YOUTH READINESS FOR AI-DRIVEN HR PRACTICES IN THE BALTIC STATES: A COMPARATIVE STUDY

##plugins.themes.bootstrap3.article.main##

##plugins.themes.bootstrap3.article.sidebar##

Published: Nov 21, 2025

  Veranika Khlud

  Galina Reshina

Abstract

This study explores youth readiness for artificial intelligence (AI) applications in human resource (HR) and recruitment practices in Estonia, Latvia, and Lithuania. Based on a cross-country survey and qualitative interviews with individuals aged 18 to 30, the research examines digital competence, exposure to AI tools, and attitudes toward AI in hiring. The findings reveal significant differences across the Baltic states. Estonian youth demonstrate the highest readiness, supported by strong digital education and national AI initiatives. Lithuanian respondents show active use of AI in learning but report moderate institutional support. Latvian participants express interest in AI but indicate limited access and lower digital confidence. While most respondents view AI as a useful and efficient tool in HR, concerns remain regarding data transparency and fairness. The study offers evidence-based recommendations to support the integration of AI in education and employment services, aiming to improve youth adaptability to future AI-driven labour markets.

How to Cite

Khlud, V., & Reshina, G. (2025). YOUTH READINESS FOR AI-DRIVEN HR PRACTICES IN THE BALTIC STATES: A COMPARATIVE STUDY. Baltic Journal of Legal and Social Sciences, 177-190. https://doi.org/10.30525/2592-8813-2025-spec-14
Article views: 7 | PDF Downloads: 6

