GLOBAL ACADEMIC TRENDS OF METABOLIC AND ELECTRICAL BIOMEDICAL TOOLS IN MARKETING
##plugins.themes.bootstrap3.article.main##
##plugins.themes.bootstrap3.article.sidebar##
Abstract
This study employs a comprehensive bibliometric analysis, adhering to the PRISMA protocol, to systematically review and map global academic trends in neuroimaging tools for neuromarketing research. Utilising data from the Scopus database spanning January 2007 to July 2023, 104 documents were subjected to analysis, revealing a discernible upward trajectory in publications. The findings revealed that the United States emerges as the predominant contributor, with 19 papers, while influential authors such as Balconi, M., and the most-cited article, "The Neural Mechanisms Underlying the Influence of Pavlovian Cues on Human Decision Making," signify pivotal contributions to the field. A keyword analysis reveals the prominence of key themes, including "emotion," "attention," and "advertising," offering valuable theoretical insights into the field of neuromarketing research. The journal Frontiers in Human Neuroscience is identified as the most productive, with 11 papers published. This comprehensive bibliometric analysis offers insights into the current landscape of neuroimaging tools in neuromarketing, as well as providing a foundation for future research directions. The implications of these findings extend to theoretical advancements, which provide guidance to researchers in refining frameworks and offering insights for strategic decision-making in the use of neuroscientific approaches for effective marketing strategies.
How to Cite
##plugins.themes.bootstrap3.article.details##
neuromarketing, VOSviewer, R Studio, neuroimaging tools, Scopus database
Ababkova, M. Y., & Leontieva, V. L. (2018). Neuromarketing for education: Rethinking frameworks for marketing activities. In I. B. Ardashkin, N. V. Martyushev, S. V. Klyagin, E. V. Barkova, A. R. Massalimova, & V. N. Syrov (Eds.), International Conference on Research Paradigms Transformation in Social Sciences (Vol. 35, pp. 1–9) Nicosia. Future Acad. https://doi.org/10.15405/epsbs.2018.02.1
Abuhassna, H., Awae, F., Bayoumi, K., Alzitawi, D. U., Alsharif, A. H., & Yahaya, N. (2022). Understanding Online Learning Readiness among University Students: A Bibliometric Analysis. International Journal of Interactive Mobile Technologies, 16(13), 81. https://doi.org/10.3991/ijim.v16i13.30605
Abuhassna, H., Yahaya, N., Zakaria, M., Zaid, N. M., Samah, N. A., Awae, F., Nee, C. K., & Alsharif, A. H. (2023). Trends on using the technology acceptance model (TAM) for online learning: a bibliometric and content analysis. International Journal of Information and Education Technology, 13(1), 131–142. https://doi.org/10.18178/ijiet.2023.13.1.1788
Agarwal, S., & Dutta, T. (2015). Neuromarketing and consumer neuroscience: Current understanding and the way forward. Decision, 42(4), 457–462. https://doi.org/10.1007/s40622-015-0113-1
Ahmed, H. A. (2023). The Enhancing Islamic Advertising Effectiveness Through Emotional Processes and Consumer-Centric Elements. 2023 International Conference on Sustainable Islamic Business and Finance (SIBF), Bahrain. 5–11. https://doi.org/10.1109/SIBF60067.2023.10379973
Ahmed, H. A., NorZafir, M. S., Lina, P., & Shaymah Ahmed, A.-Z. (2023a). Exploring the Tourism, Neuro-tourism, and Hospitality Nexus: A Comprehensive Bibliometric Analysis. Journal of Tourism and Services, 27(14). https://doi.org/10.29036/jots.v14i27.606
Ahmed, H. A., NorZafir, M. S., Mazilah, A., Ahmad, K., & Azmirul, A. (2023b). Neuromarketing Tools Used in the Marketing Mix: A Systematic Literature and Future Research Agenda. SAGE Open, 13(1), 1–23. https://doi.org/10.1177/21582440231156563
