 9.833 9.699 9.590 9.537 

 
For comparison, we present data for the natural oscillation frequency 

of a solid rod, p=10.15 Hz, and a rod with a crack, but without taking 
into account the CSE buckling, p=10.0 Hz. The data in table 2 determine 
the skeletal curve with soft non-linearity, which occurs in this case. 

To assess the accuracy of calculating nonlinear oscillations according 
to the presented method, the frequencies of free oscillations were 
calculated using the analytical dependence obtained by the direct 
linearization method [17]. In doing so, the bilinear dependence of the 
restoring force (8) obtained by calculation was used. The frequency of 
free oscillations is determined according to the formula 
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where the function F is the restoring force characteristic (8). 

The calculation data with the use of formula (9) are presented in 
table 3. 
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Table 3 
Dependence of the frequency of free oscillations 

on amplitude. Direct linearization method 
A, cm 1.582 1.977 2.271 3.031 3.866 4.673 
Δ, cm 0.000 0.006 0.015 0.053 0.105 0.160 
p, Hz 10.010 9.952 9.886 9.741 9.633 9.562 

 
Comparison of the data in tables 2 and 3, obtained respectively by 

calculation and analytically, are in good agreement. This indicates the 
acceptable accuracy of the calculations of nonlinear oscillations with the 
restoring force characteristic determined by the proposed model. The 
change in natural oscillation frequencies for the selected range of 
amplitudes, limited by the magnitude of deflections and stresses to the 
yield strength, is up to 6%. 

 
A cantilever rod with a system of collinear surface cracks 

The scheme of the rod is similar to the previous example, but 
additionally, through the thickness of CSE shown in Figure 4, one and 
two cracks of the same length l were introduced. Accordingly, the 
following design studies were considered: two cracks (two CSEs with 
thicknesses h2=0.5 cm) and three cracks (three CSEs with thicknesses 
h3=1/3 cm). Due to the complexity of the problem, a higher finite 
element discretization was used. When modeling the oscillations of the 
rod, a scheme of successive buckling from the external CSE to the 
internal one was used.  

Studies of the nonisochronism of free oscillations were carried out, 
and amplitude-frequency characteristics were obtained with the 
identification of various resonances. 

The dependencies of the frequency of free oscillations on amplitude 
for a different number of cracks in the form of skeletal curves 
(nonisochronism of oscillations) are shown in Figure 5. According to the 
dependencies, with an increase in amplitude, the frequency of free 
oscillations for each of the considered options tends to a certain limit. 
With an increase in the number of cracks, and, correspondingly, a 
decrease in the hi of CSE, the values involved in the critical displacement 
uc are matched with F~hi, J~hi

3, resulting in uc~hi
2. That is, with an 

increase in the number of cracks, the CSE resistance to compressive 
stresses rapidly decreases, which is almost equivalent to the absence of 
material resistance in the region occupied by the cracks. In the limit, the 
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restoring force characteristic, referred to the unit of mass, is bilinear with 
a kink at the origin of coordinates and the tilt angles α1, α2 of the lines in 
the diagram for positive and negative displacements, respectively. In this 
limiting case, the system is isochronous, and the frequency of free 
oscillations is determined by the formula 

 
1 2

0
1 2
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p p
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p p
, 

 
where 2

1 1tg p , 2
2 2tg p . 

 
The stiffness calculations of an inhomogeneous rod with 

underestimated and initial elastic moduli yielded the values 
tg α1=3.856 sec-2, tg α2=2.557 sec-2, which determines p1=9.883 Hz, 
p2=8.048 Hz and, accordingly, p0=8.872 Hz. The value of p0 is close to 
the limiting frequency value at large oscillation amplitudes for the rod 
with three cracks. 

 

 
Fig. 5. Skeletal curves for the rod: 

1 − with one crack; 2 − with two cracks; 3 − with three cracks 
 
The amplitude-frequency characteristics for the rod with three cracks are 

constructed for harmonic action by the cantilever force 
0 sin F F t  with 

different fixed amplitude values F0=29.43 N (3 kgf); 49.05 N (5 kgf); 98.1 N 
(10 kgf) for viscous damping with the logarithmic decrement of oscillations 
δ=0.38. Such a significant damping is adopted for a higher rate of oscillation 
stabilization. Figure 6 shows the amplitude-frequency characteristics in the 
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region of the main resonance close to the natural frequency of a quasi-linear 
system. The parameter κ=A/Ast, where A is the half-amplitude of periodic 
forced oscillations at the excitation frequency ω, Ast is the half-amplitude of 
oscillations at the frequency ω=1 Hz (quasi-static loading). A distinctive 
feature of the amplitude-frequency characteristics of the rod with a system of 
three cracks is their dependence on the amplitude of the exciting effect. In 
particular, the maxima of the amplitude-frequency characteristics are biased, 
occurring at 9.0 Hz; 9.2 Hz; 9.4 Hz with a decrease in the amplitude of 
excitations, and accordingly the amplitude of oscillations. This result is due 
to the oscillatory properties of the considered nonlinear system, in particular 
its skeletal curve. 