##plugins.themes.bootstrap3.article.details##

Keywords

youth; artificial intelligence; recruitment; human resource; Baltic states

References
1. Andersson, Y., Dalquist, U., Ohlsson, J., & , N. (2018). Youth and News in a Digital Media Environment : Nordic-Baltic Perspectives.
2. Armstrong, L., Everson, J., & Ko, A. (2023). Navigating a Black Box: Students’ Experiences and Perceptions of Automated Hiring. Proceedings of the 2023 ACM Conference on International Computing Education Research - Volume 1. https://doi.org/10.1145/3568813.3600123.
3. Asif, A. (2024). Integrating AI in Recruitment: A Review of Perceptions, Acceptance, Adoption and Ethical Considerations of AI Usage. Frontiers in Business, Economics and Management. https://doi.org/10.54097/c759fx45.
4. Azzolini, D., & Schizzerotto, A. (2017). The second digital divide in Europe. A crossnational study on students’ digital reading and navigation skills.
5. Binns, R., Veale, M., Van Kleek, M., & Shadbolt, N. (2018). ‘It’s reducing a human being to a percentage’: Perceptions of justice in algorithmic decisions. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, 377, 1–14. https://doi.org/10.1145/3173574.3173951.
6. Budhwar, P., Malik, A., Thedushika, M., Silva, D., & Thevisuthan, P. (2022). Artificial intelligence – challenges and opportunities for international HRM: a review and research agenda. The International Journal of Human Resource Management, 33, 1065–1097. https://doi.org/10.1080/09585192.2022.2035161.
7. Cāne, R. (2021). DEVELOPMENT OF SMART VILLAGES AS A FACTOR FOR RURAL DIGITAL TRANSFORMATION. ENVIRONMENT. TECHNOLOGIES. RESOURCES. Proceedings of the International Scientific and Practical Conference. https://doi.org/10.17770/etr2021vol1.6553.
8. Caravella, S., Cirillo, V., Crespi, F., Guarascio, D., & Menghini, M. (2023). The diffusion of digital skills across EU regions: structural drivers and polarisation dynamics. Regional Studies, Regional Science, 10, 820 - 844. https://doi.org/10.1080/21681376.2023.2265498.
9. Charlwood, A., & Guenole, N. (2022). Can HR adapt to the paradoxes of artificial intelligence? Human Resource Management Journal. https://doi.org/10.1111/1748-8583.12433.
10. Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2021). The adoption of artificial intelligence in human resource management: A systematic literature review and a framework for future research. Technological Forecasting and Social Change, 166, 120783. https://doi.org/10.1016/j.techfore.2021.120783.
11. Chen, P., Wu, L., & Wang, L. (2023). AI fairness in data management and analytics: A review on challenges, methodologies and applications. Applied Sciences, 13(18), 10258. https://doi.org/10.3390/app131810258.
12. Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10, 1-12. https://doi.org/10.1057/s41599-023-02079-x.
13. Cino, D., Lacko, D., Mascheroni, G., & Šmahel, D. (2022). Predictors of children’s and young people’s digital engagement in informational, communication, and entertainment activities: Findings from ten European countries. Journal of Children and Media, 17(1), 37–54. https://doi.org/10.1080/17482798.2022.2123013.
14. Cui, M., Chen, Z., & Huang, M. (2025). The impact of human interviewers versus AI interviewers on applicant self‐efficacy and offer acceptance. Asian Journal of Social Psychology. https://doi.org/10.1111/ajsp.70009.
15. Dastin, J. (2018). Amazon scraps secret AI recruiting tool that showed bias against women. Reuters. https://www.reuters.com/article/world/insight-amazon-scraps-secret-ai-recruiting-tool-that-showedbias-against-women-idUSKCN1MK0AG/.
16. European Commission. (2021). Proposal for a Regulation laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.
17. Eurostat (2025). Young people – digital world. Data extracted in May 2025. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Young_people_-_digital_world.
18. França, T., Mamede, H., Barroso, J., & Santos, V. (2023). Artificial intelligence applied to potential assessment and talent identification in an organisational context. Heliyon, 9(4), e14694. https://doi.org/10.1016/j.heliyon.2023.e14694.
19. Fritts, M., & Cabrera, F. (2021). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology, 23, 791 - 801. https://doi.org/10.1007/s10676-021-09615-w.
20. Gilbert, L., Strine, T., Szucs, L., Crawford, T., Parks, S., Barradas, D., Njai, R., & Ko, J. (2020). Racial and Ethnic Differences in Parental Attitudes and Concerns About School Reopening During the COVID-19 Pandemic – United States, July 2020. Morbidity and Mortality Weekly Report, 69, 1848 - 1852. https://doi.org/10.15585/mmwr.mm6949a2.
21. Gonzalez, M., Liu, W., Shirase, L., Tomczak, D., Lobbe, C., Justenhoven, R., & Martin, N. (2022). Allying with AI? Reactions toward human-based, AI/ML-based, and augmented hiring processes. Comput. Hum. Behav., 130, 107179. https://doi.org/10.1016/j.chb.2022.107179.
22. Hekkala, S., & Hekkala, R. (2021). Integration of Artificial Intelligence into Recruiting Young Undergraduates: the Perceptions of 20-23-Year-Old Students., 1-10. https://doi.org/10.24251/HICSS.2021.021.