Ahmed, H. A., NorZafir, M. S., Rami Hashem E, A., Ahmad, K., Lennora, P., & Lily, S. M. A. (2023c). Exploring Factors Influencing Neuromarketing Implementation in Malaysian Universities: Barriers and Enablers. Sustainability, 15(5), 4603–4632. https://doi.org/10.3390/su15054603
Ahmed, H. A., NorZafir, M. S., Rohaizat, B., & Alharthi, R. H. E. (2021). Neuromarketing research in the last five years: a bibliometric analysis. Cogent business & management, 8(1), 1–26. https://doi.org/10.1080/23311975.2021.1978620
Ahmed, H. A., NorZafir, M. S., Rohaizat, B., Hassan, A., & Rami Hashem E, A. (2022a). A global research trends of neuromarketing: 2015-2020. Revista de Comunicación, 21(1), 15–32. https://doi.org/10.26441/rc21.1-2022-a1
Ahmed, H. A., NorZafir, M. S., Shaymah Ahmed, A.-Z., & Ahmad, K. (2022b). Consumer Behaviour to Be Considered in Advertising: A Systematic Analysis and Future Agenda. Behavioral Sciences, 12(12), 472–493. https://doi.org/10.3390/bs12120472
Ahmed, H. A., & Salmi, M. I. (2024). Revolutionizing consumer insights: the impact of fMRI in neuromarketing research. Future Business Journal, 10(1), 79–105. https://doi.org/10.1186/s43093-024-00371-z
Al-Kwifi, O. S., Gelaidan, H. M. H., & Fetais, A. H. M. (2020). Identifying the influence of the Halal logo on Muslim consumers’ attitudes using fMRI technology. Journal of Islamic Marketing, 12(6), 1159–1179. https://doi.org/10.1108/jima-01-2020-0026
Al-Kwifi, S. O. (2016). The role of fMRI in detecting attitude toward brand switching: an exploratory study using high technology products. Journal of Product & Brand Management, 25(2), 208–218. https://doi.org/10.1108/jpbm-12-2014-0774
Al Fauzi, A., & Widyarini, L. A. (2023). Neuromarketing: The Physiological Tools for Understanding Consumer Behaviour. Malaysian Journal of Social Sciences and Humanities, 8(1), e002081-e002081. https://doi.org/10.47405/mjssh.v8i1.2081
Aldayel, M., Ykhlef, M., & Al-Nafjan, A. (2021). Recognition of consumer preference by analysis and classification EEG signals. Frontiers in Human Neuroscience, 14, 604639. https://doi.org/10.3389/fnhum.2020.604639
Aldayel, M. S., Ykhlef, M., & Al-Nafjan, A. N. (2020). Electroencephalogram-based preference prediction using deep transfer learning. IEEE Access, 8, 176818–176829. https://doi.org/10.1109/access.2020.3027429
Ali, J., Jusoh, A., Idris, N., Abbas, A. F., & Alsharif, A. H. (2021a). Everything is Going Electronic, so do Services and Service Quality: Bibliometric Analysis of E-Services and E-Service Quality. International Journal of Interactive Mobile Technologies, 15(18), 148–166. https://doi.org/10.3991/ijim.v15i18.24519
Ali, J., Jusoh, A., Idris, N., Abbas, A. F., & Alsharif, A. H. (2021b). Nine Years of Mobile Healthcare Research: A Bibliometric Analysis. International Journal of Online & Biomedical Engineering, 17(10), 144–159. https://doi.org/10.3991/ijoe.v17i10.25243
Alsharif, A. H., & Khraiwish, A. (2024). Tools in Marketing Research: Exploring Emotional Responses to Stimuli. Scientific Annals of Economics and Business, 71(2), 173–192. https://doi.org/10.47743/saeb-2024-0009
Alsharif, A. H., Salleh, N. Z. M., Ahmad, K., & Lama, N. H. (2023a). Exploring the Path of Biomedical Technology in Consumer Neuroscience Research: A Comprehensive Bibliometric Analysis. International Journal of Online and Biomedical Engineering, 19(16), 127–144. https://doi.org/10.3991/ijoe.v19i16.44667
Alsharif, A. H., Salleh, N. Z. M., Alrawad, M., & Lutfi, A. (2024). Exploring global trends and future directions in advertising research: A focus on consumer behavior. Current Psychology, 1–24. https://doi.org/10.1007/s12144-023-04812-w
Alsharif, A. H., Salleh, N. Z. M., & Baharun, R. (2021a). The neural correlates of emotion in decision-making. International journal of academic research in business and social sciences, 11(7), 64–77. http://dx.doi.org/10.6007/ijarbss/v11-i7/10075
