PRODUCTION OF FEEDSTOCK FOR BIOFUEL ON MARGINAL LANDS IN UKRAINE: ASSESSMENT AND PROSPECTS
Production of feedstock for biofuel on marginal lands in Ukraine: assessment and prospects : Monograph. Riga, Latvia : Baltija Publishing, 2023. 242 р.
References
Anca-Couce, A., Zobel, N., Berger, A., Behrendt, F., (2012). Smoldering of pine wood: Kinetics and reaction heats. Combustion and Flame, Vol. 159 (4), pp. 1708–1719. DOI: 10.1016/j.combustflame.2011.11.015.
Bala-Litwiniak, A. & Zajemska, M., (2020). Computational and experimental study of pine and sunflower husk pellet combustion and co-combustion with oats in domestic boiler. Renew Energ, Vol. 162, pp. 151–159. https://doi.org/10.1016/j.renene.2020.07.139
Bielski, S., (2015). The agricultural production of biomass for energy purposes in Poland. Agriculture & Forestry, Vol. 61, Issue 1: 153–160.
Broido, A.A., (1969). A simple, sensitive graphical method of treating thermogravimetric analysis data. Journal Polymer of Science, Vol. 7 (10), pp. 1761–1763.
Castello, D., Rolli, B., Kruse, A., Fiori, L., (2017). Supercritical water gasification of biomass in a ceramic reactor: Long – time batch experiments. Energies, Vol. 10, 1734.
Czernik, S., Bridgwater, A.V., (2004). Overview of application of biomass fast pyrolysis oil. Energy &Fules. 18: 590 p.
Cherednichenko, O., (2020). Current state and development of specialized enterprises – producers of sunflower. Modern management review. Vol. XXV, 27 (2), pp. 7–13. DOI: 10.7862/rz.2020.mmr.11.
Cui, X., Yang, J., Shi, X., Lei, W., Huang, T., Bai, C., (2019). Pelletization of Sunflower Seed Husks: Evaluating and Optimizing Energy Consumption and Physical Properties by Response Surface Methodology (RSM). Processes, Vol. 7, 591. https://doi.org/10.3390/pr7090591
Demirbas, A., (2004). Combustion characteristics of biomass fuels. Progress Energy Combustion Science. 30, 219–230. https://doi.org/10.1016/j.pecs.2003.10.004
Di Blasi, C., (2008). Modeling chemical and physical processes of wood and biomass pyrolysis. Progress in Energy and Combustion Science, Vol. 34, pp. 47–90.
Farrar, D.E., Glauber, R.R., (1967). Multidisciplinarrity in regression analisis: The problems revisited. The review of Economics and statistics, Vol. 49, No. 1: 92–107.
Geletukha, G., Zhelyezna, T., Lakyda, D., Vasylyshyn, R., Zibtsev, S., Lakyda, I., Böttcher, H., (2010). Potential of biomass for energy in Ukraine. Kyiv. 27 p.
Web-Address: http:// www.eu-bee.info
Haykiri-Acm, H. & Yaman, S., (2011). Comparison of the combustion behaviors of agricultural wastes under dry air and oxygen. World Renewable Energy Congress. Bioenergy Technology (BE), pp. 251–256.
Isemin, R., Mikhalev, A., Klimov, D., Panagiotis, G., Margaritis, N., Kourkoumpas, D.S., Zaichenko, V.M., (2017). Torrefaction and combustion of pellets made of a mixture of coal sludge and straw. Fuel, Vol. 210, pp. 859–865.
DOI: 10.1016/j.fuel.2017.09.032.
Islamova, S.I., Ermolaev, D.V., Bulygina, K.S., (2022). Oxidative Torrefaction of Sunflower Husk Pellets in the Kaolin Layer. BioEnergy Research journal. Vol. 15, pp. 183–192. https://doi.org/10.1007/s12155-021-10280-6
Jones, J.M., Saddawi, A., Dooley, B., Mitchell, E.J.S., Werner, J., Waldron, D.J., Weatherstone, S., Williams, A., (2015). Low temperature ignition of biomass. Fuel Processing Technology, Vol. 134, pp. 373–377. http://dx.doi.org/10.1016/j.fuproc.2015.02.019
Klason, T. & Bai, X.S., (2007). Computational study of the combustion process and NO formation in a small-scale wood pellet furnace. Fuel, Vol. 86 (10), pp. 1465–1474. DOI: 10.1016/j.fuel.2006.11.022.
Kuznetsova, A., (2012). Pellet production in Ukraine: a profitable option for sustainable development? German-Ukrainian Agricultural Policy Dialogue (APD). 20 p.
Lau, F.S., Zabransky R., Bowen D.A., (2002). Techno-Economic Analysis of Hydrogen Production by Gasification of Biomass Gas. Hydrogen Program Review Proceeding. 12 p.