23. Holmström, J. (2021). From AI to digital transformation: The AI readiness framework. Business Horizons. https://doi.org/10.1016/J.BUSHOR.2021.03.006.
24. Horodyski, P. (2023). Applicants’ perception of artificial intelligence in the recruitment process. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4359612.
25. Hunkenschroer, A., & Luetge, C. (2022). Ethics of AI-Enabled Recruiting and Selection: A Review and Research Agenda. Journal of Business Ethics, 178, 977–1007. https://doi.org/10.1007/s10551-022-05049-6.
26. Jamal, A., Aissaoui, K., & Kassal, S. (2024). Enhancing Recruitment Transparency and Efficiency with Explainable AI (XAI). 2024 3rd International Conference on Embedded Systems and Artificial Intelligence (ESAI), 1-6. https://doi.org/10.1109/ESAI62891.2024.10913744.
27. Jatobá, A., Luz, C. G., Lima, E. P., Silva, L. C., & Costa, A. P. C. S. (2023). Applications of artificial intelligence in human resource management: A review and future research agenda. Journal of Business Research, 163, 113911. https://doi.org/10.1108/JOCM-03-2022-0075.
28. Kaplan, L., Klein, T., Wilson, M., & Graves, J. (2020). Knowledge, Practices, and Attitudes of Washington State Health Care Professionals Regarding Medical Cannabis. Cannabis and cannabinoid research, 5 2, 172-182. https://doi.org/10.1089/can.2019.0051.
29. Labudová, V., & Fodranova, I. (2024). The Impact of Socio-Economic Factors on Digital Skills in the Population of the EU 27 Countries. Virtual Economics. https://doi.org/10.34021/ve.2024.07.03(5).
30. La Sala, A., Fuller, R., Riolli, L., & Temperini, V. (2024). The rise of hybrids: plastic knowledge in human-AI interaction. J. Knowl. Manag., 28, 3023-3045. https://doi.org/10.1108/jkm-10-2023-1024.
31. Lashkari, M., & Cheng, J. (2023). “Finding the Magic Sauce”: Exploring Perspectives of Recruiters and Job Seekers on Recruitment Bias and Automated Tools. Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3544548.3581548.
32. Liutkevicius, M., & Yahia, S. (2022). The Use of Artificial Intelligence in Job Seeking and Competence Development. Human Factors, Business Management and Society. https://doi.org/10.54941/ahfe1002260.
33. Machackova, H., Bedrosova, M., Muzik, M., Zlámal, R., Fikrlová, J., Literova, A., Dufkova, E., Šmahel, D., Boomgaarden, H., Song, H., Tolochko, P., d’Haenens, L., Joris, W., Kalmus, V., Tikerperi, M., Opermann, S., Napp, M., Soidla, I., Uibos, A., Soo, K., Salmela-Aro, K., Järvinen, J., Mannerström, R., Suvila, E., Waechter, N., Brando, C., Kadera, S., Mascheroni, G., Cino, D., Lombi, L., Van Deursen, A., Van Laar, E., Pyżalski, J., Walter, N., Iwanicka, A., Ponte, C., Batista, S., Baptista, R., Schneider, L., & Helsper, E. (2024). Digital skills among youth: A dataset from a three-wave longitudinal survey in six European countries. Data in brief, 54, 110396. https://doi.org/10.1016/j.dib.2024.110396.
34. Madej-Kurzawa, I., Pieczarka, K., & Węgrzyn, G. (2021). Professional and educational activity of youth in the digital economy. Problems and Perspectives in Management, 19(3), 166–179. https://doi.org/10.21511/ppm.19(3).2021.15.
35. Majumder, S., & Mondal, A. (2021). Are chatbots really useful for human resource management?. International Journal of Speech Technology, 24, 969 - 977. https://doi.org/10.1007/s10772-021-09834-y.
36. McCartney, S., Murphy, C., & McCarthy, J. (2020). 21st century HR: a competency model for the emerging role of HR Analysts. Personnel Review. https://doi.org/10.5465/ambpp.2020.11928abstract.
37. Musrifah, F., & Hasanah, I. (2025). Ethical Implications of AI-Driven Recruitment: A Multi-Perspective Study on Bias and Transparency in Digital Hiring Platforms. Journal of Management and Informatics. https://doi.org/10.51903/jmi.v4i1.140.
38. Nannini, L., Alonso-Moral, J., Catalá, A., Lama, M., & Barro, S. (2024). Operationalizing Explainable Artificial Intelligence in the European Union Regulatory Ecosystem. IEEE Intelligent Systems, 39, 37-48. https://doi.org/10.1109/MIS.2024.3383155.
39. Natalia, G. (2024). Spatial-temporal evolution of digital skills in the EU countries. Telematics Informatics, 94, 102185. https://doi.org/10.1016/j.tele.2024.102185.
40. Parul, S., & Alok, K. (2025). Integrating Human Judgment and AI: An Empirical Study of Hybrid Leadership Recruitment Models. Journal of Information Systems Engineering and Management. https://doi.org/10.52783/jisem.v10i33s.5744.
41. Pelše, M., & Leščevica, M. (2020). Analysis of digitalization referred to in strategic policy documents in the lifelong education context. https://doi.org/10.22616/ESRD.2020.54.030.
42. Peng, A., Nushi, B., Kıcıman, E., Inkpen, K., & Kamar, E. (2022). Investigations of Performance and Bias in Human-AI Teamwork in Hiring., 12089-12097. https://doi.org/10.1609/aaai.v36i11.21468.
43. Rai, A., Constantinides, P., & Sarker, S. (2019). Next-generation digital platforms: Toward human–AI hybrids. MIS Quarterly, 43(1), iii–ix.