Alsharif, A. H., Salleh, N. Z. M., & Baharun, R. (2021b). To better understand the role of emotional processes in decision-making. International Journal of Academic Research in Economics and Management Sciences, 10(2), 49–67. http://dx.doi.org/10.6007/ijarems/v10-i2/9883
Alsharif, A. H., Salleh, N. Z. M., Baharun, R., Alharthi, H. E. R., Mansor, A. A., Javed, A., & Abbas, A. F. (2021c). Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes. Sustainability, 13(11), 6488–6493. https://doi.org/10.3390/su13116488
Alsharif, A. H., Salleh, N. Z. M., Baharun, R., Alsharif, Y. H., & Abuhassna, H. (2021d). A bibliometric analysis of neuromarketing: Current status, development, and future directions. International Journal of Academic Research in Accounting Finance and Management Sciences, 11(3), 670–689. http://dx.doi.org/10.6007/ijarafms/v11-i3/11673
Alsharif, A. H., Salleh, N. Z. M., Baharun, R., & Effandi, Y. M. (2021e). Consumer behaviour through neuromarketing approach. Journal of Contemporary Issues in Business and Government, 27(3), 344–354. https://doi.org/10.47750/cibg.2021.27.03.048
Alsharif, A. H., Salleh, N. Z. M., & Lina, P. (2023b). A Comprehensive Bibliometric Analysis of fNIRS and fMRI Technology in Neuromarketing. Scientific Annals of Economics and Business, 70(3), 1–14. https://doi.org/10.47743/saeb-2023-0031
Alsharif, A. H., Salleh, N. Z. M., Pilelienė, L., Abbas, A., F, & Javed, A. (2022a). Current Trends in the Application of EEG in Neuromarketing: A Bibliometric Analysis. Scientific Annals of Economics and Business, 69(3), 393–415. https://doi.org/10.47743/saeb-2022-0020
Alsharif, A. H., Salleh, N. Z. M., Wan Amira, b. W. A., & Khraiwish, A. (2022b). Biomedical Technology in Studying Consumers’ Subconscious Behavior. International Journal of Online and Biomedical Engineering, 18(8), 98–114. https://doi.org/10.3991/ijoe.v18i08.31959
Alvino, L., Pavone, L., Abhishta, A., & Robben, H. (2020). Picking your brains: Where and how neuroscience tools can enhance marketing research. Frontiers in neuroscience, 14(2), 1–25. https://doi.org/10.3389/fnins.2020.577666
Ammar Ali, M., Özöğür‐Akyüz, S., Duru, A. D., Caliskan, M., Demir, C., Bostancı, T., Elsallak, F., Shkokani, M., Dokur, Z., & Ölmez, T. (2022). Neurological effects of long‐term diet on obese and overweight individuals: An electroencephalogram and event‐related potential study. Computational Intelligence, 38(3), 1163–1182. https://doi.org/10.1111/coin.12444
Ariely, D., & Berns, G. (2010). Neuromarketing: The hope and hype of neuroimaging in business. Nature reviews neuroscience, 11(4), 284–292. https://doi.org/10.1038/nrn2795
Bak, S., Jeong, Y., Yeu, M., & Jeong, J. (2022). Brain–computer interface to predict impulse buying behavior using functional near-infrared spectroscopy. Scientific reports, 12(1), 18024. https://doi.org/10.1038/s41598-022-22653-8
Bakalash, T., & Riemer, H. (2013). Exploring ad-elicited emotional arousal and memory for the ad using fMRI. Journal of Advertising, 42(4), 275–291. https://doi.org/10.1080/00913367.2013.768065
Balconi, M., Sebastiani, R., & Angioletti, L. (2019). A neuroscientific approach to explore consumers’ intentions towards sustainability within the luxury fashion industry. Sustainability, 11(18), 5105. https://doi.org/10.3390/su11185105
Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U., & Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. Frontiers in neuroscience, 14(1), 1–16. https://doi.org/10.3389/fnins.2020.594566
Bercea, M. D. (2012). Anatomy of methodologies for measuring consumer behavior in neuromarketing research. LCBR European Marketing Conference, Ebermannstadt, Germany.