Matin, A., Majdak, T., Kricka, T., Grubor, M., (2019). Valorization of sunflower husk after seeds convection drying for solid fuel production. Journal of Central European Agriculture, Vol. 20 (1), pp. 389–401.
Parmar, K., (2017). Biomass – An overview on composition characteristics and properties. IRA – International J. Appl. Sci., Vol. 7, pp. 42–51. http://dx.doi.org/10.21013/jas.v7.n1.p4
Pastorello, C., Caserini, S., Galante, S., Dilara, P., Galletti, F., (2011). Importance of activity data for improving the residential wood combustion emission inventory at regional level. Atmospheric Environment, Vol. 45 (17), pp. 2869–2876.
Perea-Moreno, M.A., Manzano-Agugliaro, F., Perea-Moreno, A.J., (2018). Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability, Vol. 10 (10), 3407. DOI:10.3390/su10103407.
Popescu, B., Senila, L., Varaticeanu, C., Simon, G.N., (2013). Cellulosic bioethanol from sunflower seed hulls – a renewable energy source. Studia ubb ambientum, LVIII, Vol. 1–2, pp. 105–110.
Schwarzer, L., Jensen, P.A., Glarborg, P., Holm, J.K., & Dam-Johansen, K., (2017). Biomass ignition in mills and storages – is it explained by conventional thermal ignition theory? DTU Library, pp. 1–10.
Sivabalan, K., Hassan, S., Ya, H., Pasupuleti, J., (2021). A review on the characteristic of biomass and classification of bioenergy through direct combustion and gasification as an alternative power supply. Journal of Physics:
Conference Series, Vol. 1831, pp. 1–23. DOI:10.1088/1742-6596/1831/1/012033.
Spirchez, C., Lunguleasa, A., Croitoru, C., (2019). Ecological briquettes from sunflower seed husk. E3S Web of Conferences, Vol. 80, pp. 1–5. https://doi.org/10.1051/e3sconf/20198001001
Tibola, F.L., de Oliveira, T.J.P., Ataide, C.H., Cerqueira, D.A., Sousa, N.G., Cardoso, C.R., (2022). Temperature – programmed pyrolysis of sunflower seed husks: application of reaction models for the kinetic and thermodynamic calculation. Biomass Conversion and Biorefinery, pp. 1–18. https://doi.org/10.1007/s13399-021-02297-w
Tilmann, D., (2000). The combustion of solid fuels. Academic Press, Boston; 199 p.
Uddin, M.N., Techato, K., Taweekun, J., Mofijur, M., Rasul, M.G., Mahlia, T.M.I., Ashrafur, S.M., (2018). An Overview of Recent Developments in Biomass Pyrolysis Technologies. Energies, Vol. 11, 3115. DOI:10.3390/en11113115.
Velychko, O., (2015). Logistical system Fortschrittzahlen in the management of the supply chain of a multi-functional grain cooperative. Economics and Sociology. Vol. 8. No. 1: 127–146.
Wang, X., Kersten, S.R., Prins, W., Van Swaaij, W.P.M., (2002). Biomass-syngas from fast pyrolysis vapors of liquids. Prosceedings of the 12th Eurpoan Conference on Biomass for Energy, Industry and Climate Protection,
Amsterdam, The Northlands. 781 p.
Williams, P.T., Besler, S., (1996). The influence of Temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy; 3: 233–250.
Weatherstone, S. & Williams, A., (2015). Low temperature ignition of biomass. Fuel Processing Technology, Vol. 134, pp. 373–377.
Wystalska, K., (2018). Effects of pyrolysis parameters on the yield and properties of biochar from pelletized sunflower husk. E3S Web of Conferences, Vol. 44, pp. 1–7.
Yadav, S.P., Ghosh, U.K., Ray, A.K., (2016). A Fresh Look at the Kinetics of Pentosan Removal from Lignocellulosic Biomass. American Journal of Chemical Engineering. 4(6), pp. 161–169.
Zaichenko, V.M., Krylova, A.Y., Sytchev, G.A., Shevchenko, A.L., (2020). Thermal effects during biomass torrefaction. Solid Fuel Chem. Vol. 4, pp. 228–231.
Zajemska, M., Urbanczyk, P., Poskart, A., Urbaniak, D., Radomiak, H., Musial, D., Golanski, G., Wylecial, T., (2017). The impact of co-firing sunflower husk pellets with coal in a boiler on the chemical composition of flue gas. E3S Web of Conferences, Vol. 14, pp. 1–7.
Zajqc, G., Szyszlak-Barglowicz, J., Slowik, T., (2019). Comparison and Assessment of Emission Factors for Toxic Exhaust Components During Combustion of Biomass Fuels. Rocznik Ochrona Srodowiska. Vol. 21(1), pp. 378–394.
Zolotovs’ka, O., Kharytonov, M., Onyshchenko, O., (2016). Agricultural residues gasification, dependency of main operational parameters of the process on feedstock characteristics. INMATEH Agricultural Engineering, Vol. 50 (3), pp. 119–126.