44. Raghavan, M., Barocas, S., Kleinberg, J., & Levy, K. (2020). Mitigating bias in algorithmic hiring: Evaluating claims and practices. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 469–481. https://doi.org/10.1145/3351095.3372828.
45. Pereira, V., Hadjielias, E., Christofi, M., & Vrontis, D. (2021). A systematic literature review on the impact of artificial intelligence on workplace outcomes: A multi-process perspective. Human Resource Management Review. https://doi.org/10.1016/j.hrmr.2021.100857.
46. Rigotti, C., & Fosch-Villaronga, E. (2024). Fairness, AI & recruitment. Comput. Law Secur. Rev., 53, 105966. https://doi.org/10.1016/j.clsr.2024.105966.
47. Peláez, A., Erro-Garcés, A., & Ciriano, E. (2020). Young people, social workers and social work education: The role of digital skills. Social Work Education, 39(7), 825–842. https://doi.org/10.1080/02615479.2020.1795110.
48. Prikshat, V., Islam, M., Patel, P., Malik, A., Budhwar, P., & Gupta, S. (2023). AI-Augmented HRM: Literature review and a proposed multilevel framework for future research. Technological Forecasting and Social Change. https://doi.org/10.1016/j.techfore.2023.122645.
49. Prikshat, V., Malik, A., & Budhwar, P. (2021). AI-augmented HRM: Antecedents, assimilation and multilevel consequences. Human Resource Management Review. https://doi.org/10.1016/j.hrmr.2021.100860.
50. Schepman, A., & Rodway, P. (2020). Initial validation of the general attitudes towards Artificial Intelligence Scale. Computers in Human Behavior Reports, 1, 100014. https://doi.org/10.1016/j.chbr.2020.100014.
51. Schiff, D. (2021). Education for AI, not AI for Education: The Role of Education and Ethics in National AI Policy Strategies. International Journal of Artificial Intelligence in Education, 32, 527-563. https://doi.org/10.1007/s40593-021-00270-2.
52. Schultz, M., Clegg, M., Hofstetter, R., & Seele, P. (2024). Algorithms and dehumanization: a definition and avoidance model. AI Soc., 40, 2191-2211. https://doi.org/10.1007/s00146-024-02123-7.
53. Soshynska, Y., & Soshynska, V. (2020). Digital skills of European citizens: To be on time. In K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges: Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1–2 April 2020, Seville, Spain (pp. 16654–16661). IBIMA Publishing. https://www.researchgate.net/publication/346472161_Digital_Skills_of_European_Citizens_To_Be_on_Time_Yaroslava_Soshynska_Viktoriia_Soshynska_Education_Excellence_and_Innovation_Management_A_2025_Vision_to_Sustain_Economic_Development_during_Global_Cha.
54. Suen, H., Hung, K., & Lin, C. (2019). TensorFlow-Based Automatic Personality Recognition Used in Asynchronous Video Interviews. IEEE Access, 7, 61018–61023. https://doi.org/10.1109/ACCESS.2019.2902863.
55. Tabor-Błażewicz, J. (2022). The challenges of HR departments in hybrid work conditions. Scientific Papers of Silesian University of Technology. Organization and Management Series. https://doi.org/10.29119/1641-3466.2022.162.38.
56. Talay, D., Wolf, M., & Ruf, S. (2023). Generation Z’s Opinion About AI in Recruiting – First Empirical Evidence from Germany. Art and Society, 2023-12-01
57. Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
58. Tanvi, S., Rutika, K., & Vidani, J. (2025). To Study the perception of Gen-Z about AI’s impact on employment in Ahmedabad city. International Journal of Finance and Business Management. https://doi.org/10.59890/ijfbm.v3i1.234.
59. Vasilescu, M., Șerban, A., Dimian, G., Aceleanu, M., & Picatoste, X. (2020). Digital divide, skills and perceptions on digitalisation in the European Union–Towards a smart labour market. PLoS ONE, 15. https://doi.org/10.1371/journal.pone.0232032.
60. Wang, X., Haque, M., Li, W., Butt, A., Ahmad, H., & Shaikh, H. (2021). AI-Enabled E-Recruitment Services Make Job Searching, Application Submission, and Employee Selection More Interactive. Information Resources Management Journal. https://doi.org/10.4018/irmj.2021100103.
61. Weiss, D., Liu, S., Mieczkowski, H., & Hancock, J. (2022). Effects of Using Artificial Intelligence on Interpersonal Perceptions of Job Applicants. Cyberpsychology, behavior and social networking. https://doi.org/10.1089/cyber.2020.0863.
62. Will, P., Krpan, D., & Lordan, G. (2022). People versus machines: introducing the HIRE framework. Artificial Intelligence Review, 56, 1071-1100. https://doi.org/10.1007/s10462-022-10193-6.
63. Xiong, Y., & Kim, J. (2025). Who Wants to Be Hired by AI? How Message Frames and AI Transparency Impact Individuals’ Attitudes and Behaviors toward Companies Using AI in Hiring. Computers in Human Behavior: Artificial Humans. https://doi.org/10.1016/j.chbah.2025.100120.
64. Yarovenko, H., Kuzior, A., Norek, T., & Lopatka, A. (2024). The future of artificial intelligence: Fear, hope or indifference?. Human Technology. https://doi.org/10.14254/1795-6889.2024.20-3.10.
65. Yasin, M. (2022). Youth perceptions and attitudes about artificial intelligence. Izvestiya of Saratov University. Philosophy. Psychology. Pedagogy. https://doi.org/10.18500/1819-7671-2022-22-2-197-201.