Bray, S., Rangel, A., Shimojo, S., Balleine, B., & O'Doherty, J. P. (2008). The Neural Mechanisms Underlying the Influence of Pavlovian Cues on Human Decision Making
. Journal of neuroscience, 28(22), 5861–5866. https://doi.org/10.1523/jneurosci.0897-08.2008
Cakir, M. P., Çakar, T., Girisken, Y., & Yurdakul, D. (2018). An investigation of the neural correlates of purchase behavior through fNIRS. European Journal of Marketing. https://doi.org/10.1108/ejm-12-2016-0864
Cartocci, G., Caratù, M., Modica, E., Maglione, A. G., Rossi, D., Cherubino, P., & Babiloni, F. (2017). Electroencephalographic, heart rate, and galvanic skin response assessment for an advertising perception study: Application to antismoking public service announcements. Journal of Visualized Experiments, 3(126), 55872–55881. https://doi.org/10.3791/55872
Chen, Y.-P., Nelson, L. D., & Hsu, M. (2015). From "where" to "what": distributed representations of brand associations in the human brain. Journal of Marketing Research, 52(4), 453–466. https://doi.org/10.1509/jmr.14.0606
Cherubino, P., Martinez-Levy, A. C., Caratu, M., Cartocci, G., Di Flumeri, G., Modica, E., Rossi, D., Mancini, M., & Trettel, A. (2019). Consumer behaviour through the eyes of neurophysiological measures: State of the art and future trends. Computational Intelligence and Neuroscience, 3(2), 01–41. https://doi.org/10.1155/2019/1976847
Crease, R. P. (1991). Images of conflict: MEG vs. EEG (magnetoencephalography vs electroencephalography). Science, 253(5018), 374–376. https://doi.org/10.1126/science.1862336
Cuesta, U., Martínez-Martínez, L., & Niño, J. I. (2018). A case study in neuromarketing: Analysis of the influence of music on advertising effectivenes through eye-tracking, facial emotion and GSR. European Journal of Social Sciences Education and Research, 5(2), 73–82. https://doi.org/10.26417/ejser.v5i2.p84-92
Daugherty, T., Hoffman, E., Kennedy, K., & Nolan, M. (2018). Measuring consumer neural activation to differentiate cognitive processing of advertising: Revisiting Krugman. European Journal of Marketing. https://doi.org/10.1108/EJM-10-2017-0657
Du Plessis, E. (2011). The branded mind: What neuroscience really tells us about the puzzle of the brain and the brand Philadelphia, USA. Kogan Page Publishers.
Duan, L., Ai, H., Yang, L., Xu, L., & Xu, P. (2021). Gender differences in transnational brand purchase decision toward mixed culture and original culture advertisements: An fNIRS study. Frontiers in psychology, 12, 654360. https://doi.org/10.3389/fpsyg.2021.654360
Dursun, M., & Goker, N. (2019). A 2-tuple integrated DEA-based approach for neuromarketing technology evaluation. Kybernetes, 48(5), 949–966. https://doi.org/10.1108/k-01-2018-0014
Eijlers, E., Boksem, M. A. S., & Smidts, A. (2020). Measuring neural arousal for advertisements and its relationship with advertising success. Frontiers in neuroscience, 14(4), 736–748. https://doi.org/10.3389/fnins.2020.00736
Fisher, C., Chin, L., & Klitzman, R. (2010). Defining neuromarketing: Practices and professional challenges. Harvard review of psychiatry, 18(4), 230–237. https://doi.org/10.3109/10673229.2010.496623
Fugate, D. L. (2007). Neuromarketing: A layman's look at neuroscience and its potential application to marketing practice. Journal of Consumer Marketing, 24(7), 385–394. https://doi.org/10.1108/07363760710834807
Gray, M., Kemp, A. H., Silberstein, R. B., & Nathan, P. J. (2003). Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage, 20(2), 975–986. https://doi.org/10.1016/S1053-8119(03)00401-4
Guo, F., Ye, G., Duffy, V. G., Li, M., & Ding, Y. (2018). Applying eye tracking and electroencephalography to evaluate the effects of placement disclosures on brand responses. Journal of Consumer Behaviour, 17(6), 519–531. https://doi.org/10.1002/cb.1736
Halsharif, A., & Pilelienė, L. (2023). A Bibliometric Analysis of Human Hormones in Consumer Neuroscience and Human Behavior Research: Trends and Insights with Implications for Marketing. Baltic Journal of Economic Studies, 9(5), 1–12. https://doi.org/10.30525/2256-0742/2023-9-5-1-12
Halsharif, A., Salleh, N., Md , & Baharun, R. (2020a). Neuromarketing approach: An overview and future research directions. Journal of Theoretical and Applied Information Technology, 98(7), 991–1001.