 

 
Fig. 6. Resonance curves at different amplitudes of excitation: 

1 – F0=29.43 N; 2 – F0=49.05 N; 3 – F0=98.1 N 
 
In a wider frequency range, the amplitude-frequency characteristic 

reveals features due to the presence in the periodic solution of various 
harmonics that are multiples of the period. Computational studies were 
carried out for the rod with three cracks at the excitation amplitude 
F0=0.981 kN (100 kgf). In the region of lower excitation frequencies (with 
respect to the frequency of the main resonance), the frequencies ω2/1≈4.5 Hz 
and ω3/1≈3.0 Hz were revealed, for which the second and third harmonics in 
the Fourier expansion, respectively, have a local extrema. The histograms of 
frequency analysis are presented in Figure 7, where, also for comparison, a 
histogram is shown for the case of the main resonance (ω≈8.9 Hz). The 
indicated frequencies correspond to the states of super-resonances 2/1 and 
3/1, whose oscillatory mode features are illustrated in Figure 8. Thus, with 
super-resonances, higher harmonics are commensurate with the fundamental 
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harmonic, especially with the 2/1 super-resonance, and the damping does not 
change the harmonic ratio over time. 

 

   
a b c 

Fig. 7. Amplitudes of harmonics at resonant frequencies: 
a – ω=8.9 Hz (main resonance); b – ω=4.5 Hz (super-resonance 2/1); 

c – ω=3.0 Hz (super-resonance 3/1) 
 

   
а b c 

Fig. 8. Oscillatory modes at resonances: 
a – ω=8.9 Hz (main resonance); b – ω=4.5 Hz (super-resonance 2/1); 

c – ω=3.0 Hz (super-resonance 3/1) 
 
Under high-frequency excitation, in particular at the doubled 

frequency of the main resonance, ω=17.8 Hz (oscillatory period 
Тω=5.618·10-2 secs), a periodic movement occurs with the frequency ω/2 
(oscillatory period Тω/2=1.124·10-1 secs). This can be considered as the 
appearance of the 1/2 sub-harmonic, which has a local extremum at the 
indicated frequency, i.e. the 1/2 sub-resonance takes place. The 
frequency analysis data are placed in table 4, where the amplitude values 
of the harmonics are indicated for different instants of time (in periods of 
oscillation Тω/2). 
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Table 4 
Change in the 1/2 sub-harmonic over time 

Number of periods Тω/2 А0, cm А1/2, сm А1, сm А2, сm А1/2/А1 
8 0.117 0.528 0.647 0.002 0.816 
16 0.104 0.283 0.653 0.002 0.433 

24 0.101 0.170 0.654 0.002 0.260 
32 0.100 0.106 0.655 0.001 0.162 

 
It is obvious that over time, under the influence of damping, the ratio 

of harmonics A1/2 and A1 changes significantly, which is evident when 
oscillatory modes are considered. That is, under the influence of 
damping over time, the 1/2 sub-harmonic is suppressed. 

 
CONCLUSIONS 
The manifestation of the mutual influence of oscillations and 

processes of local buckling of layers in rods with near-surface cracks is a 
new scientific problem. To solve it, a model of a rod with a longitudinal 
near-surface crack was constructed, which takes into account both the 
possibility of CSE buckling and supercritical deformation, which causes 
variable bending stiffness. 

A method has been developed for calculating nonlinear oscillations of 
bodies with cracks, taking into account the buckling phenomenon according 
to the proposed model, based on the application of the finite element 
method, linearization of physical relations by the initial deformation method, 
and solution of the initial problem by the Wilson method. 

Studies of the non-isochronism of oscillations of a rod with a single 
crack and a system of collinear cracks were performed, and skeletal 
curves were determined. The results are consistent with the data obtained 
analytically by the direct linearization method with the use the 
dependence for the restoring force calculated using the proposed method. 

The features of the amplitude-frequency characteristics of the rod 
with three near-surface cracks are studied depending on the excitation 
amplitude in the region of the main resonance. Super-resonances 2/1 and 
3/1, as well as sub-resonance 1/2, were determined and investigated. It is 
shown numerically that sub-harmonic 1/2 decreases under the influence 
of damping. 

Research development is possible in the following areas: 
– clarification of the real conditions for the relationship between CSE 

and the main structural element; 
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– taking into account the geometric nonlinearity of CSE at 
supercritical deformations, which leads to an increasing dependence of 
the force in CSE on the displacements of its ends; 

– assessment of resultant, due to CSE local buckling, and, as a 
consequence, due to the change in the type of stress state, stress intensity 
factors to determine the conditions for the development of cracks during 
oscillations; 

– assessment of the bearing capacity of layered structural elements 
with separated layers due to local buckling and plastic deformation. 

 
SUMMARY 
A new formulation of the problem is considered, in which the mutual 

influence of the phenomena of local buckling of a near-surface element near 
a crack and amplitude-dependent oscillations is taken into account. The 
buckling of the rod near-surface element, separated by a crack, is determined 
and controlled by its relative compressive strain. The buckling criterion 
corresponding to the beam model is applied, and supercritical deformation is 
considered at small displacements. The rod is deformed by the finite element 
method in a three-dimensional setting, and a surface crack is modeled using 
a special technique based on operations with stiffness and mass matrices of 
an initially solid body. Reduction in stiffness is taken into account according 
to the additional deformation scheme. Time calculations for nonlinear 
oscillations are performed by the Wilson finite-difference method with 
correction at the step of additional forces on the near-surface element. The 
problems of nonlinear oscillations of a cantilever rod with a single 
longitudinal crack, as well as with a system of near-surface cracks, are 
solved. Studies of free small nonlinear oscillations are performed and 
skeletal curves are determined. Features of the amplitude-frequency 
characteristics, depending on the amplitude of excitation, in the region of the 
main resonance of a rod with three near-surface cracks are studied, and 
super- and sub-resonances are established. 
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