Halsharif, A., Salleh, N., Md , & Baharun, R. (2020b). Research trends of neuromarketing: A bibliometric analysis. Journal of Theoretical and Applied Information Technology, 98(15), 2948–2962.
Halsharif, A., Salleh, N. Z. M., & Baharun, R. (2021a). Neuromarketing: Marketing research in the new millennium. Neuroscience Research Notes, 4(3), 27–35. https://doi.org/10.31117/neuroscirn.v4i3.79
Halsharif, A., Salleh, N. Z. M., & Baharun, R. (2021b). Neuromarketing: The popularity of the brain-imaging and physiological tools. Neuroscience Research Notes, 3(5), 13–22. https://doi.org/10.31117/neuroscirn.v3i5.80
Halsharif, A., Salleh, N. Z. M., Baharun, R., Abuhassna, H., & Alsharif, Y., H. (2022). Neuromarketing in Malaysia: Challenges, limitations, and solutions. International Conference on Decision Aid Sciences and Applications (DASA), 2022, Chiangrai, Thailand. 740–745. https://doi.org/10.1109/dasa54658.2022.9765010
Harris, J., Ciorciari, J., & Gountas, J. (2018). Consumer neuroscience for marketing researchers. Journal of Consumer Behaviour, 17(3), 239–252. https://doi.org/10.1002/cb.1710
Hegazy, M., & Gavvala, J. (2022). Magnetoencephalography in clinical practice. Arquivos de Neuro-Psiquiatria, 80(05), 523–529. https://doi.org/10.1590/0004-282x-anp-2021-0083
Heinonen, J. (2018). Conjoint fMRI method for shortening analysis time. Cogent Psychology, 5(1), 1446254. https://doi.org/10.1080/23311908.2018.1446254
Hsieh, P.-H., & Chang, F.-N. (2021). Online Consumers’ Brain Activities When Purchasing Second-Hand versus New Products That Are Brand-Name or Brand-Less. Information, 12(2), 56. https://doi.org/10.3390/info12020056
Hubert, M., Hubert, M., Linzmajer, M., Riedl, R., & Kenning, P. (2018). Trust me if you can - neurophysiological insights on the influence of consumer impulsiveness on trustworthiness evaluations in online settings. European Journal of Marketing, 52(1-2), 118–146. https://doi.org/10.1108/ejm-12-2016-0870
Jang, S. H., & Seo, Y. S. (2019). Diagnosis of Conversion Disorder Using Diffusion Tensor Tractography and Transcranial Magnetic Stimulation in a Patient with Mild Traumatic Brain Injury. Diagnostics, 9(4), 7. 10.3390/diagnostics9040155
Jesus, J. S. R. d., Silva, L. N. O. d., & Esmaile, S. C. (2022). Neuromarketing: a systematic review. Research, Society and Development, 11(13), 1–13. https://doi.org/10.33448/rsd-v11i13.35572
Kang, M. J., Rangel, A., Camus, M., & Camerer, C. F. (2011). Hypothetical and real choice differentially activate common valuation areas. Journal of neuroscience, 31(2), 461–468. https://doi.org/10.1523/.1583-10.2011
Kim, J.-Y., Kim, K.-I., Han, C.-H., Lim, J.-H., & Im, C.-H. (2016). Estimating consumers' subjective preference using functional near infrared spectroscopy: A feasibility study. Journal of near infrared spectroscopy, 24(5), 433–441. https://doi.org/10.1255/jnirs.1242
Kopton, I. M., & Kenning, P. (2014). Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research. Frontiers in Human Neuroscience, 8(2), 549–562. https://doi.org/10.3389/fnhum.2014.00549
Krampe, C., Gier, N. R., & Kenning, P. (2018). The Application of Mobile fNIRS in Marketing Research – Detecting the "First-Choice-Brand" Effect. Frontiers in Human Neuroscience, 12(4), 433–444. https://doi.org/10.3389/fnhum.2018.00433
Kumar, S. (2015). Neuromarketing: The new science of advertising. Universal Journal of Management, 3(12), 524–531. https://doi.org/10.13189/ujm.2015.031208
Li, B., Virtanen, J. P., Oeltermann, A., Schwarz, C., Giese, M. A., Ziemann, U., & Benali, A. (2017). Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation. Elife, 6, e30552–e30574. https://doi.org/10.7554/elife.30552
Lin, M.-H., Cross, S. N., Jones, W. J., & Childers, T. L. (2018). Applying EEG in consumer neuroscience. European Journal of Marketing, 52(1/2), 66–91. https://doi.org/10.1108/ejm-12-2016-0805
Matsuzaki, J., Kagitani-Shimono, K., Aoki, S., Hanaie, R., Kato, Y., Nakanishi, M., Tatsumi, A., Tominaga, K., Yamamoto, T., & Nagai, Y. (2022). Abnormal cortical responses elicited by audiovisual movies in patients with autism spectrum disorder with atypical sensory behavior: A magnetoencephalographic study. Brain and Development, 44(2), 81–94. https://doi.org/10.1016/j.braindev.2021.08.007
Meyerding, S. G., & Risius, A. (2018). Reading minds: Mobile functional near-infrared spectroscopy as a new neuroimaging method for economic and marketing research—A feasibility study. Journal of neuroscience, psychology, and economics, 11(4), 197–212. https://doi.org/10.1037/npe0000090
Morin, C. (2011). Neuromarketing: The new science of consumer behavior. Society, 48(2), 131–135. https://doi.org/10.1007/s12115-010-9408-1
Muehllehner, G., & Karp, J. S. (2006). Positron emission tomography. Physics in Medicine & Biology, 51(13), R117. https://doi.org/10.1088/0031-9155/51/13/R08
Opitz, A., Yeagle, E., Thielscher, A., Schroeder, C., Mehta, A. D., & Milham, M. P. (2018). On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage, 181(2), 560–567. https://doi.org/10.1016/j.neuroimage.2018.07.027
Pascarella, A., & Pitolli, F. (2018). An inversion method based on random sampling for real-time MEG neuroimaging. Communications in Applied and Industrial Mathematics, 10(2), 25–34. https://doi.org/10.2478/caim-2019-0004
Pilelienė, L., Alsharif, A. H., & Alharbi, I. B. (2022). Scientometric analysis of scientific literature on neuromarketing tools in advertising. Baltic Journal of Economic Studies, 8(5), 1–12. https://doi.org/10.30525/2256-0742/2022-8-5-1-12
Pilelienė, L., Grigaliūnaitė, V., & Bogoyavlenska, Y. (2024). A Bibliometric Review of Innovations in Sustainable Tourism Research: Current Trends and Future Research Agenda. Sustainability, 16(16), 7124. https://doi.org/10.3390/su16167124
Plassmann, H., Venkatraman, V., Huettel, S., & Yoon, C. (2015). Consumer neuroscience: Applications, challenges, and possible solutions. Journal of Marketing Research, 52(4), 427–435. https://doi.org/10.1509/jmr.14.0048
Pozharliev, R., Verbeke, W. J., & Bagozzi, R. P. (2017). Social consumer neuroscience: Neurophysiological measures of advertising effectiveness in a social context. Journal of Advertising, 46(3), 351–362. https://doi.org/10.1080/00913367.2017.1343162
Ramsoy, T. Z. (2015). Introduction to neuromarketing & consumer neuroscience Denmark, Rørvig. Neurons Inc.
Ramsoy, T. Z., Skov, M., Christensen, M. K., & Stahlhut, C. (2018). Frontal Brain Asymmetry and Willingness to Pay. Frontiers in neuroscience, 12(3), 138–150. https://doi.org/10.3389/fnins.2018.00138
Rawnaque, F., Rahman, M., Anwar, S. M., Vaidyanathan, R., Chau, T., Sarker, F., & Al Mamun, A. (2020). Technological advancements and opportunities in Neuromarketing: A systematic review. Brain informatics, 7(1), 1–19. https://doi.org/10.1186/s40708-020-00109-x
Reimann, M., Castaño, R., Zaichkowsky, J., & Bechara, A. (2012). How we relate to brands: Psychological and neurophysiological insights into consumer–brand relationships. Journal of Consumer Psychology, 22(1), 128–142. https://doi.org/10.1016/j.jcps.2011.11.003
Riddle, J., Scimeca, J. M., Cellier, D., Dhanani, S., & D’Esposito, M. (2020). Causal evidence for a role of theta and alpha oscillations in the control of working memory. Current Biology, 30(9), 1748–1754. e1744. https://doi.org/10.1016/j.cub.2020.02.065
Riedl, R., Banker, R. D., Benbasat, I., Davis, F. D., Dennis, A. R., Dimoka, A., Gefen, D., Gupta, A., Ischebeck, A., & Kenning, P. (2010). On the foundations of NeuroIS: Reflections on the Gmunden Retreat 2009. Communications of the Association for Information Systems, 27(1), 15. https://doi.org/10.17705/1cais.02715
Romero, M. C., Davare, M., Armendariz, M., & Janssen, P. (2019). Neural effects of transcranial magnetic stimulation at the single-cell level. Nature communications, 10(1), 2642–2653. https://doi.org/10.1038/s41467-019-10638-7
Sánchez-Fernández, J., & Casado-Aranda, L.-A. (2021). Neural Predictors of Changes in Party Closeness after Exposure to Corruption Messages: An fMRI Study. Brain Sciences, 11(2), 158. https://doi.org/10.3390/brainsci11020158
Sánchez-Fernández, J., Casado-Aranda, L.-A., & Bastidas-Manzano, A.-B. (2021). Consumer Neuroscience Techniques in Advertising Research: A Bibliometric Citation Analysis. Sustainability, 13(3), 1589. https://doi.org/10.3390/su13031589
Schaefer, M., Rumpel, F., Sadrieh, A., Reimann, M., & Denke, C. (2015). Personal involvement is related to increased search motivation and associated with activity in left BA44—a pilot study. Frontiers in Human Neuroscience, 9, 144. https://doi.org/10.3389/fnhum.2015.00144
Sebastian, V. (2014). Neuromarketing and evaluation of cognitive and emotional responses of consumers to marketing stimuli. Procedia Social Behavioral Sciences, 127(2), 753–757. https://doi.org/10.1016/j.sbspro.2014.03.349
Seo, H., Schaworonkow, N., Jun, S. C., & Triesch, J. (2016). A multi-scale computational model of the effects of TMS on motor cortex. F1000Research, 5(3), 1945–1973. https://doi.org/10.12688/f1000research.9277.1
Siddique, J., Shamim, A., Nawaz, M., & Abid, M. F. (2023). The hope and hype of neuromarketing: a bibliometric analysis. Journal of Contemporary Marketing Science, 6(1), 1–21. https://doi.org/10.1108/JCMARS-07-2022-0018
Silberstein, R., & Nield, G. (2008). Brain activity correlates of consumer brand choice shift associated with television advertising. international Journal of Advertising, 27(3), 359–380. https://doi.org/10.2501/S0265048708080025
Silberstein, R. B., & Nield, G. E. (2012). Measuring emotion in advertising research: prefrontal brain activity. IEEE pulse, 3(3), 24–27. https://doi.org/10.1109/mpul.2012.2189172
Silberstein, R. B., Schier, M. A., Pipingas, A., Ciorciari, J., Wood, S. R., & Simpson, D. G. (1990). Steady-state visually evoked potential topography associated with a visual vigilance task. Brain topography, 3, 337–347. https://doi.org/10.1007/BF01135443
Solomon, P. R. (2018). Neuromarketing: Applications, Challenges and Promises. Biomedical Journal of Scientific & Technical Research, 12(2), 9136–9146.
Stallen, M., Smidts, A., Rijpkema, M., Smit, G., Klucharev, V., & Fernandez, G. (2010). Celebrities and shoes on the female brain: The neural correlates of product evaluation in the context of fame. Journal of economic psychology, 31(5), 802–811. https://doi.org/10.1016/j.joep.2010.03.006
Stewart, L., & Walsh, V. (2006). Transcranial magnetic stimulation in human cognition. MIT Press.
Stopczynski, A., Stahlhut, C., Petersen, M. K., Larsen, J. E., Jensen, C. F., Ivanova, M. G., Andersen, T. S., & Hansen, L. K. (2014). Smartphones as pocketable labs: Visions for mobile brain imaging and neurofeedback. International journal of psychophysiology, 91(1), 54–66. https://doi.org/10.1016/j.ijpsycho.2013.08.007
Takada, K., Ishii, A., Matsuo, T., Nakamura, C., Uji, M., & Yoshikawa, T. (2018). Neural activity induced by visual food stimuli presented out of awareness: a preliminary magnetoencephalography study. Scientific reports, 8(1), 3119–3129. https://doi.org/10.1038/s41598-018-21383-0
Tanida, M., Okabe, M., Tagai, K., & Sakatani, K. (2017). Evaluation of pleasure-displeasure induced by use of lipsticks with near-infrared spectroscopy (NIRS): usefulness of 2-channel NIRS in neuromarketing. Oxygen Transport to Tissue XXXIX, 977, 215–220. https://doi.org/10.1007/978-3-319-55231-6_29
Vassiliadis, P., Grandjean, J., Derosiere, G., De Wilde, Y., Quemener, L., & Duque, J. (2018). Using a double-coil TMS protocol to assess preparatory inhibition bilaterally. Frontiers in neuroscience, 12, 139. https://doi.org/10.3389/fnins.2018.00139
Vecchiato, G., Astolfi, L., Fallani, F. D., Toppi, J., Aloise, F., Bez, F., Rei, D. M., Kong, W. Z., Dai, J. G., Cincotti, F., Mattia, D., & Babiloni, F. (2011). On the use of EEG or MEG brain imaging tools in neuromarketing research. Computational Intelligence and Neuroscience, 2011(3), 1–12. https://doi.org/10.1155/2011/643489
Vecchiato, G., Maglione, A. G., Cherubino, P., Wasikowska, B., Wawrzyniak, A., Latuszynska, A., Latuszynska, M., Nermend, K., Graziani, I., & Leucci, M. R. (2014). Neurophysiological tools to investigate consumer’s gender differences during the observation of TV commercials. Computational and mathematical methods in medicine, 2014. https://doi.org/10.1155/2014/912981
Venkatraman, V., Dimoka, A., Pavlou, P. A., Vo, K., Hampton, W., Bollinger, B., Hershfield, H. E., Ishihara, M., & Winer, R. S. (2015). Predicting advertising success beyond traditional measures: New insights from neurophysiological methods and market response modeling. Journal of Marketing Research, 52(4), 436–452. https://doi.org/10.2139/ssrn.2498095
Vialatte, F.-B., Maurice, M., Dauwels, J., & Cichocki, A. (2010). Steady-state visually evoked potentials: focus on essential paradigms and future perspectives. Progress in neurobiology, 90(4), 418–438. https://doi.org/10.1016/j.pneurobio.2009.11.005
Wang, R. W., Chang, Y.-C., & Chuang, S.-W. (2016). EEG spectral dynamics of video commercials: impact of the narrative on the branding product preference. Scientific reports, 6(1), 36487–36498. https://doi.org/10.1038/srep36487
Wang, R. W., Chen, Y.-C., Liu, I.-N., & Chuang, S.-W. (2018). Temporal and spectral EEG dynamics can be indicators of stealth placement. Scientific reports, 8(1), 9117. https://doi.org/10.1038/s41598-018-27294-4
Wang, Y. Z., Chattaraman, V., Kim, H., & Deshpande, G. (2015). Predicting purchase decisions based on spatio-temporal functional MRI features using machine learning. IEEE Transactions on Autonomous Mental Development, 7(3), 248–255. https://doi.org/10.1109/tamd.2015.2434733
Yang, T., Lee, D.-Y., Kwak, Y., Choi, J., Kim, C., & Kim, S.-P. (2015). Evaluation of TV commercials using neurophysiological responses. Journal of physiological anthropology, 34(1), 1–11. https://doi.org/10.1186/s40101-015-0056-4
Zhang, Y., Thaichon, P., & Shao, W. (2023). Neuroscientific research methods and techniques in consumer research. Australasian Marketing Journal, 31(3), 211–227. https://doi.org/10.1177/14413582221085321
Zurawicki, L. (2010). Neuromarketing: Exploring the brain of the consumer Boston, USA. Springer Science & Business Media. https://doi.org/10.1007/978-3-540-77829-5
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.